
How to calculate with nondeterministic functions

Richard Bird1 and Florian Rabe2

1 Department of Computer Science, Oxford University
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

2 Laboratoire de Recherche en Informatique, University Paris Sud
Rue Noetzlin 91405 Orsay Cedex, France

Abstract. While simple equational reasoning is adequate for the calcu-
lation of many algorithms from their functional specifications, it is not
up to the task of dealing with others, particularly those specified as op-
timisation problems. One approach is to replace functions by relations,
and equational reasoning by reasoning about relational inclusion. But
such a wholesale approach means one has to adopt a new and sometimes
subtle language to argue about the properties of relational expressions.
A more modest proposal is to generalise our powers of specification by
allowing certain nondeterministic, or multi-valued functions, and to rea-
son about refinement instead. Such functions will not appear in any final
code. Refinement calculi have been studied extensively over the years
and our aim in this article is just to explore the issues in a simple setting
and to justify the axioms of refinement using the semantics suggested by
Morris and Bunkenburg.

1 Introduction

We set the scene by considering the following Haskell definition for an archetypal
optimisation problem:

mcc :: [Item]→ Candidate
mcc = minWith cost · candidates

The function mcc computes a candidate with minimum cost. The function
minWith can be defined by

minWith :: Ord b ⇒ (a → b)→ [a]→ a
minWith f = foldr1 smaller

where smaller x y = if f x 6 f y then x else y

Applied to a finite, nonempty list of candidates, minWith cost returns the first
candidate with minimum cost. The function candidates takes a finite list of
items and returns a finite, nonempty list of candidates. We will suppose that the
construction uses foldr :

candidates :: [Item]→ [Candidate]
candidates xs = foldr step [c0] xs

where step x cs = concatMap (additions x) cs

The useful function concatMap is defined by concatMap f = concat ·map f . The
value c0 is some initial candidate and additions x c is a finite, nonempty list of
extended candidates constructed from a new item x and an existing candidate
c. Think of the computation as a finite tree with c0 as root and additions x c as
the children of the tree with label c. The list of final candidates appears as the
fringe of the tree.

A greedy algorithm for mcc arises as the result of successfully fusing the
function minWith cost with candidates. Operationally speaking, instead of buil-
ding the complete list of candidates and then selecting a best one, we construct
a single best candidate at each step. The usual formulation of the fusion rule for
foldr states that

f (foldr g e xs) = foldr h (f e) xs

for all finite lists xs provided the fusion condition

f (g x y) = h x (f y)

holds for all x and y . In fact the fusion condition is required to hold only for all
y of the form y = foldr g e xs; this version is called context-sensitive fusion.

The context-sensitive fusion condition for our problem reads:

minWith cost · step x · candidates = add x ·minWith cost · candidates

for some function add and all finite lists. To see if it holds we can reason:

minWith cost · step x · candidates
= { definition of step }

minWith cost · concatMap (additions x) · candidates
= { distributive law (see below) }

minWith cost ·map (minWith cost · additions x) · candidates
= { define add x = minWith cost · additions x }

minWith cost ·map (add x) · candidates
= { greedy condition (see below) }

add x ·minWith cost · candidates

The distributive law used in the second step is the fact that

minWith f (concat xss) = minWith f (map (minWith f) xss)

provided xss is a finite list of finite, nonempty lists. Equivalently,

minWith f (concatMap g xs) = minWith f (map (minWith f · g) xs)

provided xs is a finite list and g returns finite, nonempty lists. The proof of
the distributivity law is straightforward using the given definition of minWith.
Summarising this short calculation, we have shown that

mcc = foldr add c0
where add x = minWith cost · additions x

2

provided the following greedy condition holds:

minWith cost ·map (add x) · candidates = add x ·minWith cost · candidates

That all seems simple enough. However, the fly in the ointment is that, in order
to establish the greedy condition, we need to prove the very strong fact that

cost c1 6 cost c2 ⇔ cost (add x c1) 6 cost (add x c2) (1)

for all candidates c1 and c2. To see why, observe that if c1 is the first candidate
with minimum cost in a list of candidates, then add x c1 has to be the first
candidate with minimum cost in the list of extended candidates. This follows
from our definition of minWith which selects the first element with minimum
cost in a list of candidates. To ensure that the extension of a candidate c2 earlier
in the list has a larger cost we have to show that

cost c2 > cost c1 ⇒ cost (add x c2)> cost (add x c1) (2)

for all c1 and c2. To ensure that the extension of a candidate c2 later in the list
does not have a smaller cost we have to show that

cost c1 6 cost c2 ⇒ cost (add x c1) 6 cost (add x c2) (3)

for all c1 and c2. The conjunction of (2) and (3) is (1). The problem is that (1)
is so strong that it rarely holds in practice. A similar condition is needed if, say,
minWith returned the last element in a list with minimum cost, so the problem
is not to do with the specific definition of minWith. What we really need is a
form of reasoning that allows us to establish the necessary fusion condition from
the simple monotonicity condition (3) alone, and the plain fact of the matter is
that equational reasoning with any definition of minWith is simply not adequate
to provide it.

It follows that we have to abandon equational reasoning. One approach is to
replace our functional framework with a relational one, and to reason instead
about the inclusion of one relation in another. Such an approach has been sug-
gested in a number of places, including our own [1]. But, for the purposes of
presenting a simple introduction to the subject of greedy algorithms in Haskell,
this solution is way too drastic, more akin to a heart transplant than a tube of
solvent for occasional use. The alternative, if it can be made to work smoothly,
is to introduce nondeterministic functions, also called multi-valued functions in
mathematics, and to reason about refinement.

The necessary intuitions and syntax are introduced in Section 2. Section 3
gives a formal calculus and Section 4 a denotational semantics for our language.
The soundness of the semantics establishes the consistency of the calculus. We
have formalised syntax, calculus, and semantics in the logical framework LF [2];
the formalisation is not given in this paper but is available online3.

3 https://github.com/florian-rabe/nondet

3

https://github.com/florian-rabe/nondet

2 Nondeterminism and refinement

Suppose we introduce MinWith as a nondeterministic function, specified only
by the condition that if x is a possible value of MinWith f xs, where xs is a
finite nonempty list, then x is an element of xs and for all elements y of xs we
have f x 6 f y . Note the initial capital letter: MinWith is not part of Haskell. It
is not our intention to extend Haskell with nondeterministic functions; instead
nondeterminism is simply there to extend our powers of specification and cannot
appear in any final algorithm.

Suppose we define y ← F x to mean that y is one possible output of
the nondeterministic function F applied to a value x . In words, y is a pos-
sible refinement of the nondeterministic expression F x . For example, 1 ←
MinWith (const 0) [1, 2] and 2 ← MinWith (const 0) [1, 2]. More generally,
if E1 and E2 are possibly nondeterministic expressions of the same type T , we
will write E1 ← E2 to mean that for all values v of T we have

v ← E1 ⇒ v ← E2

We define two nondeterministic expressions of the same type to be equal if they
both have the same set of refinements: E1 = E2 if

v ← E1 ⇔ v ← E2

for all v . Equivalently,

E1 = E2 ⇔ E1 ← E2 ∧ E2 ← E1

which just says that ← is anti-symmetric. Our task is to make precise the exact
rules allowed for reasoning about ← and to prove that these rules do not lead
to contradictions.

To illustrate some of the pitfalls that have to be avoided, we consider three
examples. First, here is the distributive law again in which minWith is replaced
by MinWith:

MinWith f (concat xss) = MinWith f (map (MinWith f) xss)

If this equation is to hold for all finite, nonempty lists xss of finite, nonempty
lists, and we do indeed want it to, then it has to mean there is no refinement of
one side that is not also a refinement of the other side. It does not mean that
the equation should hold for all possible implementations of MinWith, and it
cannot mean that because it is false. Suppose we define minWith to return the
second best candidate in a list of candidates, or the only best candidate if there
is only one. In particular,

minWith (const 0) (concat [[a], [b, c]]) = b
minWith (const 0) (map (minWith (const 0)) [[a], [b, c]]) = c

The results are different so the distributive law fails. What the distributive law
has to mean is the conjunction of the following two assertions, in which M
abbreviates MinWith cost :

4

x ← M (concat xss) ⇒ (∃xs : xs ← map M xss ∧ x ← M xs)
(xs ← map M xss ∧ x ← M xs) ⇒ x ← M (concat xss)

It is easy enough to show that these two assertions do hold though we omit
details.

For the second example, consider the function double x = x + x over the
integers. Does the equation

double (M xs) = M xs + M xs

hold, where xs is a finite nonempty list of integers and M = MinWith (const 0)?
We have

x ← double (M [1, 2])
⇔ ∃y : y ← M [1, 2] ∧ x = double y
⇔ x = 2 ∨ x = 4

while

x ← M [1, 2] + M [1, 2]
⇔ ∃y , z : y ← M [1, 2] ∧ z ← M [1, 2] ∧ x = y + z
⇔ x = 2 ∨ x = 3 ∨ x == 4

so the answer is no. We have only that double (M xs)← M xs + M xs.
For the third example, again let M = MinWith (const 0). It is easy enough

to show, for all f1, f2 and x that

M [f1 x , f2 x] = M [f1, f2] x

but it would be wrong to conclude by η conversion that

λx .M [f1 x , f2 x] = M [f1, f2]

We have

f ← λx .M [f1 x , f2 x]⇔ ∀x : f x = f1 x ∨ f x = f2 x

However,

f ← M [f1, f2]⇔ (∀x : f x = f1 x) ∨ (∀x : f x = f2 x)

The results are different. The η rule, namely f = λx . f x , does not hold if f is a
nondeterministic function such as M [f1, f2].

What else do we want? Certainly, we want a refinement version of the fusion
law for foldr , namely that over finite lists we have

foldr g e ′ xs ← H (foldr f e xs)

for all finite lists xs provided that e ′ ← H e and g x (H y) ← H (f x y). The
context-sensitive version of the second condition reads:

5

g x (H (foldr f e xs))← H (f x (foldr f e xs))

Here is the proof of the fusion law. The base case is immediate and the induction
step is as follows:

foldr g e ′ (x : xs)
= { definition of foldr }

g x (foldr g e ′ xs)
← { induction, and monotonicity of refinement (see below) }

g x (H (foldr f e xs))
← { fusion condition, and monotonicity of refinement }

H (f x (foldr f e xs))
= { definition of foldr }

H (foldr f e (x : xs))

The appeal to the monotonicity of refinement is assertion

E1 ← E2 ⇒ F E1 ← F E2

So this condition is also required to hold.
Let us see what else we might need by redoing the calculation of the greedy

algorithm for mcc. This time we start with the specification

mcc ← MinWith cost · candidates

For the context-sensitive fusion condition we reason:

MinWith cost · step x · candidates
= { definition of step }

MinWith cost · concatMap (additions x) · candidates
= { distributive law }

MinWith cost ·map (MinWith cost · additions x) · candidates
→ { suppose add x ← MinWith cost · additions x }

MinWith cost ·map (add x) · candidates
→ { greedy condition (see below) }

add x ·MinWith cost · candidates

We write E1 → E2 as an alternative to E2 ← E1. The second step makes use
of the distributive law, and the third step is an instance of the monotonicity of
refinement.

Let us now revisit the greedy condition. This time we only have to show

add x ·MinWith cost · candidates ← MinWith cost ·map (add x) · candidates

where add x ← MinWith cost · additions x . Unlike the previous version, this
claim follows from the monotonicity condition (3). To spell out the details, let
cs = candidates xs and suppose c1 is a candidate in cs with minimum cost. We
have only to show that

6

add x c1 ← MinWith cost (map (add x) cs

Equivalently, that

cost (add x c1) 6 cost (add x c2)

for all candidates c2 ∈ cs. But this follows from (3) and the fact that cost c1 6
cost c2.

Summarising, we have shown that mcc = foldr add c0 provided (3) holds
for a suitable refinement of add . Unlike the previous calculation, the new one
is sufficient to deal with most examples of greedy algorithms, at least when
candidate generation is expressed in terms of foldr .

We have concentrated on greedy algorithms and the function MinWith, but
there is another nondeterministic function ThinBy , which is needed in the study
of thinning algorithms. Not every optimisation problem can be solved by a greedy
algorithm, and between the extremes of maintaining just one candidate at each
step and maintaining all possible candidates, there is the option of keeping only
a subset of candidates in play. That is where ThinBy comes in. It is a function
with type

ThinBy :: (a → a → Bool)→ [a]→ [a]

Thus ThinBy (�) xs takes a comparison function � and a list xs as arguments
and returns a subsequence ys of xs such that for all x in xs there is a y in ys with
y � x . The subsequence is not specified further, so ThinBy is nondeterminis-
tic. We mention ThinBy to show that there is more than one nondeterministic
function of interest in the study of deriving algorithms from specifications.

The task now before us is to find a suitable axiomatisation for a theory of
refinement and to give a model to show the soundness and consistency of the
axioms. Essentially, this axiomatisation is the one proposed in [3,4] but simplified
by leaving out some details inessential for our purposes.

3 An axiomatic basis

Rather than deal with specific nondeterministic functions such as MinWith and
ThinBy , we can phrase the required rules in terms of a binary choice operator
(u). Thus,

E1 u E2 = MinWith (const 0) [E1,E2]

We also have

MinWith f xs = foldr1 (u) [x | x ← xs, and [f x 6 f y | y ← xs]]

so MinWith can be defined in terms of (u). Below we write u/ for foldr1 (u).
Thus u/ takes a finite, nonempty list of arguments and returns an arbitrary
element of the list.

7

To formulate the axioms we need a language of types and expressions, and
we choose the simply-typed lambda calculus. Types are given by the grammar

T ::= B | T → T

B consists of the base types, such as Int and Bool . We could have included pair
types explicitly, as is done in [3], but for present purposes it is simpler to omit
them. Expressions are given by the grammar

E ::= C | V | u / [E1,E2, ...,En] | E E | λV : T .E

where n>0 and each of E1,E2, ...,En are expressions of the same type. We omit
the type of the bound variable in a λ-abstraction if it can be inferred, and we
write E1uE2 for u/ [E1,E2]. Included in the constants C are constant functions
such as the addition function + on integers (written infix as usual) and integer li-
terals 0, 1,−1, The typing rules are standard; in particular, u/ [E1,E2, ...,En],
has type T if all Ei do.

Boolean formulas are formed using equality E1 = E2 and refinement E1 ←
E2 of expressions as well as universal and existential quantification and the
propositional connectives in the usual way. Additionally, in order to state the
axioms, we need a predicate pure(E) to distinguish a subclass of expressions,
called pure expressions. The intention is to define a semantics in which a pure
expression denotes a single value, except for lambda abstractions with impure
bodies, which denote a set of functions. We add rules such that pure(E) holds
if E is

– a constant C applied to any number of pure arguments (including C itself
if there are no arguments),

– a lambda abstraction (independent of whether its body is pure).

Like any predicate symbol, purity is closed under equality, i.e., an expression is
also pure if it is equal to a pure expression. For example, 2 and E1 + E2 for pure
E1 and E2 are pure because 2 and + are constants. Also λy . 1uy is pure because
it is a lambda abstraction, and (λx . λy . x u y) 1 is pure because it is equal by
β-reduction (see below) to the former. Furthermore, 2 u 2 is pure because it
is equal to 2 (using the axioms given below), but (λy . 1 u y) 2 and 1 u 2 are
both impure. In what follows we use lowercase letters for pure expressions and
uppercase letters for possibly impure expressions.

The reason for introducing pure expressions is in the statement of our first
two axioms, the rules of β and η conversion. The β rule is that if e is a pure
expression, then

(λx .E) e = E (x := e) (4)

where E (x :=e) denotes the expression E with all free occurrences of x replaced
by e. Intuitively, the purity restriction to β-reduction makes sense because the
bound variable of the lambda abstraction only ranges over values and therefore
may only be substituted with pure expressions.

8

The η rule asserts that if f is a pure function, then

f = λx . f x (5)

The purity restriction to η-expansion makes sense because lambda-abstractions
are always pure and thus can never equal an impure function.

Our notion of purity corresponds to the proper expressions of [3] except that
we avoid the axiom that variables are pure. Our first draft used that axiom,
but we were unable to formalise the calculus until we modified that aspect.
The reason why the axiom is problematic is that it forces a distinction between
meta-variables (which may be impure) and object variables (which must be
pure). That precludes using higher-order abstract syntax when representing and
reasoning about the language, e.g., in a logical framework like [2], and highly
complicates the substitution properties of the language. However, just like in [3],
our binders will range only over values, which our calculus captures by adding a
purity assumption for the bound variable whenever traversing into the body of a
binder. For example, the ξ rule for equality reasoning under a lambda becomes:

pure(x) ` E = F

` λx.E = λx.F

As we will see below, without the above purity restrictions we could derive
a contradiction with the remaining four axioms, which are as follows:

E1 ← E2 ⇔ ∀x : x ← E1 ⇒ x ← E2 (6)

E1 = E2 ⇔ ∀x : x ← E1 ⇔ x ← E2 (7)

x ← u/ [E1,E2, ...,En]⇔ x ← E1 ∨ x ← E2 ∨ ... ∨ x ← En (8)

x ← F E ⇔ ∃f , e : f ← F ∧ e ← E ∧ x ← f e (9)

f ← λx .E ⇔ ∀x : f x ← E (10)

Recall that free lower case variables range over pure expressions only, i.e., the
free variables x and f are assumed pure.

From (6) and (7) we obtain that (←) is reflexive, transitive and anti-symmetric.
From (8) we obtain that (u) is associative, commutative and idempotent. Axioms
(8) and (9) are sufficient to establish

F (u/ [E1,E2, ...,En]) = u/ [F E1,F E2, ...,F En] (11)

Here is the proof:

x ← F (u/ [E1,E2, ...,En])
⇔ { (9) }
∃f , e : f ← F ∧ e ← u / [E1,E2, ...,En] ∧ x ← f e

⇔ { (8) }
∃i , f , e : f ← F ∧ e ← Ei ∧ x ← f e

⇔ { (9) }
∃i : x ← F Ei

9

⇔ { (8) }
x ← u / [F E1,F E2, ...,F En]

It follows from (11) and (4) that

(λx . x + x) (1 u 2) = (λx . x + x) 1 u (λx . x + x) 2 = 2 u 4

If, however, (4) was allowed to hold for arbitrary expressions, then we would
have

(λx . x + x) (1 u 2) = (1 u 2) + (1 u 2) = 2 u 3 u 4

which is a contradiction.
We can also show, for example, that λx . x u 3 and id u const 3 are different

functions even though they are extensionally the same:

(λx . x u 3) x = x u 3 = (id u const 3) x

Consider the function h = λf . f 1 + f 2. We have by β reduction that

h (λx . x u 3) = (λx . x u 3) 1 + (λx . x u 3) 2 = (1 u 3) + (2 u 3) = 3 u 4 u 5 u 6

while, on account of (11), we have

h (id u const 3) = h id u h (const 3) = (1 + 2) u (3 + 3) = 3 u 6

Thus two nondeterministic functions can be extensionally equal without being
the same function. That explains the restriction of the η rule to pure functions.
Finally, (9) gives us that

G1 ← G2 ⇒ F ·G1 ← F ·G2

F1 ← F2 ⇒ F1 ·G ← F2 ·G

where (·) = (λf . λg . λx . f (g x)).
To complete the presentation of the calculus, we need to give the rules for the

logical operators used in the axioms. The rule for the propositional connectives
are the standard ones and are omitted. But the rules for the quantifies are subtle
because we have to ensure the quantifiers range over pure expressions only. In
single-conclusion natural deduction style, these are

pure(x) ` F
` ∀x:F

` ∀x:F ` pure(e)
` F (x:=e)

` F (x:=e) ` pure(e)
` ∃x:F

` ∃x:F pure(x), F ` G
` G

Here pure(e) is the purity predicate, whose axioms are described above.

4 A denotational semantics

To establish the consistency of the axiomatisation we give a denotational seman-
tics for nondeterministic expressions. As the target language of our semantics,
we use standard set theory, with the notations A→ B and λx ∈ A.b for functions
(with ∈ A omitted if clear).

10

Overview The basic intuition of the interpretation function J−K is given in the
following table where we write P∗ A for the set of non-empty subsets of A:

Syntax Semantics
type T set JT K
context declaring x : T environment mapping ρ : x 7→ JT K
expression E : T non-empty subset JEK ∈ P∗JT K
refinement E1 ← E2 subset JE1Kρ ⊆ JE2Kρ
function f : S → T set–valued function JfKρ : JSK→ P∗JT K
choice E1 u E2 union JE1Kρ ∪ JE2Kρ
purity pure(E) for E : T JEKρ is generated by a single v ∈ JT K

Thus, types denotes sets, and non-deterministic expressions denote sets of
values. Functions are set-valued, and choice is simply union.

Additionally, for each type T , we will define the operation

JT K 3 v 7→ v← ∈ P∗JT K,

which embeds the single (deterministic) values into the power set. We call it
refinement closure because v← is the set of all values that we want to allow as
a refinement of v. This allows defining the refinement ordering 6T on JT K by
v 6T w iff v← ⊆ w←. For every expression E : T , the set JEK will be downward
closed with respect to 6T . One could add an expression ⊥ as a value with no
refinements other than itself, which denotes the empty set. But doing so would
mean that ⊥ would be a refinement of every expression, which we choose not to
have. That explains the restriction to non-empty sets in our semantics. Note that
6T is not the same as the usual approximation ordering on Haskell expressions
of a given type with ⊥ as the least element.

Choice and Refinement We define

Ju/[E1, ..., En]Kρ = JE1Kρ ∪ . . . ∪ JEnKρ

This captures our intuition that a choice refines to any of its arguments, i.e., it
denotes all values denoted by any argument. This is tied to the intuition that
the refinement property corresponds to the subset condition on denotations. For
example, E1 ← E1 u E2 corresponds to JE1Kρ ⊆ JE1 u E2Kρ.

Pure expressions e : T cannot be properly refined. Therefore, they are in-
tuitively interpreted as singleton sets. Technically, we have JeKρ = v← for some
v ∈ JT K.

Variables As usual, expressions with free variables are interpreted relative to
an environment ρ. Analogously to variables ranging over pure expressions, the
environment maps every variable x : T to a value v ∈ JT K (but not to a subset of
JT K as one might expect). Consequently, the denotation of a variable is defined
by applying the refinement closure

JxKρ = ρ(x)←

11

Base Types and Constants The interpretation of base types is straightforward,
and we define

JInt K = Z
JBool K = B

Moreover, we define v← = {v} for v ∈ JBK for every base type B. In particular,
we have v 6B w iff v = w. In other words, the refinement ordering on base types
is flat.

We would like to interpret all constants C in this straightforward way as
well, but that is not as easy. In general, we assume that for every user-declared
constant C : T , a denotation C ∈ JT K is provided. Then we define

JCKρ = C
←
.

However, we cannot simply assume that C is the standard denotation that we
would use to interpret a deterministic type theory. For example, for + :Int →
Int → Int , we cannot define + as the usual addition +Z : Z → Z → Z because
we need a value + : Z→ P∗(Z→ P∗Z).

For first-order constants, i.e., constants C : B1 → . . . → Bn → B where B
and all Bi are base types (e.g., the constant +), we can still lift the standard
interpretation relatively easily: If f : JB1K→ . . .→ JBnK→ JBK is the intended
interpretation for C, we define

C : JB1K→ P∗(JB2K→ . . .→ P∗(JBnK→ P∗JBK) . . .)

by
C = λx1.{λx2. . . . {λxn.{f x1 . . . , xn}} . . .}

Because all Bi are base types, this yields we have JCKρ = C
←

= {C}. For n = 0,
this includes constants C : B, e.g., J1Kρ = {1} and accordingly for all integer
literals.

But we cannot systematically lift standard interpretations of higher-order
constants C accordingly. Instead, we must provide C individually for each higher-
order constant. But for the purposes of program calculation, this is acceptable
because we only have to do it once for the primitive constants of the language.
In [3], this subtlety is handled by restricting attention to first-order constants.

Functions We define the interpretation of function types as follows:

JS → T K = JSK→ P∗JT K

and for f ∈ JS → T K we define

f← = {g : JS → T K | g(v) ⊆ f(v) for all v ∈ JSK}

Thus, the refinement ordering on functions acts point-wise: g 6S→T f iff g(v) ⊆
f(v) for all v ∈ JSK.

12

For example, there are nine functions of type JBool → Bool K with B = {0, 1}
whose tables are as follows:

f0 f1 f2 f3 f4 f5 f6 f7 f8
0 {0, 1} {0, 1} {0} {1} {0, 1} {0} {0} {1} {1}
1 {0, 1} {0} {0, 1} {0, 1} {1} {0} {1} {0} {1}

For example, f7 = ¬ is the lifting of the usual negation function. The ordering
6Bool→Bool has top element f0 and the four bottom elements f5, f6, f7 and f8.

Finally, the clauses for the denotation of λ and application terms are

Jλx : S.EKρ = (λv ∈ JSK.JEKρ(x:=v))← (12)

JF EKρ =
⋃
{f(e) | f ∈ JF Kρ, e ∈ JEKρ} (13)

Here the notation ρ(x := v) means the environment ρ extended with the binding
of v to x. Because every expression in already interpreted as a set and function
expressions must be interpreted as set-valued functions, a λ-abstraction can be
interpreted essentially as the corresponding semantic function. We only need to
apply the refinement closure. Equivalently, we could rewrite (12) using

(λv ∈ JSK.JEKρ(x:=v))← = {f | f(v) ⊆ JEKρ(x:=v) for all v ∈ JSK}

The clause for application captures our intuition of monotonicity of refinement:
F E is interpreted by applying all possible denotations f of F to all possible
denotations e of E; each such application returns a set, and we take the union
of all these sets.

Formulas Because formulas are a special case of expressions, they are interpreted
as non-empty subsets of JBoolK = {0, 1}. We write > for the truth value {1}
denoting truth. The truth value {0, 1} will never occur (unless the user willfully
interprets a constant in a way that returns it).

The denotation of all Boolean constants and expressions is as usual. The
denotation of the quantifiers and the special predicates is defined by:

JE1 ← E2Kρ = > iff JE1Kρ ⊆ JE2Kρ (14)

Jpure(E)Kρ = > iff JEKρ = v← for some v ∈ JSK (15)

J∀Sx : F Kρ = > iff JF Kρ(x:=v) = > for all v ∈ JSK (16)

J∃Sx : F Kρ = > iff JF Kρ(x:=v) = > for some v ∈ JSK (17)

Note that the quantified variables seamlessly range only over values.

Soundness and Consistency We can now state the soundness of our calculus as
follows:

Theorem 1 (Soundness). If F is provable, then JF Kρ = > for every environ-
ment ρ for the free variables of F . In particular, if E1 ← E2 is provable, then
JE1Kρ ⊆ JE2Kρ for all environments ρ.

13

Proof. As usual, the proof proceeds by induction on derivations.
In particular, we must justify the axioms (4) - (10). We concentrate on (4),

which requires us to show

J(λx : S.E) eKρ = JE(x := e)Kρ

for all expressions E , all pure expressions e and all environments ρ. The proof
divides into two cases according to the two axioms for purity: either e is an
application of a constant to pure arguments, in which case JeKρ is a singleton
set, or e is a lambda abstraction. For the former we will need the fact that
if e is single-valued, then JE(x := e)Kρ = JEKρ(x:=!JeKρ) where !{v} = v. This
substitution lemma can be proved by structural induction on E . That means we
can argue:

J(λx : S.E) eKρ
= {13}⋃
{f(v) | f ∈ Jλx.EKρ, v ∈ JeKρ}

= {12}⋃
{f(v) | f(w) ⊆ JEKρ(x:=w) for all w ∈ JSK, v ∈ JeKρ}

= {JeKρ ⊆ JSK and in general
⋃
{X | X ⊆ Y } = Y }⋃

{JEKρ(x:=v) | v ∈ JeKρ}
= {e is single-valued}
JEKρ(x:=!JeKρ)
= {substitution lemma}
JE(x := e)Kρ

For the second case, where e is a lambda abstraction λy : T .F , we need the
fact that

J(λx.E) (λy.F)Kρ = JEKρ(x:=λv.JF Kρ(y:=v))

This fact can be established as a corollary to the monotonicity lemma which
asserts JEKρ(x:=f) ⊆ JEKρ(x:=g) whenever f(v) ⊆ g(v) holds for all v ∈ JSK. for
all expressions E and environments ρ. The monotonicity lemma can be proved
by structural induction on E . The corollary above is now proved by reasoning

J(λx.E) (λy.F)Kρ
= {13}⋃
{h(f) | h ∈ Jλx.EKρ, f ∈ Jλy.F Kρ}

= {as in previous calculation}⋃
{JEKρ(x:=f) | f ∈ Jλy.F Kρ}

= {12}⋃
{JEKρ(x:=f) | f(v) ⊆ JF Kρ(y:=v) for all v ∈ JT K}

= {monotonicity lemma}
JEKρ(x:=λv.JF Kρ(y:=v))

It remains to show that the latter is equal to JE(x := λy.F)Kρ. Here we proceed
by structural induction on E . We omit the details. The other axioms are proved
by similar reasoning.

14

As a straightforward consequence of soundness, we have

Theorem 2 (Consistency). Our calculus is consistent, i.e., we cannot derive
a contradiction.

Proof. If we could derive a contradiction, then soundness would yield a contra-
diction in set theory.

Technically, our calculus is only consistent under the assumption that set theory
is consistent. We can strengthen that result by using a much weaker target
language than set theory for our semantics. Indeed, standard higher-order logic
(using an appropriate definition of power set) is sufficient.

5 Summary

The need for nondeterministic functions arose while the first author was prepa-
ring a text on an introduction to Algorithm Design using Haskell. The book,
which is co-authored by Jeremy Gibbons, will be published by Cambridge Uni-
versity Press next year. Two of the six parts of the book are devoted to greedy
algorithms and thinning algorithms. To make the material as accessible as possi-
ble, we wanted to stay close to Haskell and that meant we did not want to make
the move from functions to relations, as proposed for instance in [1]. Instead,
we made use of just two nondeterministic functions, MinWith and ThinBy (or
three if you count MaxWith), and reasoned about refinement rather than equality
when the need arose. The legitimacy of the calculus, as propounded above, was
omitted. The problems associated with reasoning about nondeterminism were
discussed at the Glasgow meeting of WG2.1 in 2016, when the second author
came on board. Our aim has been to write a short and hopefully sufficient in-
troduction to the subject of nondeterminism for functional programmers rather
than logicians. In this enterprise we made much use of the very readable papers
by Joe Morris and Alexander Bunkenberg.

References

1. Richard S. Bird and Oege de Moor. The Algebra of Programming. Prentice-Hall
International Series in Computer Science, Hemel Hempstead, UK (1997).

2. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the Association for Computing Machinery, 40(1):143–184, 1993.

3. Joseph M. Morris and Alexander Bunkenburg. Specificational functions. ACM
Transactions on Programming Languages and Systems, 21 (3) (1999) pp 677–701.

4. Joseph M. Morris and Alexander Bunkenburg. Partiality and Nondeterminacy in
Program Proofs Formal Aspects of Computing 10 (1998) pp 76–96.

5. Joseph M. Morris and Malcolm Tyrrell. Dually nondeterministic functions. ACM
Transactions on Programming Languages and Systems, 30 (6), Article 34 (2008).

15

	How to calculate with nondeterministic functions
	1 Introduction
	2 Nondeterminism and refinement
	3 An axiomatic basis
	4 A denotational semantics
	5 Summary

