
Selecting Colimits for Parametrisation and
Networks of Specifications

Till Mossakowski1, Florian Rabe2 and Mihai Codescu3

1 Otto-von-Guericke-University of Magdeburg, Germany
2 Jacobs University Bremen, Germany,

3 Free University of Bozen-Bolzano, Italy

Abstract. Colimits are powerful tool for the combination of objects in
a category. In the context of modeling and specification, they are used
in the institution-independent semantics (1) of instantiations of param-
eterised specifications (e.g. in the specification language CASL), and (2)
of combinations of networks of specifications (in the OMG standardised
language DOL).

The problem of using colimits as the semantics of certain language con-
structs is that they are defined only up to isomorphism. However, the
semantics of a complex specification in these languages is given by a sig-
nature and a class of models over that signature— not by an isomorphism
class of signatures. This is particularly relevant when a specification with
colimit semantics is further translated or refined. The user needs to know
the symbols of a signature for writing a correct refinement.

Therefore, we study how to usefully choose one representative of the
isomorphism class of all colimits of a given diagram. We develop criteria
that colimit selections should meet. We work over arbitrary inclusive
categories, but start the study how the criteria can be met with Set-like
categories, which are often used as signature categories for institutions.

1 Introduction

“Given a species of structure, say widgets, then the result of inter-
connecting a system of widgets to form a super-widget corresponds to
taking the colimit of the diagram of widgets in which the morphisms
show how they are interconnected.” [7]

Motivation The notion of colimit provides a natural way to abstract the idea
that some objects of interest, which can be e.g. logical theories, software specifi-
cations or semiotic systems, are combined while taking into account the way they
are related. Specification languages whose semantics involves colimits are CASL
[16] (for instantiations of parameterised specifications) and its extension DOL
(see [14,17] and http://dol-omg.org) (for combination of networks of specifi-
cations). Specware [24] provides a tool computing colimits of specifications that
has been successfully used in industrial applications; [22] makes a strong case for
the use of colimits in formal software development. The Heterogeneous Tool Set

http://dol-omg.org

(HETS, [13]) also supports computation of colimits, covering even the heteroge-
neous case [4]. Colimits have benn used for ontology alignment [25] and database
integration [21]. Recently, colimits have provided the base mechanism for con-
cept creation by blending existing concepts [10]. Moreover, colimits provide the
basis for a good behaviour of parameterization in a specification language [6].4

The problem that arises naturally when using colimits is that they are not
unique, but only unique up to isomorphism. By contrast, the semantics of a
specification involves a specific signature, which must be selected from this iso-
morphism class. Also, any implementation of colimit computation in a tool must
make an according choice of how the colimiting object actually looks, in particu-
lar when it comes to the names of its symbols. Otherwise, users have no control
over the well-formedness of further specifications built from the colimit: Refer-
ring to symbols of the colimit is only possible with knowledge about the actual
symbol names appearing in the colimit. To be useful in practice, it is desirable
that such a choice appears natural to the user. For example, the names of original
symbols should be preserved whenever possible.

Contribution Our contribution is two-fold. Firstly, we develop a suite of prop-
erties that can be used to evaluate and classify different colimit selections. All
of these are motivated by the desire that parameterisation and combination of
networks enjoy good properties. We show that these properties, although all de-
sirable, cannot be realized at once. Secondly, we give solutions for systematically
selecting colimits in various signature categories that provide good trade-offs be-
tween these conflicting properties.

Related work The semantics of CASL [1,12] provides some method for computa-
tion of specific pushouts. However, the chosen institutional framework (institu-
tions with a lot of extra infrastructure) is rather complicated, while we use the
much more natural framework of inclusion systems. Moreover, desired properties
of pushouts are only discussed casually. Rabe [18] discusses three desirable prop-
erties of selected pushouts and conjectures that they are not reconcilable. We
shed light on this conjecture and provide a total selection of pushouts, while [18]
only provides a partial selection. The systematic investigation of selected colim-
its (i.e. beyond pushouts) is new to our knowledge. In the context of Specware,
colimits are computed as equivalence classes [22]; however, this is quite cumber-
some when dealing with real specifications.

Overview In Section 2, we recall some preliminaries as well as language con-
structs from CASL and DOL that involve colimits in their semantics. Then we
develop criteria for elegant colimit selection in Section 3. In Section 4, we give
colimit selections for various categories. We will also see that not every category
admits a selection that satisfies all desirable properties. Therefore, we pursue a
second goal in Section 5, namely to find useful categories for which we can give
particularly elegant selections.

4 When we use the term specification, our theory applies equally to ontologies and
models, provided these have a formal semantics as theories of some institution.

2

2 Preliminaries

2.1 Categories with Symbols

The large variety of logical languages in use can be captured at an abstract level
using the concept of signature categories. The objects of such a category are
signatures which introduce syntax for the domain of interest, and the signature
morphisms capture relations between signatures such as changes of notation,
extensions, or translations. For example, signature categories feature heavily in
the framework of institutions [8], where they are the starting point for abstractly
capturing the semantics of logical systems and developing results independently
of the specific features of a logical system.

In institutions and similar frameworks, the signature category is abstract, i.e.,
it is an arbitrary category. In practice, some properties of signature categories
have emerged that are satisfied by the over-whelming majority of logical systems,
and that are very helpful for establishing generic results.

For colimits, two properties are particularly important:

Definition 1 ([3]). An inclusive category consists of a category C with a
broad subcategory5 that is a partially ordered class.

The morphisms of the broad subcategory are called inclusions, and we write
A ↪→ B if there is an inclusion from A to B.

In particular, Set is an inclusive category via the standard inclusions A ↪→ B iff
A ⊆ B. Arbitrary categories can be recovered by using the identity relation as
the partial order.

Definition 2. An (inclusive) category with symbols consists of an (inclusive)
category C and an (inclusion-preserving) functor | | : C → Set We call |A| the
set of symbols of A.

In particular, Set is an inclusive category with symbols via |A| = A.
The intuition behind these definitions is that very often signatures can be

seen as sets of named declarations. Then the subset relation defines the inclusion
relation, and the names of the declarations define the set of symbols.

Signature categories are usually such that signatures that differ only in the
choice of names are isomorphic. Then a key difficulty about colimits lies in
selecting the set of names to be used in the colimit.

2.2 Specification Operators with Colimit Semantics

The power of the abstraction provided by institutions and related systems is best
illustrated by the fact that languages like CASL and DOL provide syntax and
semantics of specifications in an arbitrary institution. This is done by defining
operators on specifications and morphisms.

5 That is, with the same objects as C.

3

A basic specification consists of a signature and a set of sentences6—called the
axioms—over it. A kernel language of specification operators has been introduced
in [19]. It includes union, renaming and hiding. CASL and DOL provide many
further constructs.

The semantics of many of these operators can be defined as the colimit of a
certain diagram. Therefore, such operators are often defined only up to isomor-
phism. In the sequel we recall important examples from CASL (parameterisa-
tion) and DOL (combination of networks).

Parametrisation Many specification languages, including CASL, allow specifi-
cations to be generic. A generic specification consists of a (formal) parameter
specification P and a body specification B extending the formal parameter, i.e.
P ↪→ B. We make P explicit by writing B[P].

A typical example is the specification List [Elem] for lists parametrised by
the specification Elem which declares a sort elem.

Given an actual parameter specification A and a specification morphism σ :
P → A, we write the instantiation of B[P] with A via σ as B[A fit σ]. Its
semantics is given by the pushout on the left below:

P �
� //

σ

��

B

��
A �
� // B[A fit σ]

e.g.
Elem �

� //

σ

��

List [Elem]

��
Nat �

� // List [Nat fit elem 7→ nat]

The right hand side above gives a typical example where the specification Nat
declares a sort nat that is used to instantiate the sort elem.

A natural requirement is that the instantiated body B[A fit σ] extends the
actual parameter A in much the same way as the body B extends the formal
parameter P . For example, a sort list introduced in specification List should
be kept (and not renamed) within the instantiation List [Nat fit elem 7→ nat].
Technically, this means that the semantics should not be an arbitrary colimit.
Similarly, the user would expect that any symbols declared in the body should
appear verbatim in the instantiated body, unless they have been renamed by σ.

Networks of Specifications In DOL, a network of specifications (called distributed
specification in [15]) is a graph. Its nodes are labelled with pairs (O,SP) where

SP is a specification andO its name. The edges are theory morphisms (O1, SP1)
σ→

(O2, SP2), either induced by the import structure of the specifications, or by re-
finements.

network N =

N1, . . . , Nm,
O1, . . . , On,
M1, . . . ,Mp

A network is specified by giving a list of specifications Oi,
morphisms Mi between themand sub-networks Ni, with the
intuition that the graph of the network is the union of the
graphs of all its elements.

6 It is straightforward but not essential here to make the notion of sentences precise.

4

Now the operator combine takes a network and produces the specification
given by the colimit of the graph.

Example 1. In the example below, the network N3 consists of the nodes S, T2,
and U2 and two automatically added edges, which are the inclusions from S to
T2 and U2. Thus, N3 is a span, and combine N3 yields its pushout. Indeed,
both occurrences of sort s from S are identified in the pushout.

In the network N4, we exclude one of the automatically added inclusions.
Thus, N4 is a graph with one isolated node for T2 and one inclusion edge from
S to U2. combine N4 yields the disjoint union of T2 and U2. That means that
the two occurrences of sort s from S are kept seperate.

spec S = sort s end

spec T2 = S then sort t end

spec U2 = S then sort u end

network N3 = S, T2 , U2 end

network N4 = N3 excluding S -> T2 end

3 Desirable Properties of Colimit Selections

The central definition regarding colimit selection is the following:

Definition 3. Given a category C, a selection of colimits is a partial function
sel from C-diagrams D to cocones on D such that sel(D), if defined, is a colimit
for D. If sel is only defined for pushouts, we speak of a selection of pushouts,
and so on.

While it is trivial to give some selection of colimits (e.g., by using the axiom
of choice or by randomly generating names), it turns out that selecting colimits
elegantly is a non-trivial task. For example, selecting a colimit may require in-
venting new names, or there can be multiple conflicting strategies for selecting
names. [18] conjectures that it is not possible to select pushouts in a way that
the selected pushout are total, coherent, and enjoy natural names.

In this section, we introduce a suite of criteria for colimit selection.

3.1 Symbols of a Diagram

We work with an arbitrary inclusive category C with symbols. We are interested
in selecting a colimit (C, µi) for a diagram D : I → C. In most practically
relevant signature categories, the construction of a colimit can be reduced to the
construction of the colimit in Set of the corresponding sets of symbols. Because
the colimit in Set amounts to taking a quotient of a disjoint union, we introduce
the following auxiliary concept:

Definition 4 (Symbols of a Diagram). Given a diagram D : I → C, we
define the set Sym(D) by

Sym(D) :=
⊎
i∈|I|

|D(i)| := {(i, x) | i ∈ I, x ∈ |D(i)|}.

5

Moreover, we define the preorder ≤D on Sym(D) by

(i, x) ≤D (j, |D(m)|(x)) for any m : i→ j ∈ I.

and we define ∼D to be the least equivalence relation containing ≤D.
Given any colimit (C, µi) of D, we embed Sym(D) into |C| by defining

µD(i, x) := |µi|(x)

Intuitively, Sym(D) contains the symbols of all nodes of D. ∼D defines which
symbols must definitely be identified in the colimit:

Proposition 1.
∼D⊆ ker(µD)

Proof. This follows from µ being a cocone. ut

In some categories such as Set, we even have ∼D= ker(µD).
In principle, a natural property to desire of the selected colimit is that

|sel(D)| is a quotient of Sym(D), in particular |sel(D)| = Sym(D)/ ∼D if
∼D= ker(µD). However, that is often impractical, e.g., in the typical case where
|Σ| is intended to be a set of strings that serve as user-friendly names. In par-
ticular, we do not want to see the indices i ∈ I creep into the symbol names in
|sel(D)|. Therefore, we define:

Definition 5 (Names and Name-Clashes). For every equivalence class X ∈
Sym(D)/ ∼D, let Nam(X) = {x|(i, x) ∈ X}.

We say that D is name-clash-free if the sets Nam(X) are pairwise disjoint
for all X. We say that D is fully-sharing if additionally all sets Nam(X) have
size 1.

Intuitively, name-clash-freeness means that whenever two nodes use the same
symbol x, the diagram requires these two symbols to be shared in the colimit.
A particularly common special case arises when both nodes import x from the
same node. The following makes that precise:

Proposition 2. Consider a diagram D : I → C. Assume that for all (i, x), (j, x) ∈
Sym(D) there are (k, y) ∈ Sym(D) and m : k → i and n : k → j in I such that
|m|(y) = |n|(y) = x.

Then D is name-clash-free. If additionally all edges in D are inclusions, D
is fully-sharing.

The value of name-clash-freeness is the following: for the colimit, we can
pick symbols that were already present in D. This allows selecting a colimit
whose symbol names are inherited from the diagram (and thus already known
to the user who requested te colimit). Moreover, if D is fully-sharing, these
representatives are uniquely determined.7

7 CASL has a mechanism of “compound identifiers” that ensures name-clash-freeness
in multiple instantiations of parametrised specifications, such as List[List[Elem]],
see [16], p.47f. and p.224f.

6

3.2 Properties of Colimit Selections

Being thus prepared, we can now define a number of desirable properties that
make a particular selection sel of colimits elegant.

The most obviously desirable property is that we select a colimit whenever
we can:

Definition 6 (Completeness). sel is complete if it is defined for every dia-
gram that has a colimit.

Choosing Symbols Typically, we cannot simply choose |sel(D)| = Sym(D)/ ∼D
because the choice of symbols is restricted:

Definition 7 (Name-Compliance). Let Symbols be some subcategory of Set.
We call an object Σ Symbols-compliant if |Σ| ∈ Symbols. A diagram is
Symbols-compliant if all involved objects are.

sel preserves Symbols-compliance if sel(D) is Symbols-compliant when-
ever D is.

In practical systems, symbols must be chosen from a fixed set S, e.g., the
set of alphanumeric strings. In that case, Symbols contains all sets that are
subsets of S. If we want a compliance-preserving colimit selection, we have to
pick names from S—that can be much more difficult to do canonically than to
pick arbitrary symbols.

It is easy to select colimits by picking arbitrary symbols, e.g., by generating
a fresh string as the name of any new declaration. But that is undesirable—it
is preferable that the symbols of sel(D) are inherited from D in the following
sense:

Definition 8 (Natural Names). sel has natural names if for every name-
clash-free diagram D, the selected colimit sel(D) = (C, µi) is such that
– |C| contains exactly one representative r ∈ Nam(X) for every equivalence

class X,
– |µi| maps every x to the respective representative r.

Note that if D is fully-sharing, natural names fully determine |C|. For the
general case, we have to choose some r for each equivalence class. There are
multiple options for making that choice canonical. For example:

Definition 9 (Origin-Based Names). Let sel have natural names.
sel has origin-based symbol names if for every class X the chosen represen-

tative r is such that there is some i such that (i, r) is minimal in X with respect
to ≤D.

Definition 10 (Majority). Let sel have natural names.
sel has majority-based symbol names if for every class X the chosen repre-

sentative x maximizes the cardinality of {i ∈ I|(i, x) ∈ X}.
Accordingly, sel has majority-origin-based symbol names if the above cardi-

nality function is used to choose among multiple minimal elements.

7

Example 2. Consider a span D P
� � b //

a

��

B

A

We consider multiple situations given by the rows of the following table:

|P | |A| |B| |a| |b|
1 {} {x} {x}
2 {p} {a, a′} {b, b′} p 7→ a p 7→ b
3 {p, p′} {a} {p, p′} p 7→ a, p′ 7→ a p 7→ p, p′ 7→ p′

4 {elem} {elem, list} {nat,+} elem 7→ elem elem 7→ nat

Depending on the situation, different colimit selections are possible:
1. The diagram is not name-clash-free, and we cannot inherit names.
2. The diagram is name-clash-free but not fully sharing. The sets Nam() are
{p, a, b}, {a′}, and {b′}. Thus, there are three possible colimits that have
natural names. All three satisfy the majority condition. The origin condition
allows uniquely selecting |sel(D)| = {p, a′, b′}.

3. The only set Nam() is {p, p′, a, p, p′} (where we repeat elements to indicate
how often they occur in the corresponding equivalence class). We can have
natural names, but neither majority nor origin yield a unique choice.

4. This is a typical case of instantiating a parametric specification (here: lists
with a parameter for the type of elements) with an actual parameter (here:
the set of natural numbers). The sets Nam(−) are {elem, elem, nat}, {list},
and {+}. We can have natural names, and both origin and majority uniquely
yield |sel(D)| = {elem,+, list}. However, neither is elegant: The desired
choice would be {nat,+, list}.

P �
� //

σ

��

B

A

Pushouts along Inclusions Pushouts along inclusions are of
particular importance because they provide the semantics of
parametrization. As in Section 2.2, D is a diagram as given on
the right.

The following property is motivated by the desire that instan-
tiating parameterised specifications should always be defined:

Definition 11 (Total pushouts). sel has total pushouts if it is defined for
all spans where one arrow is an inclusion.

Moreover, it is desirable that the instantiation extends A in the same way in
which P extends A. The following definitions make this precise:

Definition 12 (Pushout-stable Inclusions). Let sel have total pushouts.
sel has pushout-stable inclusions if the pushout selection preserves the in-

clusion, i.e., sel(D) is of the form

P �
� //

σ

��

B

σB

��
A �
� // σ(B)

8

Definition 13 (Pushout-Stable Names). Assume C has symbols, and let sel
have pushout-stable inclusions.

sel has pushout-stable names if for every selected pushout

P �
� //

σ

��

B

σB

��
A �
� // σ(B)

|P | �
� //

|σ|
��

|B|

|σB |
��

|A| �
� // |σ(B)|

we have |σ(B)| \ |A| = |B| \ |P | and |σB | is the identity on that set.

The aim of pushout-stable inclusions is that we can have
– (vertically) B as a functor (P ↓ C)→ (B ↓ C),
– (horizontally) σ() as functor (P ↓ C) → (A ↓ C) mapping extensions of P

to extensions of A.
However, in general, the functoriality laws only hold up to isomorphism. There-
fore, we want to impose an additional condition, which is adapted from [18]:

Definition 14 (Coherent Pushouts). Let sel have pushout-stable inclusions.
Then sel has coherent pushouts if the following coherence conditions hold:

1. idP (B) = B and idBP = idB,
2. σ(P) = A and σP = σ,

3. (σ1;σ2)(B) = σ2(σ1(B)) and (σ1;σ2)B = σB1 ;σ
σ1(B)
2 and finally

4. for P ↪−→ B1 ↪−→ B2, σ(B2) = σB1(B2) and σB2 = (σB1)B2

where two conditions refer to the following diagrams

P �
� //

σ1

��

B

σB1
��

(σ1;σ2)
B

��

A �
� //

σ2

��

σ1(B)

σ
σ1(B)
2

��
A′
� � // σ2(σ1(B)) (σ1;σ2)(B)

P �
� //

σ

��

B1
� � //

σB1

��

B2

σB2

��

(σB1)B2

%%
A
� � // σ(B1)

� � // σ(B2) σB1(B2)

and ensure that pushouts compose vertically and horizontally.

Coherence The coherence conditions for pushouts can be generalized to arbi-
trary diagrams. The general idea is that if there are multiple ways to construct
a colimit step-by-step, then it should not matter in which order the construc-
tion proceeds. Here step-by-step means that we first construct a colimit of a
subdiagram of D and then add that colimit to D and construct a colimit of the
resulting bigger diagram, and so on.

A formal definition for the general case is rather difficult. The following
special case is adapted from [2]:

9

Definition 15 (Interchange). sel has interchange if given a name-clash-free
diagram D : I× J→ C (seen as a bifunctor) involving inclusions only

seli∈I(selj∈JD(i, j)) = selj∈J(seli∈ID(i, j))

With an isomorphism instead of equality, this condition always holds.
To state the coherence condition in full generality, we need a few auxiliary

definitions:

Definition 16. Consider a category I with an object i such that every I-object
has at most one arrow into i.

We write I \ i for the subcategory of I formed by removing i. We write I→i

for the subcategory of I formed by removing i and all nodes that have no arrow
into i. For a diagram D : I → C, we write D \ i and D→i for the corresponding
restrictions of D.

We say that i is a colimit node of D if D(i) and the set of all morphisms
D(m) for I-arrows m into i are a colimit of D→i. If additionally that colimit is
equal to sel(D→i), we call i a sel-colimit node.

The intuition behind colimit nodes is that they arise by taking a colimit of
a subdiagram and can be ignored when forming a colimit of the entire diagram.
For example, in the two commuting diagrams of Def. 14, the nodes σ1(B) and
σ(B1) are colimit nodes. They arise as the intermediate results of constructing
the pushout in two steps. In general, they arise when constructing a colimit
step-by-step:

Proposition 3. Consider a diagram D : I → C with a colimit node i. Then D
and D \ i have the same colimits.

Proof. For every D-colimit we obtain a D\i-cone by removing the injection from
i. Vice versa, every D \ i-colimit (C, µ) can be uniquely extended to a D-cone
with the unique factorization µi : D(i)→ C for the colimit D(i).

In both cases, the colimit properties are shown by diagram chase. ut

Now we can define that coherence means that we can indeed ignore colimit
nodes when selecting a colimit:

Definition 17. sel is coherent for the diagram D if for every sel-colimit node i
we have that sel(D) and sel(D \ i) are equal (apart from the former additionally
containing the uniquely determined injection µi).

By iterating the coherence property, we can remove or add sel-colimit nodes
from/to a diagram without affecting the selected colimit.

4 Colimit Selections for Typical Signature Categories

4.1 Sets

As the simplest possible signature category, we consider the category Set (with
standard inclusions and the identity symbol functor).

10

We first provide a positive result: We can realise several desirable properties
at once:

Theorem 1. Set has a selection of colimits that has completeness, pushout-
stable inclusions, total pushouts and interchange.

Moreover, for name-clash-free diagrams, this selection has natural names,
pushout-stable names, coherent pushouts.

Second, we give a negative result: There is a small set of desirable properties
that cannot be realised at once:

Theorem 2. Set does not have a selection that has total pushouts, pushout-
stable inclusions and names, and coherent pushouts.

Thm. 1 shows that in Set, we can realise several criteria for colimit selection
we have defined so far. However, in the construction in the proof of Thm. 1,
all colimits not being pushouts along inclusions nor colimits of diagrams using
inclusions only are selected randomly. This is unsatisfactory, because for these
colimits, our goal that the user has control over names has not been reached.

Indeed, origin and majority can contradict the principles that we have intro-
duced so far:

Proposition 4. The selection constructed in Thm. 1 does not satisfy the origin
and majority principles.

Proof. Consider a span B
ι←−↩ P σ→ A with σ not an inclusion. Then in Thm. 1,

σ(B) := A∪ (B \A)∪B′. This means any symbol from P that is renamed by σ
will not appear in the pushout object σ(B), contradicting the origin principle.
Moreover, because P ⊆ B, such a symbol will occur twice (with different objects)
in its equivalence class, but the equivalent symbol from A (occurring only once)
is selected in the pushout. ut

A closer inspection shows that that pushout-stable inclusions and names
contradict the origin and majority property. Moreover, it is evident that origin
and majority can contradict each other. Consider e.g.

{a} //

��

{b}

��
{b} // {x}

Origin would lead to x = a, while majority would lead to x = b.
Nevertheless, the origin and majority are useful principles that can guide

pushout selection in cases where the other principles are not be able to do this.

Proposition 5. The selection constructed in Thm. 1 can be modified to have
majority-origin natural names.

11

4.2 Product Categories

Signatures of many logical systems of practical interest are often tuples of sets
of symbols of different kind. For example, OWL signatures consist of sets of
atomic classes, individuals, object and data properties. To be able to transfer
the selection of colimits and its properties defined for Set to categories of tuples
of sets, we make use of a more general result that ensures that selection of
colimits and its properties are stable under products.

Theorem 3. Let (Cj)j∈J be a family of inclusive categories with symbols and
assume selections of colimits selj that have the properties in Thm. 1 or Prop. 5.
Then the product Πj∈JCj can be canonically turned into a inclusive category
with symbols that also has a selection of colimits sel with the same properties.

Example 3. In the case of multi-sorted logics with function or predicate symbols,
we can define a selection function for colimits in a step-wise manner. Let us
consider the case of multi-sorted equational logic, that we denote EQL. If we fix
a set of sorts S, let B(S) = SignEQLS be the category of multi-sorted algebraic
signatures with sort set S. We then can express this category as

SignEQLS = Πw∈S∗,s∈S Set.

Objects of this category provide a set of operation symbols Fw,s for each string
of argument sorts w and result sort s. With the canonical lifting of the symbol
functors of the factors (all of which are the identity on Set) to this product,

we obtain the symbol functor on SignEQLS given by | | =
⊎
i∈J |πj()|, which

decorates each operation symbol with argument and result sorts. We write f :
w → s ∈ |F | instead of ((w, s), f) ∈ |F |.

4.3 Split Fibrations

Thm. 3 gives us a selection of colimits for SignEQLS . However, our overall goal

is to provide such a selection for SignEQL. Now SignEQL is a split fibration
SignEQL → Set, with fibres SignEQLS . It is well-known that a split fibration can
be obtained as Grothendieck construction (flattening) of an indexed category
indexing the fibres. Hence, we will construct such an indexed category for EQL.
This is achieved by observing that each function u : S → S′ leads to a functor
Bu : SignEQLS′ → SignEQLS defined as Bu(F ′) = F , where Fw,s = F ′u(w),u(s).

This functor has a left adjoint denoted Lu : SignEQLS → SignEQLS′ defined as
Lu(F) = F ′, where F ′w′,s′ = ∪w∈S∗,s∈S,u(w)=w′,u(s)=s′Fw,s.

We thus obtain an indexed inclusive category B : Setop → ICat, and it
suffices to show that the selection of colimits and its properties are stable under
the Grothendieck construction (flattening, see [23]).

Theorem 4. Let B : Indop → ICat be an indexed inclusive category (where
Ind is inclusive itself) such that

12

– B is locally reversible, i.e. for each u : i → j in Ind, Bu : Bj → Bi has a
selected left adjoint Fu : Bi → Bj (note that we do not require coherence of
the Fu),

– Ind has a selection of colimits selInd,
– each category Bi has a selection of colimits seli, for i ∈ |Ind|.

Then the Grothendieck category B# is itself an inclusive category.8

Theorem 5. Under the assumptions of Thm. 4, let (| |θ) : B → IndSet be a
(faithful inclusive) oplax indexed functor (where IndSet : Indop → ICat is the
constant functor delivering Set).

This amounts to, for each Bi, a (faithful inclusive) symbol functor | |i : Bi →
Set, and for each u : i → j, θu : Bu; | |i → | |j a natural transformation, such
that the θu are coherent.

Then B# can be equipped with a symbol functor as well.

Proof. Define |(i, Ai)| = |i|] |Ai|i, and |(u : i→ j, σ)| = |u|] (|σ|i; (θu)Aj). ut

Theorem 6. Under the assumptions of Thm. 4 and Thm. 5, extended by:

– Fu preserves inclusions, and moreover,
– the unit and counit of the adjunction are inclusions.

If Ind and each Bi have colimit selections enjoying the properties of Thm. 1,
then so does B#.

We can apply Thm. 6 to B : Setop → ICat as defined above to obtain a
selection of colimits selEQL for EQL signatures. By the theorem, selEQL has
the properties in Thm. 1.

Example 4. We apply these result to EQL, where Bs = SignEQLS , using the

symbol functors | |S : SignEQLS → Set (S ∈ |Set|) defined above. Given u :
S → S′, θu : Bu; | |S → | |S′ is defined as (θu)F ′ : |Bu(F ′)| → |F ′|, acting as
(θu)F ′(f : u(w)→ u(s)) = f : w → s. Using Thm. 5, we obtain the usual symbol
functor for many-sorted signatures, which for any signature delivers the set of
sorts plus the set of typed function symbols of form f : w → s.

Again, the symbol selection principles of Prop. 5 carry over.

5 Categories for Improved Colimit Selection

5.1 Named Specifications

An important technique for avoiding name clashes is to use two-partite IRIs as
symbols. These symbols consists of

8 Note that this construction extends to institutions, yielding Grothendieck institu-
tions, see [5].

13

– namespace: an IRI that identifies the containing specification, usually end-
ing with /9

– local name: a name (not containing /) that identifies a non-logical symbol
within a specification.

Here IRIs are Internationalized Resource Identifiers for identification per IET-
F/RFC 3987:2005. Let IRI be the subcategory of Set containing only the sets
of bipartite IRIs.

For most practical purposes, it is acceptable to restrict attention to IRI-
compliant signatures. For example, DOL (in accordance with many other lan-
guages) strongly recommends using bipartite IRIs.

Note that in an IRI-compliant signature Σ, the symbols in |Σ| may have
different namespaces. For example, in DOL, namespaces M serve as the identi-
fiers of basic specification Σ, and then symbols in |M | are of the form M/sym.
But when a specification N imports M , (see Sect. 2.2), the namespace M of
the imported symbols is retained and only new symbols declared in N use the
namespace N .

The main advantage of using IRIs is that specifications (and thus the symbols
in them) have globally unique names [9]. That makes name clashes much less
common:

Proposition 6. Consider a set of basic signatures with pairwise different names-
paces. Then diagrams generated by networks consisting only of IRI-compliant
basic specifications and imports are fully-sharing.

Proof. Because basic specifications have unique identifiers, the result follows
immediately from Prop. 2. ut

In practice, the assumptions of Prop. 6 quite often hold, because networks to be
combined often consist of import links only.

Proposition 7. Consider Set with standard inclusions and the identity symbol
functor. The selection constructed in Prop. 5 can be modified to a selection that
additionally preserves IRI-compliance.

Proof. We just need to ensure that new symbols in the colimit are of the form
N/sym for some fresh namespace N . ut

However, generating fresh namespaces interacts poorly with coherence.

5.2 Structured Symbol Names

There are essentially two problems when trying to select colimits canonically:
name clashes and ambiguous names. Intuitively, name clashes arise if we have
one name for multiple symbols. And ambiguity arises if we have multiple names

9 In some languages, # is used instead of /. But this has the disadvantage that, when
used as an IRL, the fragment following the # is not transmitted to servers.

14

for one symbol. If neither is the case, named specifications are usually sufficient
to obtain canonical colimits.

Our goal now is to handle on name clashes and ambiguity. We introduce a
subcategory Vocab of Set and focus on Vocab-compliance-preserving colimits.
We want to pick Vocab in such a way that we can select canonical colimits
elegantly.

To motivate the following definition of Vocab, let us look again at the causes
behind name clashes and ambiguity. Name clashes arise if the same node occurs
multiple times in a diagram. For example, consider two nodes i and j (without
any arrows) and |D(i)| = {a} and |D(j)| = {a}. (This occurs, for example,
when taking the disjoint union of the set {a} with itself.) Because this diagram
is not name-clash-free, we cannot have natural names in the colimit. Our solution
below introduces qualifiers that create two copies p/a and q/a of the clashing
name a.

Ambiguity arises if a diagram contains a non-inclusion arrow. For example,
consider m : i → j, and |D(i)| = {a} and |D(j)| = {b} and |D(m)|(a) = b.
∼D has one equivalence class, which contains (i, a) and (j, b). In Section 3.2, we
focused on choosing either a or b as a natural name in the colimit. Our solution
here retains both names and chooses the set {a, b} as a symbol in the colimit.

Because colimits can be iterated, Vocab must allow for any combination of
those two constructions. That yields the following definition:

Definition 18 (Structured Symbols). We assume a fixed set Name of strings
(which we call names).

We write QualName for the set of lists of names (which we call qualified
names). We assume Name ⊂ QualName, and we write nil for the empty list
and p/q for the concatenation of lists.

A structured symbol is a set of qualified names.
A vocabulary V is a set of pairwise disjoint structured symbols. We write

V for
⋃
S∈V S, and for every s ∈ V we write [s] for the unique S ∈ V such that

s ∈ S.
We write Vocab for the full subcategory of Set containing only the vocabu-

laries.

The operation [s] is crucial: It allows us to use any s ∈ S ∈ V as a represen-
tative for S. Thus, in order to use structured symbols, we do not have to change
our external (human-facing) syntax: Users can still write and read s. We only
have to change our internal (machine-facing) syntax by maintaining the set S.

Above we left open the question where the qualifiers come from that we use
to disambiguate name clashes. We will assume that these are given by the user
by assigning labels to some nodes in the diagram:

Definition 19 (Labeled Diagram). A labeled C-diagram (D,L) consists of a
diagram D : I → C and a function L from I-objects to Name ∪ {nil}.

L can be a partial function because we only need to label those nodes that
are involved in name clashes. However, it is more convenient to make L a total

15

function by assuming that all unlabeled nodes are labeled with the empty list
nil.

Similar to Def. 4, we define the symbols of a labeled diagram:

Definition 20 (Symbols of a Labeled Diagram). Let (D : I → Vocab, L)
be a labeled diagram over Vocab. We define:

Sym(D,L) = {(i, L(i)/x) | i ∈ I, x ∈ D(i)}

(i, L(i)/x) ≤DL (j, L(j)/y) if for some m : i→ j ∈ I, D(m)(S) = T, x ∈ S, y ∈ T

∼DL is the equivalence relation on Sym(D,L) generated by ≤DL.
For every X ∈ Sym(D,L)/ ∼DL, let Nam(X) = {q : (i, q) ∈ X}. We say

that (D,L) is name-clash-free if the sets Nam(X) are pairwise disjoint.

Every plain diagram can be seen as a labeled diagram by using L(i) = nil
for all i. In that case, the definition of name-clash-free of Def. 20 coincides with
the one from Def. 5.

We can now see the power of structured symbols by giving a selection of
colimits in Vocab:

Theorem 7 (Colimits of Vocabularies). Let (D,L) be a name-clash-free
labeled diagram. Then
– the set sel(D,L) defined by {Nam(X) : X ∈ Sym(D,L)/ ∼} is a vocabu-

lary,
– the maps µi : D(i)→ sel(D,L) defined by µi([x]) = [L(i)/x] are well-defined.

Then sel(D,L) and the µi form a colimit of D.

sel does not exactly have the desirable properties described in Section 3.2.
But it has variants of them that are good trade-offs:
– sel is complete in the sense that labels can be added to any diagram to

obtain name-clash-freeness.
– sel reduces to union for name-clash-free unlabeled diagrams of inclusions

(and therefore satisfies interchange).
– sel has pushout-stable inclusions for name-clash-free unlabeled diagrams.
– sel has natural names in the sense that L(i)/x can be used to identify the

corresponding symbol in the colimit, and every symbol in the colimit is of
that form.

– sel is coherent for all labeled diagrams in which all sel-colimit nodes are
unlabeled.

6 Conclusion

We have provided some useful principles for colimit selection, and studied how
far these principles can be actually realised. Some principles contradict each
other, so they need to be prioritised. The overall goal is to give the user as much
control and predictability over names as possible. This is particularly impor-
tant for languages such as CASL and DOL, providing powerful constructs for

16

both parameterisation and combination of networks, realised through colimits.
We have shown that our results are stable under products and Grothendieck
constructions; hence they carry over to more complex signature categories like
many-sorted logics, HasCASL [20] (without subsorts) or even categories of het-
erogeneous specification (which usually are also obtained via a Grothendieck
construction).

While we have worked with Set and Set-like categories, future work should
extend the results to more complex categories. E.g. the signature category of the
subsorted CASL logic cannot be obtained from Set by products and indexing;
instead some quotient construction is needed [11]. Another open question is
whether coherence for pushouts can usefully be generalised to other types of
colimit.

One important motivation for this work has been the need to obtain a better
theory for the implementation of colimits in Hets. Currently, the implementa-
tion follows the majority principle only, which led to complaints from the user
community, especially from the Coinvent project using colimits for conceptual
blending. In the future, this will be revised according to the results of this paper.

References

1. H. Baumeister, M. Cerioli, A. Haxthausen, T. Mossakowski, P. D. Mosses, D. San-
nella, and A. Tarlecki. CASL Semantics. In Peter D. Mosses, editor, CASL Refer-
ence Manual, volume 2960 of Lecture Notes in Computer Science, part ÏII. Springer
Verlag, London, 2004. Edited by D. Sannella and A. Tarlecki.

2. F. Borceux. Handbook of Categorical Algebra I – III. Cambridge University Press,
1994.

3. Virgil Emil Căzănescu and Grigore Roşu. Weak inclusion systems. Mathematical
Structures in Computer Science, 7(2):195–206, April 1997.

4. M. Codescu and T. Mossakowski. Heterogeneous colimits. In F. Boulanger, C. Gas-
ton, and P.-Y. Schobbens, editors, MoVaH’08 Workshop, 2008.

5. R. Diaconescu. Institution-independent Model Theory. Birkhäuser Basel, 2008.

6. R. Diaconescu, J.A. Goguen, and P. Stefaneas. Logical Support for Modularisation.
In 2nd Workshop on Logical Environments, pages 83–130. CUP, New York, 1993.

7. J. A. Goguen. A categorical manifesto. Mathematical Structures in Computer
Science, 1:49–67, 1991.

8. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specifi-
cation and programming. Journal of the ACM, 39:95–146.

9. W3C SEMANTIC WEB DEPLOYMENT WORKING GROUP. Best practice
recipes for publishing rdf vocabularies. W3C Working Group Note, 28 August
2008. http: // www. w3. org/ TR/ 2008/ NOTE-swbp-vocab-pub-20080828/ , 2008.

10. O. Kutz, J. Bateman, T. Mossakowski, F. Neuhaus, and M. Bhatt. E pluribus unum
- formalisation, use-cases, and computational support for conceptual blending. In
T. R. Besold, M. Schorlemmer, and A. Smaill, editors, Computational Creativity
Research: Towards Creative Machines, volume 7 of Atlantis Thinking Machines,
pages 167–196. Atlantis Press, 2015.

11. T. Mossakowski. Colimits of order-sorted specifications. In F. Parisi Presicce,
editor, Proc. 12th WADT, volume 1376 of LNCS, pages 316–332. Springer, 1998.

17

http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/

12. T. Mossakowski. Specification in an arbitrary institution with symbols. In
C. Choppy, D. Bert, and P. Mosses, editors, WADT 1999, volume 1827 of LNCS,
pages 252–270. Springer Verlag, London, 2000.

13. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In
O. Grumberg and M. Huth, editors, TACAS 2007, volume 4424 of Lecture Notes
in Computer Science, pages 519–522. Springer, Heidelberg, 2007.

14. Till Mossakowski, Oliver Kutz, Mihai Codescu, and Christoph Lange. The dis-
tributed ontology, modeling and specification language. In Chiara Del Vescovo,
Torsten Hahmann, David Pearce, and Dirk Walther, editors, WoMo 2013, volume
1081 of CEUR-WS online proceedings, 2013.

15. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for dis-
tributed specifications. In Andrea Corradini and Ugo Montanari, editors, WADT
2008, number 5486 in Lecture Notes in Computer Science, pages 266–289. Springer,
2009.

16. Peter D. Mosses, editor. CASL Reference Manual. Number 2960 in LNCS. Springer
Verlag, 2004.

17. Object Management Group. The distributed ontology, modeling, and specification
language (DOL), 2015. OMG draft standard available at http://www.omg.org/

spec/DOL/.
18. F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and

Computation, 2014. doi:10.1093/logcom/exu079.
19. D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information

and Computation, 76:165–210, 1988.
20. Lutz Schröder and Till Mossakowski. Hascasl: Integrated higher-order specification

and program development. Theoret. Comp. Sci., 410(12-13):1217–1260, 2009.
21. Patrick Schultz, David I. Spivak, Christina Vasilakopoulou, and Ryan Wisnesky.

Algebraic databases. CoRR, abs/1602.03501, 2016.
22. Douglas R. Smith. Composition by colimit and formal software development. In

Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors, Algebra,
Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Oc-
casion of His 65th Birthday, volume 4060 of Lecture Notes in Computer Science,
pages 317–332. Springer, 2006.

23. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental
algebraic tools for the semantics of computation: Part 3: Indexed categories. Theor.
Comput. Sci., 91(2):239–264, 1991.

24. K. E. Williamson, M. Healy, and R. A. Barker. Industrial applications of software
synthesis via category theory-case studies using Specware. Autom. Softw. Eng,
8(1):7–30, 2001.

25. A. Zimmermann, M. Krötzsch, J. Euzenat, and P. Hitzler. Formalizing Ontology
Alignment and its Operations with Category Theory. In Proc. of FOIS-06, pages
277–288, 2006.

18

http://www.omg.org/spec/DOL/
http://www.omg.org/spec/DOL/

A Omitted Proofs

Theorem 1. Set (with standard inclusions and the identity symbol functor) has
a selection of colimits that has completeness, pushout-stable inclusions, total
pushouts and interchange. Moreover, for name-clash-free diagrams, this selection
has natural names, coherent pushouts and pushout-stable names.

Proof. If name-clash-freeness is satisfied and the diagram consists of inclusions
only, just take the union as colimit, i.e. C =

⋃
i∈|I|D(i). This shows that inter-

change holds.

Given a span B
ι←−↩ P σ→ A with σ not an inclusion, let σ(B) := A ∪ (B \

A) ∪B′, where κ : B′ ∼= (B ∩A) \ P such that B′ ∩ (A ∪ (B \A)) = ∅. Define

P
� � ι //

σ

��

B = P ∪ (B \ P)

σB=σ∪θ
��

A �
� // σ(B) = A ∪ ((B \ (P ∪A)) ∪B′)

where θ : B \ P → (B \ (P ∪A)) ∪B′ is given by

θ(x) =

{
κ−1(x), if x ∈ (B ∩A) \ P
x, if x ∈ B \ (P ∪A)

.

Suppose there is any cocone (C, νA : A → C, νB : B → C). The mediating
morphism c : σ(B)→ C is defined asνA(x), if x ∈ A

νB(x), if x ∈ B \A
νB(κ−1(x)), if x ∈ B′

This shows that inclusions are pushout-stable, and total pushouts exist. More-

over, if name-clash-freeness holds for the span B
ι←−↩ P σ→ A, B′ = ∅, hence θ is

the identity and we have natural names for pushouts. Using the notation of the
coherence diagrams, vertical coherence of pushouts can be shown as follows: by
name-clash-freeness, (B∩A)\P = ∅, hence B′ = ∅ and σ1(B) = A∪(B\(P∪A)).
Similarly, σ2(A ∪ (B \ (P ∪ A))) = A′ ∪ ((A ∪ (B \ (P ∪ A))) \ (A ∪ A′)) =
A′∪(B\(P∪A∪A′)). On the other hand, (σ1;σ2)(B) = A′∪(B\(P∪A′). But since
(B∩A)\P = ∅, B \ (P ∪A∪A′) = B \ (P ∪A′), hence σ2(σ1(B)) = (σ1;σ2)(B).
Concerning horizontal coherence, σB1(B2) = σ(B1) ∪ (B2 \ (B1 ∪ σ1(B))) =
A ∪ (B1 \ (P ∪ A)) ∪ (B2 \ (B1 ∪ A ∪ (B1 \ (P ∪ A)))) = A ∪ (B1 \ (P ∪ A)) ∪
(B2 \ (B1 ∪A)) = A ∪ (B2 \ (P ∪A)) = σ(B2).

In order to show naturalness of names, let D be a name-clash-free diagram
and define its colimit (C, (µi)i∈|I|) as follows. C is defined by selecting from each
equivalence class X ∈ Sym(D)/ ∼D a representative r(X) ∈ Nam(X) and for
each index i, and each (i, x) ∈ X, we define µi(x) = r(X). For the particular
cases of diagrams that appear in the proof already, namely those consisting of
inclusions only and horizontal and vertical compositions of spans with one arrow

19

being an inclusion, the choice of representative is determined by the respective
definitions of the colimit discussed above. By name-clash-freeness, it cannot be
the case that r(X1) = r(X2) for two equivalence classes X1, X2. Thus, we have
in C one distinct element for each equivalence class in Sym(D)/ ∼D and thus
we have indeed selected a colimit for D.

Finally, for an arbitrary non name-clash-free diagram, select an arbitrary
colimit, ensuring completeness. ut

Theorem 2. Set does not have a selection that has total pushouts, pushout-
stable inclusions and names, and coherent pushouts.

Proof. Assume that such a selection sel of pushouts were given. Consider the
sequence of two selected pushouts (existing by total pushouts)

{a} �
� //

a 7→b
��

{a, b} �
� //

a 7→b,b7→x
��

{a, b, x}

a7→b,b 7→x,x 7→y
��

{b} �
� // {b, x} �

� // {b, x, y}

where the presence of b in the first pushout object and of b and x in the second
pushout objects follows from pushout-stable inclusions. Moreover, x and y are
determined by sel, but from the pushout property we can infer b 6= x 6= y. Now
consider the selected pushout (again existing by total pushouts)

{a} �
� //

a7→b
��

{a, b, x}

a 7→b,b 7→z,x7→x
��

{b} �
� // {b, z, x}

Note that x is determined by sel in the previous diagram. Again, the presence
of b in the pushout object follows from pushout-stable inclusions. Furthermore,
the presence of x in the pushout object and the mapping x 7→ x in the pushout
inclusion follows from the pushout-stable names. Moreover, z is determined by
sel, but from the pushout property we can infer b 6= z 6= x.

Altogether, in the first diagram, the rightmost pushout injection maps b 7→
x, x 7→ y, while in the second diagram, it maps b 7→ z, x 7→ x. Since z 6= x 6= y,
the maps differ. Hence, coherence does not hold. ut

Proposition 5. The selection constructed in Thm. 1 can be modified to have
majority-origin natural names.

Proof. Proceed as in the proof of Thm. 1, but for the “other colimits” of name-
clash-free diagrams, use the majority-origin principle. If that does not determine
a representative, select one of the candidates randomly. ut

Theorem 3. Let (Cj)j∈J be a family of inclusive categories with symbols
and assume selections of colimits selj that have the properties in Thm. 1 or

20

Prop. 5. Then the product Πj∈JCj can be canonically turned into a inclusive
category with symbols that also has a selection of colimits sel with the same
properties.

Proof. The product becomes an inclusive category by using tuples of inclusions
as the inclusion morphisms. The symbol functors are lifted to the product by
defining

| | =
⊎
i∈J
|πj()|

Let D : I → Πj∈JCj be a diagram. We can define a selection of colimits by
taking sel(D) to be the component-wise combination of selj(πj(D)) where πj are
the projections. It is easy to show that sel has the desired properties whenever
the selj have them, based on the fact inclusions and colimits in products of
inclusive categories are defined component-wise. ut

Theorem 4. Let B : Indop → ICat be an indexed inclusive category (where
Ind is inclusive itself) such that

– B is locally reversible, i.e. for each u : i → j in Ind, Bu : Bj → Bi has a
selected left adjoint Fu : Bi → Bj (note that we do not require coherence of
the Fu),

– Ind has a selection of colimits selInd,
– each category Bi has a selection of colimits seli, for i ∈ |Ind|.

Then the Grothendieck category B# is itself an inclusive category.10

Proof. We prove that B# is inclusive. Recall that morphisms in B# have form

(i, Ai)
(u,σ)−→ (j, Aj), where u : i → j ∈ Ind and σ : Ai → Bu(Aj) ∈ Bi. Now

(u, σ) is an inclusion if both u and σ are. The least element is the pair consisting
of the least element ∅Ind of Ind and the least element of B∅Ind

. Given two
objects of B#, (i, Ai) and (j, Aj), their union is (i∪ j, Fιi⊆i∪j (Ai)∪Fιj⊆i∪j (Aj)).
Given a class {(j, Aj)}j∈J of objects in B#, their product is (

⋂
J,
⋂
Bι⋂ J⊆jAj).

Moreover, we have that a union-intersection square in B# is a pushout. ut

Theorem 6. Under the assumptions of Thm. 4 and Thm. 5, extended by:

– Fu preserves inclusions, and moreover,
– the unit and counit of the adjunction are inclusions.

If Ind and each Bi have colimit selections enjoying the properties of Thm. 1,
then so does B#.

Proof. From the new assumptions, we can infer that

Bu, Fu, #, [and Liftv preserve inclusions. (1)

The τu,v are identities, i.e. the Fu are coherent. (2)

10 Note that this construction extends to institutions, yielding Grothendieck institu-
tions, see [5].

21

We can apply Theorem 2 of [23] to obtain that B# has colimits. For obtaining
selected colimits in B#, the proof from [23], which splits colimits into coproducts
and coequalisers, needs to be replaced by a direct proof for all colimits. We recall
two preparatory lemmas from [23]:

Lemma 1. Given index morphisms u : i → j and v : j → k, there is an
isomorphism τu,v : Fu;v → Fu;Fv.

Lemma 2. Given an index morphism v : i→ j, any morphism (u, σ) : (k,A)→
(i, B) ∈ B# can be lifted along v to a morphism in Bj:

Liftv(u, σ) = τu,v;Fv(σ
#) : Fu;v(A)→ Fv(B)11

We are now prepared to compute selected colimits in B#. Given a diagram
D : I→ B#, let (c, (µi)i∈|I) be the selected colimit of D;π1, where π1 is the pro-
jection to Ind (and π2 the projection to the second component). Define a diagram
D′ : I→ Bc by D′(i) = Fµi(π2(D(i))) and D′(m : i→ j) = Liftπ1(D(j))(D(m)).

Let (C, (νi)i∈|I) be the selected colimit of D′ in Bc. Then ((c, C), (µi, ν
[
i)i∈|I)

(where ν[i : π2(D(i)) → Bµi(C) is adjoint to νi : Fµi(π2(D(i))) → C) is the
selected colimit in B#.

We now prove the properties of the colimit selection:

Natural names : follows immediately from the assumption that the diagram
D : I→ B# is name-clash-free and the construction of the colimit in B#.

Pushout-stable inclusions: Using the component-wise construction of colim-
its and (1).

Coherent pushouts: we treat the vertical case only. Consider the sequence of
pushouts

(p, P) �
� //

(u1,σ1)

��

(b, B)

��
(a,A)

� � (ι,) //

(u2,σ2)

��

•

��
(a′, A)′ �

� (κ,) // •

At the index level, we have

p
� � //

u1

��

b

ub1
��

(u1;u2)
b

��

a
� � //

u2

��

u1(b)

u
u1(b)
2

��
a′ �
� // u2(u1(b)) (u1;u2)(b)

11 σ : A→ Bu(B), hence its adjoint is σ# : Fu(A) → B.

22

At the level of the individual fibres, the two consecutive pushouts are con-
structed as:

Fu1;ιP
� � //

σ1

��

Fub1B

(σB1)#

��
FιA
� � // σ1(B)

Fu2;κA
� � //

��

F
u
u1(b)
2

σ1(B)

(σ
σ1(B)
2)#

��
FκA

′ � � // σ2(σ1(B))

When applying F
u
u1(b)
2

to the first diagram, by (2), both diagrams can be

pasted together. The left and upper legs of this composition are identical to
those of the outer pushout diagram for obtaining ((σ1;σ2)B)#. Then apply
coherence for Bu2(u1(B)).

Pushout-stable names: Given a span B
(ι,)
←−−↩ P (u,σ)→ A in B#, natural names

for pushouts give us in Ind:

p �
�

ι
//

u

��

b

ub

��

b \ p? _
κ

oo

a
� �

λ
// u(b) u(b) \ a? _

ξ
oo

and in Bu(b):

Fu;λP
� � //

σ#

��

FubB

(σB)#

��

FubB \ Fu;λP? _oo

FλA
� � // σ(B) σ(B) \ FλA? _oo

From this, we can obtain natural names for pushouts in B#.
Total pushouts: is implied by completeness.
Interchange: follows similar to natural names.
Completeness: follows from that for Ind and Bi.

ut

23

	1 Introduction
	2 Preliminaries
	2.1 Categories with Symbols
	2.2 Specification Operators with Colimit Semantics

	3 Desirable Properties of Colimit Selections
	3.1 Symbols of a Diagram
	3.2 Properties of Colimit Selections
	Choosing Symbols
	Pushouts along Inclusions
	Coherence

	4 Colimit Selections for Typical Signature Categories
	4.1 Sets
	4.2 Product Categories
	4.3 Split Fibrations

	5 Categories for Improved Colimit Selection
	5.1 Named Specifications
	5.2 Structured Symbol Names

	6 Conclusion
	A Omitted Proofs

