
Classification of Alignments between Concepts
of Formal Mathematical Systems

Dennis Müller1, Thibault Gauthier2, Cezary Kaliszyk2,
Michael Kohlhase1, Florian Rabe3

1 FAU Erlangen-Nürnberg
2 University of Innsbruck

3 Jacobs University

Abstract. Mathematical knowledge is publicly available in dozens of
different formats and languages, ranging from informal (e.g. Wikipedia)
to formal corpora (e.g., Mizar). Despite an enormous amount of over-
lap between these corpora, only few machine-actionable connections ex-
ist. We speak of alignment if the same concept occurs in different li-
braries, possibly with slightly different names, notations, or formal defi-
nitions. Leveraging these alignments creates a huge potential for knowl-
edge sharing and transfer, e.g., integrating theorem provers or reusing
services across systems. Notably, even imperfect alignments, i.e. con-
cepts that are very similar rather than identical, can often play very
important roles. Specifically, in machine learning techniques for theo-
rem proving and in automation techniques that use these, they allow
learning-reasoning based automation for theorem provers to take inspi-
ration from proofs from different formal proof libraries or semi-formal
libraries even if the latter is based on a different mathematical founda-
tion. We present a classification of alignments and design a simple format
for describing alignments, as well as an infrastructure for sharing them.
We propose these as a centralized standard for the community. Finally,
we present an initial collection of ≈ 12000 alignments from the different
kinds of mathematical corpora, including proof assistant libraries and
semi-formal corpora as a public resource.

1 Introduction

Motivation The sciences are increasingly collecting and curating their knowledge
systematically in machine-processable corpora. For example, in biology many
important corpora take the form of ontologies, e.g., as collected on BioPortal.
These corpora typically overlap substantially, and much recent work has focused
on integrating them. A central problem here is to find alignments: pairs (a1, a2)
of identifiers from different corpora that describe the same concept, giving rise
to ontology matching [ESC07].

In the certification of programs and proofs, the ontology matching problem
is most apparent when trying to use multiple reasoning systems together. For
example, Wiedijk [Wie06] explored a single theorem (and its proof) across 17

proof assistants implicitly generating alignments between the concepts present
in the theorem’s statement and proof. The Why3 system [BFMP11] maintains a
set of translations into different reasoning systems for discharging proof obliga-
tions. Each translation must manually code individual alignments of elementary
concepts such as integers or lists in order to fully utilize the respective system’s
automation potential. But automating the generation and use of alignments,
which would be necessary to scale up such efforts, is challenging because the
knowledge involves rigorous notations, definitions, and properties, which leads
to very diverse corpora with complex alignment options. This makes it very diffi-
cult to determine if an alignment is perfect (we will attempt to define this notion
in the next section), or to predict whether an imperfect alignment will work just
as well or not at all.

Alignment use cases Many practical services are enabled by alignments:

– Simultaneous browsing of multiple corpora. This is already enabled (so far
for a limited number of corpora) by our system presented in Section 4.

– Imperfect alignments can be used to search for a single query expression in
multiple corpora at once. This has been demonstrated in the Whelp search
engine [AGC+04] where Coq and Matita shared the URI syntax with the
basic Calculus of Constructions constants aligned, as well as by the Math-
WebSearch engine [KR14].

– Statistical analogies extracted from large formal libraries combined with im-
perfect alignments can be used to create new conjectures and thus to au-
tomatically explore a logical corpus [GKU16]. This complements the more
classical conjecturing and theory exploration mechanisms.

– Automated reasoning services can make use of alignments to provide more
precise proof recommendations. The quality of the HOL(y)Hammer proof
advice for HOL Light can be improved from 30% to 40% by using the im-
perfect alignments to HOL4 [GK15].

– Translations between systems. [KK13] uses more than 70 manually discov-
ered alignments between HOL Light and Isabelle/HOL to obtain translated
theorems that talk about target system constants and types. Note, that it
is not necessary for the translation for the definitions of the concepts to be
the same. It is enough if the same properties are provable or if they yield
the same computational behavior. Consider the real numbers: In some HOL
proof assistants they are defined using Cauchy sequences, while others use
Dedekind cuts. The two structures share all the relevant real number prop-
erties. However, they disagree with respect to irrelevant properties, e.g., in
the construction of the former usually a canonical Cauchy sequence for each
real number is introduced. Despite this minor difference, we can use such an
alignment in a logical translation [KK13].

– Refactoring of proof assistant corpora. Aligning concepts across versions of
the same proof corpus combined with statement normalization and consis-
tent name hashing allowed discovering 39 symbols with equivalent defini-
tions [KU15] in the Flyspeck development [H+15].

Automatic search for alignments Finding alignments, preferably automatically,
has proved extremely difficult in general. There are three reasons for this: the
conceptual differences between logical corpora found in proof assistants, compu-
tational corpora containing algorithms from computer algebra systems, narrative
corpora that consists of semi-formal descriptions from wiki-related tools; the di-
versity of the underlying formal languages and tools; and the differences between
the organization of the knowledge in the corpora.

Recently, the second and third authors have developed heuristic methods for
automatically finding alignments [GK14] targeted at integrating logical corpora,
which we integrate into our developments in Section 2. Independently, Deyan
Ginev built a library [GC14] of about 50,000 alignments between narrative cor-
pora including Wikipedia, Wolfram Mathworld, PlanetMath and the SMGloM
semantic multilingual glossary for mathematics. For this, the NNexus system
indexes the corpora and applies clustering algorithms to discover concepts.

Related Work Alignments between computational corpora occur in bridges be-
tween the run time systems of programming languages. Alignments between
logical and computational corpora are used in proof assistants with code gen-
eration such as Isabelle [WPN08] and Coq [Coq15]. Here functions defined in
the logic are aligned with their implementations in the programming language
in order to generate fast executable code from formalizations.

The dominant methods for integrating logical corpora so far have focused on
truth-preserving translations between the underlying knowledge representation
languages. For example, [KS10] translates from Isabelle/HOL to Isabelle/ZF.
[KW10] translates from HOL Light to Coq, [OS06] to Isabelle/HOL, and [NSM01]
to Nuprl. Older versions of Matita [ACTZ06] were able to read Coq compiled
theory files. [CHK+11] build a library of translations between different logics.

However, most translations are not alignment-aware, i.e., it is not guaranteed
that a1 will be translated to a2 even if the alignment is known. This is because
a1 and a2 may be subtly incompatible so that a direct translation may even lead
to inconsistency or ill-typed results. [OS06] was — to the authors knowledge —
the first that could be parametrized by a set of alignments. The OpenTheory
framework [Hur09] provides a number of higher-order logic concept alignments.
In [KR16], the fourth and fifth author discuss the corpus integration problem
and conclude that alignments are of utmost practical importance. Indeed, corpus
integration can succeed with only alignment data even if no logic translation is
possible. Conversely, logic translations contribute little to corpus integration
without alignment data.

Contribution and Overview Our contribution is three-fold.
First, we present a phenomenological study of alignments between proof as-

sistant corpora, as well as with mathematical corpora in Section 2. We show a
number of imperfect alignments and show how this can be used to benefit knowl-
edge transfer. Second, we propose a standard for storing and sharing alignments
(see Section 4), we cover the central ingredient – global identifiers based on MMT
URIs [RK13] – in Section 3. Every symbol is assigned a unique way to access it

across corpora and across logics. The URIs are used both in the system and to
give several examples from logical and computational corpora in [MGK+17].

Most corpora are developed and maintained by separate, often disjoint com-
munities. That makes it difficult for researchers to utilize alignments because
no public resource exists for jointly building a large collection of alignments.
Therefore we have started such a resource in form of a central repository as our
third contribution — it is public, and we invite all researchers to contribute their
alignments. We seeded our repository with the alignment sets mentioned above.
Moreover, we are hosting a web-server that allows for conveniently querying
for all symbols aligned with a given symbol, currently including ≈ 12000 align-
ments between proof assistant libraries and 22 alignments to semi-formal corpora
(transitive closure not included). We describe this standard and infrastructure
in Section 4.

2 Types of Alignments

Let us assume two corpora C1, C2 with underlying foundational logics F1, F2. We
examine examples for how two concepts ai from Ci can be aligned. Importantly,
we allow for the case where a1 and a2 represent the same abstract mathematical
concept without there being a direct, rigorous translation between them.

The types of alignments in this section are purely phenomenological in nature:
they exemplify the difficulty of the problem and provide benchmarks for rigorous
definitions. While some types are relatively straightforward, others are so difficult
that giving a rigorous definitions remains an open problem. This is because
alignments ideally legitimize translations from F1 to F2 that replace a1 with a2.
But in many situations these translations, while possible in principle, are much
more difficult than simply replacing one symbol with another. The alignment
types below are roughly ordered by increasing difficulty of this translation.

Perfect Alignment If a1 and a2 are logically equivalent (modulo a translation ϕ
between F1 and F2 that is fixed in the context), we speak of a perfect alignment.
More precisely, all formal properties (type, definition, axioms) of a1 carry over
to a2 and vice versa. Typical examples are primitive types and their associated
operations. Consider:

Nat1 : Type Nat2 : Type

then translations between C1 and C2 can simply interchange a1 and a2.
The above example is deceptively simple for two reasons. Firstly, it hides the

problem that F1 and F2 do not necessarily share the symbol Type. Therefore, we
need to assume that there are symbols Type1 and Type2, which have been already
aligned (perfectly). Such alignments are crucial for all fundamental constructors
that occur in the types and characteristic theorems of the symbols we want to
align such as Type, →, bool, ∧, etc. These alignments can be handled with the
same methodology as discussed here. Therefore, here and below, we assume we
have such alignments and simply use the same fundamental constructors for F1

and F2.

Secondly, it ignores that we usually want (and can reasonably expect) only
certain formal properties to carry over, namely those in the interface theory
in the sense of [KR16] — i.e. those properties that are still meaningful af-
ter abstracting away from the specific foundational logics Fi. For example, in
[MGK+17] we give many perfect alignments between symbols that use different
but equivalent definitions.

Alignment up to Argument Order Two function symbols can be perfectly aligned
except that their arguments must be reordered when translating.

The most common example is function composition, whose arguments may
be given in application order (f ◦g) or in diagram order (f ; g). Another example
is given

contains1 : (T : Type)→ SubSetT → T → bool

in2 : (T : Type)→ T→ SubSetT → bool

Here the expressions contains1(T,A, x) and in2(T, x,A) can be translated to
each other.

Alignment up to Determined Arguments The perfect alignment of two function
symbols may be broken because they have different types even though they agree
in most of their properties. This often occurs when F1 uses a more fine-granular
type system than F2, which requires additional arguments.

Examples are untyped and typed (polymorphic, homogeneous) equality: The
former is binary, while the latter is ternary

eq1 : Set→ Set→ bool

eq2 : (T : Type)→ T → T → bool
.

The types can be aligned, if we apply ϕ(Set) to eq2. Similar examples arise
between simply- and dependently-typed foundations, where symbols in the latter
take additional arguments.

These additional arguments are uniquely determined by the values of the
other arguments, and a translation from C1 to C2 can drop them, whereas the
reverse translations must infer them – but F1 usually has functionality for that
(e.g. the type parameter of polymorphic equality is usually uniquely determined).

The additional arguments can also be proofs, used for example to represent
partial functions as total functions, such as a binary and a ternary division
operator

div1 : Real→ Real→ Real

div2 : Real→ (d : Real)→` d 6= 0→ Real

Here inferring the third argument is undecidable in general, and it is unique only
in the presence of proof irrelevance.

Alignment up to Totality of Functions The functions a1 and a2 can be aligned
everywhere where both are defined. This often happens since it is often con-
venient to represent partial functions as total ones by assigning values to all
arguments. The most common example is division. div1 might both have the
type Real→ Real→ Real with x div1 0 undefined and x div2 0 = 0.

Here a translation from C1 to C2 can always replace div1 with div2. The re-
verse translation can usually replace div2 with div1 but not always. In translation-
worthy data-expressions, it is typically sound; in formulas, it can easily be un-
sound because theorems about div2 might not require the restriction to non-zero
denominators.

Alignment for Certain Arguments Two function symbols may be aligned only
for certain arguments. This occurs if a1 has a smaller domain than a2.

The most fundamental case is the function type constructor → itself. For
example,→1 may be first-order in F1 and→2 higher-order in F2. Thus, a trans-
lation from C1 to C2 can replace →1 with →2, whereas the reverse translation
must be partial.

Another important class of examples is given by subtyping (or the lack
thereof). For example, we could have

plus1 : Nat→ Nat→ Nat

plus2 : Real→ Real→ Real
.

Alignment up to Associativity An associative binary function (either logically
associative or notationally right- or left-associative) can be defined as a flexary
function, i.e., a function taking an arbitrarily long sequence of arguments. In
this case, translations must fold or unfold the argument sequence. For example

plus1 : Nat→ Nat→ Nat plus2 : List Nat→ Nat.

All of the above types of alignments allow us to translate expressions between
our corpora by modifying the lists of arguments the respective symbols are ap-
plied to, even if not always in a straight-forward way. The following types of
alignments are more abstract, and any translation along them might be more
dependent on the specifics of the symbols under consideration.

Contextual alignments Two symbols may be aligned only in certain contexts.
For example, the complex numbers are represented as pairs of real numbers in
some proof assistant libraries and as an inductive data type in others. Then only
selected occurrences of pairs of real numbers can be aligned with the complex
numbers.

Alignment with a Set of Declarations Here a single declaration in C1 is aligned
with a set of declarations in C2. An example is a conjunction a1 in C1 of axioms
aligned with a set of single axioms in C2. More generally, the conjunction of a set
of C1-statements may be equivalent to the conjunction of a set of C2-statements.

Here translations are much more involved and may require aggregation or
projection operators.

Alignment between the Internal and External Perspective on Theories When rea-
soning about complex objects in a proof assistant (such as algebraic structures,
or types with comparison) it is convenient to express them as theories that com-
bine the actual type with operations on it or even properties of such operations.
The different proof assistants often have incompatible mechanisms of expressing
such theories including type classes, records and functors, with the additional
distinction whether they are first-class objects or not.

We define the crucial difference for alignments here only by example. We
speak of the internal perspective if we use a theory like

theory Magma1 = {u1 : Type, ◦1 : u1 → u1 → u1}

and of the external perspective if we use operations like

Magma2 : Type, u2 : Magma2 → Type,

◦2 : (G : Magma)→ u2G→ u2G→ u2G

Here we have a non-trivial, systematic translation from C1 to C2. A reverse may
also be possible, depending on the details of F1.

Corpus-Foundation Alignment Orthogonal to all of the above, we have to con-
sider alignments, where a symbol is primitive in one system but defined in an-
other. More concretely, a1 can be built-into F1 whereas a2 is defined in F2. This
is common for corpora based on significantly different foundations, as each foun-
dation is likely to select different primitives. Therefore, it mostly occurs for the
most basic concepts. For example, the boolean connectives, integers and strings
are defined in some systems but primitive in others, as in some foundations they
may not be easy to define.

The corpus-foundation alignments can be reduced to previously considered
cases if we follow the “foundations-as-theories” approach [KR16], where the foun-
dations themselves are represented in an appropriate logical framework. Then
a1 is simply an identifier in the corpus of foundations of the framework F1.

Opaque Alignments The above alignments focused on logical corpora, partially
because logical corpora allow for precise and mechanizable treatment of logical
equivalence. Indeed, alignments from a logical into a computational or narrative
corpus tend to be opaque: Whether and in what way the aligned symbols corre-
spond to each other is not (or not easily) machine-understandable. For example,
if a2 refers to a function in a programming language library, that functions spec-
ification may be implicit or given only informally. Even worse, if a2 is a wiki
article, it may be subject to constant revision.

Nonetheless, such alignments are immensely useful in practice and should not
be discarded. Therefore, we speak of opaque alignments if a2 refers to a symbol
whose semantics is unclear to machines.

Probabilistic Alignments Orthogonal to all of the above, the correctness of an
alignment may be known only to some degree of certainty. In that case, we speak
of probabilistic alignments. These occur in particular when machine-learning
techniques are used to find large sets of alignments automatically. This is critical
in practice to handle the existing large corpora.

The problem of probabilistically estimating the similarity of concepts in dif-
ferent corpora was studied before in [GK14]. We briefly restate the relevant
aspects in our setting. Let Ti be the set of toplevel expressions occurring in Ci,
e.g., the types of all constants and the formulas of all theorems. We assume a
fixed set F of alignments, covering in particular the foundational concepts in F1

and F2.

Definition 1. The pattern P (f) of an expression f is obtained by normalizing
f to N(f) and abstracting over all occurrences of concepts that are not in F ,
resulting in P (f) = λc1 . . . cn. N(f). If two formulas f ∈ T1 and g ∈ T2 have
α-equivalent patterns λd1 . . . dm. N(g) and λe1 . . . em. N(h), we define their in-
duced alignments by I(f, g) = {(d1, e1), . . . , (dm, em)}. We write J(p) for the
union of all I(f, g) with P (f) =α P (g) =α p.

Example 1. For the formula ∀x. x = 2 · π ⇒ cos(x) = 0 with F not covering
the concepts 2, π, 0, and cos, and using a normal form N that exploits the
commutativity of equality, we get the pattern λc1 c2 c3 c4. ∀x. x = c1 · c2 ⇒
c3 = c4(x).

Let a1, . . . , an be the set of all alignments in any J(p). We first calculate an
initial vector containing the similarities simi for each ai by

simi =
∑

{p | ai∈J(p)}

1

ln(2 + card { f | P (f) = p })

Intuitively, an alignment has a high similarity value if it was produced by a large
number of rare patterns.

Secondly, we iteratively transform this vector until its values stabilize. The
idea behind this dynamical system is that the similarity score of an alignment
should depend on the quality of its co-induced alignments. Each iteration step
consists of two parts: we multiply the vector with the matrix

corkl = card { (f, g) | ak ∈ I(f, g) ∧ al ∈ I(f, g) }

which measures the correlation between ak and al, and then (in order to ensure
convergence and squash all values into the interval [0; 1]) apply the function
x 7→ x

x+1 to each component.

3 Global Identifiers

An essential requirement for relating logical corpora is standardizing the iden-
tifiers so that each identifier in the corpus can be uniquely referenced. It is

desirable to use a uniform naming schema so that the syntax and semantics of
identifiers can be understood and implemented as generically as possible. There-
fore, we use MMT URIs [RK13], which have been specifically designed for that
purpose.

3.1 General Structure

Syntax MMT URIs are triples of the form

NAMESPACE ? MODULE ? SYMBOL

The namespace part is a URI that serve as globally unique root identifiers of
corpora, e.g. http://mathhub.info/MyLogic/MyLibrary. It is not necessary
(although often useful) for namespaces to also be URLs, i.e., a reference to a
physical location. But even if they are URLs, we do not specify what resource
dereferencing should return. Note that because MMT URIs use ? as a separator,
MODULE ? SYMBOL is the query part of the URI, which makes it easy to implement
dereferencing in practice.4

The module and symbol parts of an MMT URI are logically meaningful
names defined in the corpus: The module is the container (e.g., a signature,
functor, theory, class, etc.) and the symbol is a name inside the module (of a type,
constant, axiom, theorem etc.). Both module and symbol name may consist of
multiple /-separated segments to allow for nested modules and qualified symbol
names.

MMT URIs allow arbitrary Unicode characters. However, ? and /, which
MMT URIs use as delimiters, as well as any character not legal in URIs must
be escaped using the %-encoding. We refer to RFC 3986/7 for details.

3.2 Namespace Organization

MMT URIs standardize the syntax of the identifiers, but they still allow a lot of
freedom how to assign URIs to the concepts in a specific corpus. This assignment
is straightforward in principle — after all we only have to make sure that every
concept has a unique URI. However, as we will see below, the structure of a
corpus can pose some subtle issues that must be addressed carefully. Therefore,
we quickly discuss commonly used corpus structures and how these can be used
to form URIs systematically.

The common structuring feature of corpora is usually a directory tree. The
leaves of this tree are files and contain modules. Moreover, each corpus usually
has a certain root namespace. However, systems differ in how they subdivide a
corpus into namespaces.

We distinguish the following cases:

4 For simplicity in the remaining part of the paper we will not give complete HTTP
links, but rather use single keyword abbreviations. Complete names of logics and
modules are given in the online service.

http://mathhub.info/MyLogic/MyLibrary

– flat structure: All files share the same namespace regardless of their physical
location in the directory tree. This naming schema is most well-known from
SML. In this case, we can use the root namespace as the fixed namespace
for all concepts in the corpus.

– directory-based structure: The namespace of a module is formed by con-
catenating the root namespace with the path to the directory containing it.
There are two subcases regarding the treatment of the file name:
• files-as-modules: Each file contains exactly one module, whose name is

that of the file without the file name extension. The name of the module
may be repeated explicit ly in the file or may be left implicit. Files as
explicitly named modules is most well-known as the convention of Java.

• irrelevant file names: The file name is irrelevant, i.e., the grouping of
modules into files within the same directory is arbitrary. In particular, a
file can contain multiple modules.

– file-based structure: The namespace of a module is formed by concatenating
the root namespace of the corpus with the path to the file containing it.

3.3 URIs for Selected Proof Assistants

Using the principles defined above, we have developed MMT URI formation
principles for some important proof assistants: PVS [ORS92], Coq [Coq15],
and Matita, use directory-based namespaces, while HOL4, Mizar have one
flat namespace. All of the systems define some kind of named, theory-like struc-
ture (e.g. articles in Mizar), which can be used for the module components. If
modules are nested, we get module multi-part identifiers which are segmented
by slashes. All modules declare symbols, whose names can directly be used in
the symbol parts of the MMT URIs. If a symbol name N is declared multiple
times in the same module (due to overloading), we use two-level names of the
form N/i where i numbers all declarations of N in that module (starting at 1).

The exception to this are the HOL systems, in particular HOL Light, which
does not have an obvious MMT URI formation principle because it does not
maintain all its identifiers itself — instead it relies on the OCaml toplevel to store
the assigned values. We use directory-based namespaces with files-as-modules.
For constants and types introduced by a module we add the prefixes const/

and type/ respectively. If a file contains OCaml modules, we use their names to
form multi-segment module names. Accordingly, if symbols result from OCaml
structures, we form multi-segment symbol names. This has the effect that HOL
Light URIs are formed in exactly the same way as for Coq. The other HOL
systems can be treated similarly.

For informal collections of mathematical knowledge like Wikipedia, we can
usually adopt similar measures. We interpret Wikipedia as having a flat names-
pace http://en.wikipedia.org/wiki, obtain modules via the files-as-models
regime, and use the anchors of editable fragments as symbol names. Thus the
statement of uniqueness of identity element and inverses in the Wikipedia ar-
ticle on groups would have the MMT URI https://en.wikipedia.org/wiki?
Group_(mathematics)?Uniqueness_of_identity_element_and_inverses.

http://en.wikipedia.org/wiki
https://en.wikipedia.org/wiki?Group_(mathematics)?Uniqueness_of_identity_element_and_inverses
https://en.wikipedia.org/wiki?Group_(mathematics)?Uniqueness_of_identity_element_and_inverses

Details of the various definitions can be found in [MGK+17,PRA].

4 A Standard and Database for Alignments

Based on the observations of the previous sections, we now define a standard for
alignments. Because many of the alignment types described in Section 2 are very
difficult to handle rigorously and additional alignment types may be discovered
in the future, we opt for a very simple and flexible definition.

Concretely, we use the following formal grammar for collections of alignments:

Collection ::= (Comment | NSDef | Alignment)∗

Comment ::= // String
NSDef ::= namespace String URI
Alignment ::= URI URI (String = ”String”)∗

Our definition aims at practicality, especially considering the typical case where
researchers exchange and manipulate large collections of alignments. Therefore,
our grammar allows for comments and for the introduction of short namespace
definitions that abbreviate long namespaces. Our grammar represents each in-
dividual alignment as a pair of two URIs with arbitrary additional data stored
as a list of key-value pairs.

The additional data in alignments makes our standard extensible: any user
can standardize individual keys in order to define specific types of alignments.
For example, for alignments up to argument order, we can add a key for giving
the argument order. Moreover, this can be used to annotate metadata such as
provenance or system versions.

In the sequel, we standardize some individual keys and use them to implement
the most important alignment types from Section 2. In all definitions below, we
assume that a1 and a2 are the aligned symbols.

Definition 2. The key direction has the possible values forward, backward,
and both. Its presence legitimizes, respectively, the translation that replaces every
occurrence of a1 with a2, its inverse, or both.

Alignments with direction key subsume the alignment types of perfect align-
ments (where the direction is both) and the unidirectional types of alignment
up to totality of functions or up to associativity, and alignment for certain ar-
guments. The absence of this key indicates those alignment types where no
symbol-to-symbol translation is possible, in particular opaque alignments.

Definition 3. The key arguments has values of the form (r1, s1) . . . (rk, sk)
where the ri and si are natural numbers. Its presence legitimizes the transla-
tion of a1(x1, . . . , xm) to a2(y1, . . . , yn) where each yk is defined by
– if k = si for some i: the recursive translation of xri
– otherwise: inferred from the context.

Alignments with arguments key subsume the alignment types of alignments up
to argument order and of alignment up to determined arguments.

Fig. 1. The Alignment-based Dictionary — External Resources

Fig. 2. The Alignment-based Dictionary — Formal Resources

Example 2. We obtain the following argument alignments for some of the exam-
ples from Section 2:

Nat1 Nat2 direction = ”both”
eq1 eq2 arguments = ”(1, 2)(2, 3)”

contains1 in2 arguments = ”(1, 1)(2, 3)(3, 2)”

Finally, we standardize a key for probabilistic alignments:

Definition 4. The key similarity has values that are real numbers in [0; 1].
If used together with other keys like direction and arguments, it represents a
certainty score for the correctness of the corresponding translation. If absent, its
value can be assumed to be 1 indicating perfect certainty.

We have implemented alignments in the MMT system [Rab13]. Moreover, we
have created a public repository [PRA] and seeded it with a number of alignments
(currently ≈ 12000) including the ones mentioned in this paper, the README
of this repository furthermore describes the syntax for alignments above as well
as the URI schemata for several proof assistants. The MMT system can be used
to parse and serve all these alignments, implement the transitive closure, and
(if possible) translate expressions according to alignments. Available alignments
are shown in the MMT browser.

As an example service, we have started building an alignment-based math
dictionary collecting formal and informal resources.5 For this we extend the
above grammar by the following:

5 https://mathhub.info/mh/mmt/:concepts?page=About

https://mathhub.info/mh/mmt/:concepts?page=About

Fig. 3. The Alignment-based Dictionary — Available Alignments

Fig. 4. The Alignment based Dictionary - Field for Adding Alignments

Alignment ::= String URI (String = ”String”)∗

This assigns a mathematical concept (identified by the string) to a formal or
informal resource (identified by the URI). The dictionary uses the above public
repository, so additions to the latter will be added to the former. We have im-
ported the ≈ 50,000 conceptual alignments from [GC14], although we chose not
to add them to the dictionary yet, since the majority of them are (due to the
different intention behind the conceptual mappings in Nnexus) dubious, highly
contextual or otherwise undesirable.

Each entry in the dictionary shows snippets from select online resources if
available (Figure 1), lists the associated formal statements (Figure 2) and avail-
able alignments between them (Figure 3), and allows for conveniently adding new
individual URIs to concept entries as well as new formal alignments (Figures 1
and 4 respectively).

5 Conclusion

We have motivated and proposed a standard for aligning mathematical corpora.
We presented examples of alignments between logical, computational, and semi-
formal corpora and classified the different examples. The presented MMT-based
system for sharing such alignments has been preloaded with thousands of align-
ments between the various kinds of concepts, including proof assistant types and
constants, programming language (including computer algebra) algorithms, and
semi-formal descriptions.

Future work includes extending the automated discovery of alignments [GK14]
to foundations other than HOL. Our main focus was on the logical corpora, but
we expect to be able to find much more opaque alignments. We invite the com-
munity to use the service. Finally we plan to integrate the use of the alignments

database in the various mathematical knowledge management systems. In par-
ticular, we want to relate our methods and the alignment database to the tool
chain for ontology alignment, e.g. the Alignment API [DESTdS11] or the work
on logic-independent formalization of alignments in DOL [CMK14].

Acknowledgements We were supported by the German Science Foundation (DFG)
under grants KO 2428/13-1 and RA-1872/3-1, the Austrian Science Fund (FWF)
grant P26201, and the ERC starting grant no. 714034 SMART.

References

ACTZ06. A. Asperti, C. S. Coen, E. Tassi, and S. Zacchiroli. Crafting a Proof
Assistant. In T. Altenkirch and C. McBride, editors, TYPES, pages 18–
32. Springer, 2006.

AGC+04. A. Asperti, F. Guidi, C. S. Coen, E. Tassi, and S. Zacchiroli. A con-
tent based mathematical search engine: Whelp. In J. Filliâtre, C. Paulin-
Mohring, and B. Werner, editors, Types for Proofs and Programs, Inter-
national Workshop, TYPES 2004, volume 3839 of LNCS, pages 17–32.
Springer, 2004.

BFMP11. F. Bobot, J. Filliâtre, C. Marché, and A. Paskevich. Why3: Shepherd
Your Herd of Provers. In Boogie 2011: First International Workshop on
Intermediate Verification Languages, pages 53–64, 2011.

CHK+11. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Davenport,
W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathe-
matics, pages 289–291. Springer, 2011.

CMK14. M. Codescu, T. Mossakowski, and O. Kutz. A categorical approach to
ontology alignment. In Proceedings of the 9th International Conference
on Ontology Matching, pages 1–12. CEUR-WS.org, 2014.

Coq15. Coq Development Team. The Coq Proof Assistant: Reference Manual.
Technical report, INRIA, 2015.

DESTdS11. J. David, J. Euzenat, F. Scharffe, and C. Trojahn dos Santos. The align-
ment api 4.0. Semantic Web, 2(1):3–10, 2011.

ESC07. J. Euzenat, P. Shvaiko, and E. Corporation. Ontology matching. Springer,
2007.

GC14. D. Ginev and J. Corneli. Nnexus reloaded. In Watt et al. [WDS+14],
pages 423–426.

GK14. T. Gauthier and C. Kaliszyk. Matching concepts across HOL libraries. In
S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban, editors, CICM,
volume 8543 of LNCS, pages 267–281. Springer Verlag, 2014.

GK15. T. Gauthier and C. Kaliszyk. Sharing HOL4 and HOL Light proof knowl-
edge. In M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors,
LPAR, volume 9450 of LNCS, pages 372–386. Springer, 2015.

GKU16. T. Gauthier, C. Kaliszyk, and J. Urban. Initial experiments with statisti-
cal conjecturing over large formal corpora. In A. Kohlhase et al., editor,
Work in Progress at CICM 2016, volume 1785 of CEUR, pages 219–228.
CEUR-WS.org, 2016.

H+15. T. C. Hales et al. A formal proof of the Kepler conjecture. CoRR,
abs/1501.02155, 2015.

Hur09. J. Hurd. OpenTheory: Package Management for Higher Order Logic The-
ories. In G. D. Reis and L. Théry, editors, Programming Languages for
Mechanized Mathematics Systems, pages 31–37. ACM, 2009.

KK13. C. Kaliszyk and A. Krauss. Scalable LCF-style proof translation. In
S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP, volume 7998
of LNCS, pages 51–66. Springer Verlag, 2013.

KR14. C. Kaliszyk and F. Rabe. Towards knowledge management for HOL Light.
In Watt et al. [WDS+14], pages 357–372.

KR16. M. Kohlhase and F. Rabe. QED Reloaded: Towards a Pluralistic Formal
Library of Mathematical Knowledge. Journal of Formalized Reasoning,
9(1):201–234, 2016.

KS10. A. Krauss and A. Schropp. A Mechanized Translation from Higher-Order
Logic to Set Theory. In M. Kaufmann and L. Paulson, editors, Interactive
Theorem Proving, pages 323–338. Springer, 2010.

KU15. C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL
Light. Mathematics in Computer Science, 9(1):5–22, 2015.

KW10. C. Keller and B. Werner. Importing HOL Light into Coq. In M. Kauf-
mann and L. Paulson, editors, Interactive Theorem Proving, pages 307–
322. Springer, 2010.

MGK+17. D. Müller, T. Gauthier, C. Kaliszyk, M. Kohlhase, and F. Rabe. Classi-
fication of alignments between concepts of formal mathematical systems.
Technical report, 2017.

NSM01. P. Naumov, M. Stehr, and J. Meseguer. The HOL/NuPRL proof trans-
lator - a practical approach to formal interoperability. In R. Boulton and
P. Jackson, editors, 14th International Conference on Theorem Proving in
Higher Order Logics. Springer, 2001.

ORS92. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In D. Kapur, editor, 11th International Conference on Automated
Deduction (CADE), pages 748–752. Springer, 1992.

OS06. S. Obua and S. Skalberg. Importing HOL into Isabelle/HOL. In
N. Shankar and U. Furbach, editors, Automated Reasoning, volume 4130.
Springer, 2006.

PRA. Public repository for alignments. https://gl.mathhub.info/

alignments/Public.
Rab13. F. Rabe. The MMT API: A Generic MKM System. In J. Carette, D. As-

pinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelligent Com-
puter Mathematics, pages 339–343. Springer, 2013.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

WDS+14. S. Watt, J. Davenport, A. Sexton, P. Sojka, and J. Urban, editors. Intel-
ligent Computer Mathematics, number 8543 in LNCS. Springer, 2014.

Wie06. F. Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of
LNCS. Springer, 2006.

WPN08. M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In
A. Mohamed, Munoz, and Tahar, editors, Theorem Proving in Higher Or-
der Logics (TPHOLs 2008), number 5170 in LNCS, pages 33–38. Springer,
2008.

https://gl.mathhub.info/alignments/Public
https://gl.mathhub.info/alignments/Public

	Classification of Alignments between Concepts of Formal Mathematical Systems

