
Translating the Mizar Mathematical Library into OMDoc

format

Mihnea Iancu, Michael Kohlhase, and Florian Rabe
Computer Science, Jacobs University Bremen

〈first-initial〉.〈lastname〉@jacobs-university.de

August 30, 2011

Abstract

The Mizar Mathematical Library is one of the largest libraries of formalized mathematics.
Its language is highly optimized for authoring by humans. As in natural languages, the
meaning of an expression is influenced by its (mathematical) context in a way that is natural
to humans, but harder to specify for machine manipulation. Thus its custom file format can
make the access to the library difficult. Indeed, the Mizar system itself is currently the only
system that can fully operate on the Mizar library.

This paper presents a translation of the Mizar library into the OMDoc format (Open
Mathematical Documents), an XML-based representation format for mathematical knowl-
edge. OMDoc is geared towards machine support and interoperability by making formula
structure and context dependencies explicit. Thus, the Mizar library becomes accessible for a
wide range of OMDoc-based tools for formal mathematics and knowledge management.

1

Contents

1 Introduction 3

2 Related Work 3

3 Mizar 4
3.1 Preliminaries . 4
3.2 Justified Theorems . 5
3.3 Function Definitions . 5
3.4 Predicate Definitions . 5
3.5 Attribute Definitions . 6
3.6 Mode Definitions . 6
3.7 Structure Definitions . 6
3.8 Review of Definitions . 7
3.9 Schemes . 7
3.10 Notations . 8
3.11 Clusters and Registrations . 8

4 Representing Mathematics in OMDoc/MMT 8
4.1 OMDoc . 8
4.2 MMT . 9

5 A Mizar Profile for OMDoc/MMT 10
5.1 Encoding of Mizar in LF . 10
5.2 Pattern level translation . 13
5.3 Justified Theorems . 13
5.4 Definitions . 13
5.5 Schemes . 18
5.6 Notation . 18
5.7 Registrations . 18

6 Translation 22

7 Conclusion 25

2

1 Introduction

Mizar [TB85] is a representation format for mathematics that is close to mathematical vernacular
used in publications. Mizar is also a formal system for completing and verifying proofs written in
the Mizar language. The continual development of the Mizar system has resulted in a centrally
maintained library of mathematics: the Mizar mathematical library (MML). The MML is a col-
lection of Mizar articles: text-files that contain definitions, theorems, and proofs. Currently the
MML (version 4.166.1132) contains over 1000 articles with over 50000 theorems and over 10000
definitions.1 Introductory information on Mizar and the MML can be found in [TR99] and [Wie99].
For the rest of this paper, we assume that the reader is at least superficially familiar with these
basic texts.

The Mizar language is based on Tarski-Grothendieck set theory [Try90] formalized in (unsorted)
first-order logic.2 In addition, Mizar provides a very expressive and flexible type system that
features dependent types as well as predicate restrictions [Ban03]. The Mizar language — in
particular the type system and the input syntax — are highly optimized for authoring by humans.
Consider for instance the following theorem:

for A being set holds

A is finite iff ex f being Function st rng f = A & dom f in omega

For a skilled mathematician this can be almost read and understood without Mizar-specific train-
ing. The downside of this is that the Mizar system is currently the only system that can fully
operate on the Mizar library, and as a consequence, many feel that the Mizar library is locked up in
a custom file format that excludes it from the methods and tools developed in the mathematical
knowledge management (MKM) communities.

In this paper, we show how he have remedied this situation by describing and implement-
ing a translation of the MML into the OMDoc/LF language. OMDoc (Open Mathematical
Documents [Koh06]) is an XML-based representation format for mathematical knowledge geared
towards making formula structure and context dependencies explicit for machine support. OMDoc
is parametric in the underlying logical formalism, and we use its instantiation with the Edinburgh
Logical Framework (LF, [HHP93]) to formally define the Mizar language.

This Mizar to OMDoc transformation completely rethinks the information architecture and
indeed enhances the OMDoc language design in the process.

Our translation satisfies three requirements that are as indispensable for interoperability as
they are hard to combine: (i) it preserves the human-oriented structure of Mizar expressions and
declarations, e.g., the type system is not coded out; (ii) it uses only the generic representational
infrastructure of a simple framework language (OMDoc/LF in our case) so that further processing
is possible without hard-coding any idiosyncrasies of Mizar; (iii) the result can be verified based
on a formal representation of the Mizar syntax and semantics in LF.

In this report we will present the architecture and results of the system we designed for the
translation and discuss the difficulties and importance of the project. We begin with a introduction
to the Mizar language and system in section 3. Then, in section 4, we describe the OMDoc side
and introduce some background notions relevant to the translation. Section 5 details our OMDoc
representation of the Mizar language which we use as a base for the translation of the MML. In
section 6 we present our implementation both from a theoretical and practical perspective. Finally,
in Sect. 7 we discuss the results and conclude.

2 Related Work

The motivations for a translation of the Mizar library are not particular to the OMDoc format, and
it is therefore not very surprising that the work reported on in this paper is not the first attempt
to translate the Mizar library.

1See http://mmlquery.mizar.org/ for up-to-date statistics.
2Technically, theorem schemes and the Fraenkel operator of Mizar slightly transcend first-order expressivity, but

the language is first-order in style.

3

http://mmlquery.mizar.org/

When processing Mizar text we have the choice between two levels of language: The pattern-
level (presentation-level) language is the rich human-oriented external syntax in which Mizar
articles are written; and the constructor-level (semantic level) is the machine-internal represen-
tation used in the Mizar system.

The Mizar project produces a hyper-linked, pretty-printed version of the assertions of a Mizar
article for publication in the journal Formalized Mathematics [Ban06a] with its electronic coun-
terpart the Journal of Formalized Mathematics [JFM]. This pattern-level translation generates
a human-oriented presentation of Mizar articles, where formulae are presented in mathematical
notation using LATEX and parts of the Mizar logical language are verbalized.

There have been various early hand translations of selected Mizar articles for benchmarking au-
tomated theorem provers (see e.g. [DW97]). In 1997/8 Czeslaw Bylinski and Ingo Dahn translated
the MML into a PROLOG syntax by extending the Mizar system with a custom (constructor-level)
PROLOG generator. This was done independently of the main Mizar code base, and as a result
soon desynchronized with it. A structure-preserving transformation of constructor-level Mizar to
OMDoc has been also attempted in [BK07], but has remained partial. Constructor-level Mizar has
been used for information retrieval purposes in the MMLQ system which provides a web interface
to and a query language; see [Ban06b] for details.

Finally, Josef Urban has defined a custom XML format in [Urb06b] covering initially mainly
the constructor-level, and modified Mizar to use this format internally. In this way it is ensured
that this XML format cannot desynchronize from the (often rapid) Mizar development, and can
be used as a faithful translation layer for external tools. At the same time, this means that the
format has to be quite Mizar-oriented, and its use in generic MKM systems typically requires
a translation layer. One such layer — the MPTP system [Urb06a] — has been developed for
translation targeted at automated theorem proving systems based on the TPTP syntax. The
MPTP translation is mostly concerned with semantics and formulas, the presentation layer is
practically omitted there, and a custom proof translation was only added experimentally later
in [US08].

The work presented here is analogous to the MPTP translation in that it uses the Mizar XML
as an API suitable for implementing a translation to a general mathematical format, allowing a
number of independently developed general tools to work with the MML.

3 Mizar

3.1 Preliminaries

Mizar [TB85] can refer to one of the following things:

• The Mizar Language is a formal language for representing mathematics designed to be as
similar as possible to the mathematical vernacular.

• The Mizar System is the only implementation of the Mizar Language and provides a proof
checker for Mizar source files.

• The Mizar Mathematical Library (MML) is a library consisting of Mizar articles that were
checked by the Mizar System and in addition reviewed by the Library Committee of the
MML. Currently the MML contains over 50000 theorems and over 9500 definitions.

Mizar is based on classical first-order logic extended with second-order axiom schemes and
featuring a rich ontology of primitive mathematical objects, types, and proof principles.

Mizar basic language constructors are types, terms and formulas.
Mizar language features include Justified Theorems, Definitions, Schemes, Notations, Registra-

tions and Clusters.

4

3.2 Justified Theorems

Justified theorems are propositions together with a proof of correctness. For example, one can
prove that if a set is not the empty-set ({} in Mizar) then it has at least one element. In Mizar
this can be written as a justified theorem (so it can be used later in other proofs):

theorem

X <> {} implies ex x st x in X
proof

where we omit the proof.
Definitions in Mizar can be used to introduce predicates, functions, attributes, modes and

structures. Since the Mizar language is very complex it is difficult to give a general form of each
kind of definition so we will instead give a general form of the most used definition for each kind
and then discuss the other language features pertaining to definitions separately.

3.3 Function Definitions

Functors can be introduced using the general form:

definition let x1 be ϑ1, · · ·, let xn be ϑn;
func (xi1, xi2, · · · , xik)ϕ(xj1, xj2, · · · , xjl) -> ϑ(x1, x2, · · · , xn) means δ(x1, x2, · · · , xk, it);

end;

where xi are the arguments (terms) of the definition and ϑi their respective types. ϕ is the
name of the function being defined and xik are left side arguments while xjl are the right side
arguments. ϑ(x1, x2, · · · , xn) is the function’s return type (with xi as possible parameters). Fi-
nally δ(x1, x2, · · · , xk, it) represents the formula giving the meaning of the function where xi are
arguments together with it which is placeholder for the result of the function.

For example the big union of a set (union of all its elements) can be defined as:

definition
let X be set ;

func union X -> set means

for x being set holds

(x in it iff ex Y being set st

(x in Y & Y in X));

end;

3.4 Predicate Definitions

The general form of the most used type of predicate definition is:

definition let x1 be ϑ1, · · ·, let xn be ϑn;
pred xi1, xi2, · · · , xikΠxj1, xj2, · · · , xjl means δ(x1, x2, · · · , xk);

end;

where xi are arguments (terms) and ϑi their respective types. Π is the name of the predicate
with xik being left side arguments and xjl being right side arguments. Finally δ(x1, · · · , xn, it)
represents the formula that gives the predicate its truth value.

For example, the subset relation (c= in Mizar) can be defined using:

definition
let X, Y be set ;

pred X c= Y means

for x being set st x in X holds x in Y ;

end;

5

3.5 Attribute Definitions

Attribute definitions are of the following form:

definition let x1 be ϑ1, · · ·, let xn be ϑn;
attr ∆ -> ϑ(x1, ..., xn) means δ(x1, ..., xn, it);

end;

In the example above xi are the arguments (terms) and ϑi their respective types. ∆ is the
symbol (name) of the attribute and ϑ(x1, .., xn) is a type dependent on x1, · · · , xn representing
the type to which the attribute is applied. Finally δ(x1, · · · , xn, it) represents a predicate that
must hold for x1, · · · , xn and for it which is a Mizar notation representing the result of the current
definition. In this case, it refers to the result of applying ∆ to δ(x1, · · · , xn, it).

For example non-empty is an attribute of the type set here δ(it) is:

ex x being set st x in it

where it represents a non-empty set.

3.6 Mode Definitions

Mode definitions are used to introduce new types, usually using attributes:

definition let x1 be ϑ1, · · ·,let xn be ϑn;
mode ϑ is ∆1(xσ11 , · · · , xσ1k1

) ∆2(xσ21 , · · · , xσ2k2
) · · · ∆n(xσn1

, · · · , xσnkn
) ϑ1;

end;

As above xi are the arguments (terms) and ϑi their respective types. ∆i(xσi1
, · · · , xσiki

) are

attributes with arguments and ϑ1 represents the mother type to which the attributes are applied
to obtain the new type ϑ. Note that the new type ϑ must be non-empty.

As an example, one can use the attribute non-empty to construct a subtype of set using:

definition
mode DOMAIN is non-empty set

end;

3.7 Structure Definitions

Structure definitions follow the same pattern as the others but are more complicated. Internally a
structure definition is expanded into several constructors: for the aggregate functor, the structure
mode, the strict attribute and one for each selector. One can think of structures as Mizar’s
implementation of record types. The structure mode defines the new type for the structure which
may extend another structure. The selectors represent the members of the structure (fields of a
record type). Finally one can think of the aggregator functor as a constructor for a record type .

The general form of structure definitions is:

definition let x1 be ϑ1, · · ·,let xn be ϑn;
struct (Ξ1(x1, x2, · · · , xn),Ξ1(x1, x2, · · · , xn), · · · ,Ξk(x1, x2, · · · , xn))
Ξ(# υ1 -> ϑ(x1, x2, · · · , xn), υ2 -> ϑ(x1, x2, · · · , xn, υ1), · · ·, υl ->

ϑ(x1, x2, · · · , xn, υ1, υ2, · · · , υl−1)#);
end;

where xi and thetai are the definition parameters and their types, Xi is the structure currently
being defined, Ξi(x1, x2, · · · , xn) are the structures (with parameters) that the Ξ extends and υi
are the selectors (fields).

An example for a structure definition is:

definition
struct (1-sorted) 2-sorted(#carrier,carrier’ -> set#);

end;

where the first selector (carrier) is “inherited” from 1-sorted.

6

3.8 Review of Definitions

In additions to the types describe above (function, predicate, mode, · · ·) definitions can be cate-
gorized using other relevant properties. For instance they may be categorized as direct or indirect
depending on whether the meaning of the definiens is explicit or implicit.

Direct definitions are in essence abbreviations and may be used for functors, predicates and
modes. They are usually introduced via “is” and the meaning is expressed as a term ,except for
predicates where “means” is used and the meaning is a formula. For example, a direct function
definition for the successor function could be:

definition let x be Nat;

func succ x -> Nat is x+ 1;
end;

Here the function succ is defined as a term by applying the functor + to x and 1.
Indirect definition introduce a definiens by giving its meaning implicitly and may be used

for functors, attributes and modes. For example, an indirect function definition for the succesor
function could be:

definition let x be Nat;

func succ x -> Nat means x+ 1 = it;
end;

In Mizar it is a placeholder for the result of the application of the current definiens, hence the
meaning is implicit.

In this case it stands for the result of succ(x) and, consequently, the function is defined as a
formula.

Another way of categorizing definitions is by looking at case based definitions. In all the
examples above the meaning of definitions was given by a single term/formula. However Mizar
supports case based definitions which allow for definiens meanings of the form:

case C1 → R1, case C2 → R2 · · · case Ck → Rk, else R
where Ci are the cases with Ri their respective results and R is the default result (in case

none of the cases hold). The default result may be omitted if a proof that it is not necessary
(meaning that C1 ∨ C2 ∨ · · · ∨ Ck always holds) is provided. Case based definitions are thus of
two kinds, complete (when the cases give cover all possibilities and no default case is required) or
partial when there is a default case. Simple definitions (with no cases) can thus be considered the
degenerate case of partial definitions.

3.9 Schemes

Mizar extends the classical first-order logic with second-order variables. Schemes are second order
sentences which take functors and predicates as arguments. They may have premises (assumptions
of the schema) and must have a justification (proof). The general form of a scheme is:

scheme Φ {ξ1, ξ2, · · · , ξn}:
δ(ξ1, ξ2, · · · , ξn) provided

δ1(ξ1, ξ2, · · · , ξn) and δ2(ξ1, ξ2, · · · , ξn) and · · · and δk(ξ1, ξ2, · · · , ξn)
justification;

where Φ is the current scheme being defined, ξi are the second order variables (functors or predi-
cates), δ is the scheme sentence and δi are the scheme premises (assumptions).

An example scheme is induction which can be defined as:

scheme Ind {P [Nat]}:
for k holds P [k] provided

P [0] and for k st P [k] holds P [k + 1]
justification;

7

3.10 Notations

Notations introduce a new name for a Mizar construct and may be synonymic or antonymic.
For example one can denote odd as an antonymic notation of even (provided even is previously
defined):

notation
let i be Integer;

antonym i is odd for i is even;

end;

3.11 Clusters and Registrations

Alongside modes, clusters represent another use of attributes. A cluster is a set of attributes
and can be used in the creation of types. Since attributes can be seen as predicates on types,
clusters can be seen as the conjunction of the the applied predicates. Since, in Mizar, types must
be non-empty one must prove that such a conjunction is non-empty before it can be used. Such
definitions are called registrations.

For example one can cluster even or odd for the type of integers. Below, the proofs are omitted
for brevity, but they rely on giving 0 and 1 respectively as examples to prove non-emptiness.

registration
cluster even for Integer;

existence

proof ;

cluster odd for Integer;

existence

proof ;
end;

Note that Mizar language exists at two levels. The pattern-level language (presented in the
examples above) is the rich input syntax in which Mizar articles are written. The constructor-
level language is the unique internal representation used by the Mizar system’s proving engine.
The pattern-level language is richer, more expressive and human-oriented but in an effort to mirror
conventional mathematical notations is also full of notation-conflicts and not suitable for semantics
preserving machine translation. Consequently, we use the unambiguous constructor-level language
(which is as a source for our translation. This means, we use the output of the Mizar processor,
consisting mainly of XML files [Urb05], as the input. The structure and content of the files are
described in detail in section 6

4 Representing Mathematics in OMDoc/MMT

4.1 OMDoc

OMDoc is a content markup format and data model for mathematical documents. It models
mathematical content using three levels of abstraction:

Object Level: OMDoc uses OpenMath and MathML as established standards for the markup of
formulae. Mizar types, terms and formulas correspond to this level.

Statement Level: OMDoc supplies original markup for explicitly representing the declarations
and assertions in mathematical theories. Mizar definitions, theorems, schemes, notations,
and registrations correspond to this level.

Theory Level: Finally OMDoc offers original markup that allows for clustering sets of statements
into theories as well as specifying relations between them (inclusions, morphisms). Mizar
articles and imports between them correspond to this level.

8

Core OMDoc concentrates on the structural relations between these mathematical concepts. It
deliberately avoids fixing language primitives for them and abstracts from specific mathematical
foundations. This is a crucial design choice that makes OMDoc a universal representation format
while remaining manageably simple.

For the case of Mizar, this means that core OMDoc does not feature exact analogues to Mizar’s
sophisticated definition principles. Neither can it adequately represent the theoremhood property
that defines the semantics of Mizar formulae. This is not surprising because these features are
highly specific to the syntax and semantics of individual languages. The extension of core OMDoc
with such language-specific features is the role of pragmatic OMDoc, which we will discuss next.

Core OMDoc uses a minimal set of conceptually orthogonal representational primitives, re-
sulting in expressions with canonical structure, which simplifies the theoretical analysis and im-
plementation of core OMDoc expressions (e.g., see [KRZ10]). Pragmatic OMDoc, on the other
hand, strikes a balance between verbosity and formality. It permits introducing a complex rep-
resentational infrastructure that provides both a formal semantics and is intuitive for humans.
In particular, the semantics of these language-specific extensions is defined entirely within core
OMDoc. Thus, OMDoc can provide multiple “pragmatic vocabularies” catering to different com-
munities and their tastes.

OMDoc achieves a pragmatic object level by being parametric in the foundational framework in
which the syntax and semantics of a language are formalized. More concretely, a logical framework
— LF in our case — is described as an OMDoc theory. Then a logic — Mizar’s first-order logic in
our case — is defined as another OMDoc theory with meta-theory LF; this in turn serves as the
meta-theory for the actual object language of interest — in our case Mizar’s Tarski-Grothendieck
set theory. Finally, individual Mizar articles are represented as (conservative) extensions of this
theory. The respective meta-theory induces the pragmatic semantics of the object theories: In
particular, the LF type system induces the definition of well-formedness and provability of Mizar
formulae. For the details, we refer to the MMT fragment [RK11] of OMDoc for the general
framework and to [IR11] for the formalization of Mizar in LF.

To achieve a pragmatic statement level, we make use of statement patterns, which were intro-
duced recently in MMT by Fulya Horozal and the third author. A statement pattern introduces
a new kind of statement together with concrete syntax for it. Moreover, it defines the semantics
of these statements in terms of core OMDoc. For example, standard first-order logic is defined
using three patterns for function symbols, predicate symbols, and axioms/theorems, respectively.
A pattern can have free variables, e.g., for the arity of a function symbol; and specific instances
of a pattern must provide substitutions for these free variables. To define Mizar, we need to add
several sophisticated patterns, e.g., we need a single pattern for case-based implicit function sym-
bol definitions. This way, we are able to give a formalization of the syntax and semantics of both
the object level and statement level of Mizar. 3 Effectively, we are able to recover a fragment of
OMDoc that is isomorphic to Mizar.

4.2 MMT

MMT [RK08] is A Module System For Mathematical Theories. The MMT language is designed
to be a fully formal sublanguage of the OMDoc format and focuses on foundation-independence,
scalability and modularity. The MMT ontology is presented in Fig. 1.

MMT modules are of two kinds, theories and views. MMT theories consist of symbol dec-
larations and MMT views consist of symbol assignments. Constants represent declarations
of the base language and structures represent inheritance between theories. Terms appear inside
MMT constants (e.g. as type or definition) and their grammar is motivated by the OpenMath
grammar.

The MMT System provides an API to the MMT data structures described above which is used
in our implementation. In fact this translation can be seen as an extension of MMT allowing for
using Mizar files as input in addition to OMDoc files. This is discussed in more detail in section 6

3The corresponding pragmatic theory level is ongoing work, but not needed for Mizar.

9

DocumentLevel

TheoryLevel

SymbolLevel

ObjectLevel

declared in
subconcept of
used to form

Doc

Mod

Thy

Sym

Con Str

Link V iew

Ass

ConAss StrAss

Term Morphism

Object

Figure 1: MMT Ontology

5 A Mizar Profile for OMDoc/MMT

Mizar is ontologically richer than OMDoc so we represent Mizar specific constructs by importing
an OMODoc theory which encodes the Mizar grammar. We use LF as a language for writing this
representation of the Mizar grammar and Twelf as an implementation of LF to proof check the
encoding and export it to OMDoc.

5.1 Encoding of Mizar in LF

The Edinburgh Logical Framework [HHP93] (LF) is a formal meta-language used for the formal-
ization of deductive systems. It is related to Martin-Löf type theory and the corner of the lambda
cube that extends simple type theory with dependent function types and kinds. We will work
with the Twelf [PS99] implementation of LF and its module system [RS09].

The central notion of the LF type theory is that of a signature, which is a list Σ of kinded
type family symbols a : K or typed constant symbols c : A. It is convenient to permit those to
carry optional definitions, e.g., c : A = t to define c as t. (For our purposes, it is sufficient to
assume that these abbreviations are transparent to the underlying type theory, which avoids some
technical complications. Of course, they are implemented more intelligently.)

LF contexts are lists Γ of typed variables x : A, i.e., there is no polymorphism. Relative to
a signature Σ and a context Γ, the expressions of the LF type theory are kinds K, kinded type
families A : K, and typed terms t : A. type is a special kind, and type families of kind type are
called types.

We will use the concrete syntax of Twelf to represent expressions:

• The dependent function type Πx:AB(x) is written {x : A}B x, and correspondingly for
dependent function kinds {x : A}K x. As usual we write A → B when x does not occur
free in B.

• The corresponding λ-abstraction λx:At(x) is written [x : A] t x, and correspondingly for type
families [x : A] (B x).

10

• As usual, application is written as juxtaposition.

Given two signatures %sig S = {Σ} and %sig T = {Σ′}, a signature morphism σ from S
to T is a list of assignments c := t and a := A. They are called views in Twelf and declared as
%view v : S → T = {σ}. Such a view is well-formed if

• σ contains exactly one assignment for every symbol c or a that is declared in Σ without a
definition,

• each assignment c := t assigns to the Σ-symbol c : A a Σ′-term t of type σ(A),

• each assignment a := K assigns to the Σ-symbol a : K a Σ′-type family K of type σ(K).

Here σ is the homomorphic extension of σ that maps all closed expressions over Σ to closed
expressions over Σ′, and we will write it simply as σ in the sequel. The central result about
signature morphisms (see [HST94]) is that they preserve typing and αβη-equality: Judgments
`Σ t : A imply judgments `Σ′ σ(t) : σ(A) and similarly for kinding judgments and equality.

Finally, the Twelf module system permits inclusions between signatures and views. If a sig-
nature T contains the declaration %include S, then all symbols declared in (or included into) S
are available in T via qualified names, e.g., c of S is available as S.c. Our inclusions will never
introduce name clashes, and we will write c instead of S.c for simplicity. Correspondingly, if S is
included into T , and we have a view v from S to T ′, a view from T to T ′ may include v via the
declaration %include v.

This yields the following grammar for Twelf where gray color denotes optional parts.

Toplevel G ::= · | G, %sig T = {Σ} | G, %view v : S → T = {σ}
Signatures Σ ::= · | Σ, %include S | Σ, c : A= t | Σ, a : K= t
Morphisms σ ::= · | Σ, %include v | σ, c := t | σ, a := A
Kinds K ::= type | {x : A}K
Type families A ::= a | A t | [x : A]A | {x : A}A
Terms t ::= c | t t | [x : A] t | x

We will sometimes omit the type of a bound variable if it can be inferred from the context.
Moreover, we will frequently use implicit arguments: If c is declared as c : {x : A}B and the value
of s in c s can be inferred from the context, then c may alternatively be declared as c : B (with a
free variable in B that is implicitly bound) and used as c (where the argument to c inferred). We
will also use fixity and precedence declarations in the style of Twelf to make applications more
readable.

Our representation of Mizar in LF is shown in Fig. 2. Note that the encoding presented here
is simplified and contains both the pMizarq and pHIDDENq signatures. The full encodings are
available at [?].

It introduces two types any and prop corresponding to their respective Mizar equivalents and
a type tp corresponding to Mizar types. The Mizar type set which is equivalent with any , we
encode as having type tp and we represent the equivalence through the axiom set ax .

Mizar proofs are encoded as a type family ` which is indexed by propositions. Terms p of type
` F represents proofs of F , and the inhabitation of ` F represents the provability of F . The
argument of ` does not need brackets as ` has the weakest precedence. Moreover, by convention,
the Twelf binders [] and {} always bind as far to the right as is consistent with the placement of
brackets.

Higher-order abstract syntax is used to represent binders, e.g., for T ([x : any]F x) represents
the formula ∀x : any .x is T implies F (x). Note that notions belonging exclusively to the pattern
level language are defined from constructor level symbols. For example implies is defined using
and and not while ex is defined from for and not .

Attributes are encoded using unary predicates which can be thought of as filters for the type
argument. Then, they can be clustered by simply taking the conjunction of the applied pred-
icates. Adjectives apply attributes to types giving a new type and corresponding introduction

11

%sigMizar = {
any : type

tp : type

prop : type

` : prop → type %prefix 0
is : any → tp → prop %infix 30
be : any → tp → type = [x] [t] ` x is t

true : prop
false : prop
not : prop → prop %prefix 10
and : prop → prop → prop %infix 20
implies : prop → prop → prop = not(A and (not B)) %infix 25
...
for : tp → (any → prop)→ prop
ex : tp → (any → prop)→ prop = [t] [p] not (for t ([x] not (p x)))
...
attr : tp → type = [t] (any → prop)
cluster : attr T → attr T → attr T = [a] [b] ([x] (a x) and (b x))
adj : {t : tp} attr t→ tp
adjI : {x : any}x be T → ` A x→ x be (adj T A)
adjE′ : {x : any}x be (adjective T A)→ ` x is T
adjE′ : {x : any}x be (adjective T A)→ ` A x
fraenkel : tp → (any → prop)→ (any → any)
...
set : tp
set ax : {x : any} ` x is set
...
}

Figure 2: LF Signature for Mizar

12

Parameters
Name Type Comment
τ prop the formula

Elaboration
Name Type
theorem ` τ

Figure 3: Justified Theorem Pattern

and elimination rules ensure the intended meaning is captured by the declarations. Similar in-
troduction/elimination rules exists for the other declarations but are omitted here. The Fraenkel
operator (Mizar’s version of set comprehension) is encoded to have a type, a unary predicate (the
filter) and an unary functor as arguments. Then the type (which in our encoding, as in Mizar, can
be thought of as the set of the elements of that type) is filtered with the predicate and functor is
mapped to the resulting set. As for adj , introduction and elimination rules, which we omit here,
ensure the correct meaning.

5.2 Pattern level translation

As discussed in Section 4 OMDoc has three semantic levels, Object, Symbol and Theory levels so
we need to “fit” each (processed) Mizar construct into one of these categories:

• Object level contains Mizar terms, types and formulas which are thus represented as Open-
Math expressions. Primitive Mizar types are included from the Mizar theory and can be
used as OpenMath symbols.

• Symbol level contains Mizar justified theorems, definitions, schemes, notations and registra-
tions. They are represented in OMDoc using patterns.

• Theory level is only used for Mizar Articles. Since in Mizar the ontological separation of
documents and theories is not explicitly made we represent a Mizar article ϑ as a OMDoc
document ϑ containing a single OMDoc theory ϑ which in turn contains the content of the
article.

While non-trivial, the object level translation is reasonably straightforward and the few tech-
nicalities are discussed in Section 6. The Symbol level is more challenging because many Mizar
constructs have no direct equivalent in OMDoc/MMT. So, in order to translate them we use pat-
terns as a meta-language feature which allows for the declaration in OMDoc of Mizar language
features. Then, the actual definitions, theorems, schemes, notations or registrations that appear
in Mizar articles are represented in OMDoc as instances of their respective pattern.

The pattern declarations we used are described below.

5.3 Justified Theorems

In Mizar justified theorems contain a proposition and a proof of that proposition. Since we are
not translating proofs (yet) we need only translate the proposition (formula) which results into
a MMT Term (object level). So in the OMDoc Mizar article justified theorem is a Pattern that
takes a Term (the translation of the Mizar formula) as an argument and expands to a OMDoc
constant having a deduction of that proposition as a type and no definition (proof).

5.4 Definitions

There are several types of definitions in Mizar which results to a large number of Patterns in the
OMDoc Mizar Article containing the Mizar Primitives.

13

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
τ tp return type
m int number of cases
~c (anyn → prop)m cases
~r (anyn → any)m corresponding results
d anyn → any default result

Elaboration
Name Type

func
[
any

]n
i=1
→ any

rtype Π~x:anyn

[
xi is ti

]n
i=1
→ func(~x) is rt

means Π~x:anyn

[
xi is ti

]n
i=1
→

`
∧[

ci(~x)⇒ (func(~x) = ri(~x))
]m
i=1
∧ (
∧[
¬c(~x)

]m
i=1
⇒ (func(~x) = d(~x)))

Figure 4: Direct Partial Functor Definition Pattern

Firstly, definitions may be direct [4,6,8,9,12,14] or indirect [5,7,10,11,13,15] depending whether
they use a term or formula to introduce the definiendum. Also, they may be complete [6,7,9,11,14,15]
or partial [4,5,8,10,12,13] depending on whether the cases of the definition span the universe or
whether a default case is required. Finally, they may be functor [4,5,6,7] predicate [8,9], at-
tribute [10,11], mode [12,13,14,15] or structure [16] definitions. See section 3 for Mizar examples
of each definition.

Note that there are also redefinitions which add a different meaning to a previous extant
definition and they are also classified by the above characteristics.

Note that the types (for arguments and the return type) are actually dependently typed, each
of them (possibly) depending on any (or all) of the arguments declared before. However, for the
sake of simplicity and readability we omit this here and we assume argument types have the type
tp rather that anyk → tp. We use ~t as a notation for a sequence and ti for the ith element of the

sequence. Similarly we use
[
· · ·
]l
i=k

for iterating through the elements of a sequence from k to l.
Since we often have sequences as parameters we consider some operators (e.g. →) to be flexory.
Also, we use

∨
~t and

∧
~t for the disjunction/conjunction of all elements in a sequence. These are

just notational technicalities as in practice any operator with flexory arity can be replaced by a
flexory number of fixed arity operators.

Functor Definitions can be both direct and indirect as well as both partial and complete leading
to four patterns for functor definitions The parameters are the arguments and return type for the
functor itself, the cases and corresponding results and (for partial definitions only) the default
result. The elaboration consists of the actual functor (func), a statement fixing the proper return
type of the functor (rtype) and another statement giving the meaning of the functor (means).
Additionally, for complete definitions, a statement that the cases cover the entire space (and thus
a default result is not necessary) is added (completeness).

14

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
τ tp return type
m int number of cases
~c (anyn → prop)m cases
~r (anyn+1 → prop)m corresponding results
d anyn+1 → prop default result

Elaboration
Name Type

func
[
set
]n
i=1
→ set

rtype Π~x:anyn

[
xi is ti

]n
i=1
→ func(~x) is rt

means Π~x:anyn

[
xi is ti

]n
i=1
→

`
∧[

ci(~x)⇒ ri(~x, func(~x))
]m
i=1
∧ (
∧[
¬ci(~x)

]m
i=1
⇒ d(~x, func(~x)))

Figure 5: Indirect Partial Functor Definition Pattern

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
τ tp return type
m int number of cases
~c (anyn → prop)m cases
~r (anyn → any)m corresponding results

Elaboration
Name Type

func
[
any

]n
i=1
→ any

rtype Π~x:anyn

[
xi is ti

]n
i=1
→ func(~x) is rt

means Π~x:anyn

[
xi is ti

]n
i=1
→ `

∧[
ci(~x)⇒ (func(~x) = ri(~x))

]m
i=1

completeness Π~x:anyn

[
xi is ti

]n
i=1
→ `

∨[
ci(~x)

]m
i=1

Figure 6: Direct Complete Functor Definition Pattern

15

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
τ tp return type
m int number of cases
~c (anyn → prop)m cases
~r (anyn+1 → prop)m corresponding results

Elaboration
Name Type

func
[
set
]n
i=1
→ set

rtype Π~x:anyn

[
xi is ti

]n
i=1
→ func(~x) is rt

means Π~x:anyn

[
xi is ti

]n
i=1
→ `

∧[
ci(~x)⇒ ri(~x, func(~x))

]m
i=1

completeness Π~x:anyn

[
xi is ti

]n
i=1
→ `

∨[
ci(~x)

]m
i=1

Figure 7: Indirect Complete Functor Definition Pattern

16

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of cases
~c (setn → prop)m cases
~r (setn → prop)m corresponding results
d anyn → prop default result

Elaboration
Name Type
pred anyn → prop

means Π~x:anyn

[
xj is tj

]n
j=1
→

`
∧[

ci(~x)⇒ pred(~x)⇔ ri(~x)
]m
i=1
∧ (
∧[
¬~ci(~x)

]m
i=1
⇒ (pred(~x)⇔ d(~x)))

Figure 8: Direct Partial Predicate Definition Pattern

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of cases
~c (setn → prop)m cases
~r (setn → prop)m corresponding results

Elaboration
Name Type
pred anyn → prop

means Π~x:anyn

[
xj is tj

]n
j=1
→

`
∧[

ci(~x)⇒ pred(~x)⇔ ri(~x)
]m
i=1
∧ (
∧[
¬~ci(~x)

]m
i=1
⇒ (pred(~x)⇔ d(~x)))

completeness Π~x:anyn

[
xi is ti

]n
i=1
→ `

∨[
ci(~x)

]m
i=1

Figure 9: Direct Complete Predicate Definition Pattern

Predicate Definitions are always direct as they can only be defined using a formula which
directly gives the result of the predicate. Thus, there are two patterns, for partial and complete
predicate definitions which are given below.

17

Parameters
Name Type Comment
n int number of arguments
~t tpn definition argument types
τ anyn → tp mother type
m int number of cases
~c (anyn → prop)m cases
~r (anyn+1 → prop)m corresponding results
d anyn+1 → prop default result

Elaboration
Name Type
attr Π~x:anyn(τ(~x)→ prop)
mtype Π~x:anynΠ

~p:
[
xi is ti

]n
i=1

→ ∀y.y is (adj ~τ (attr ~x ~p))⇒ y is τ(~x)

means Π~x:anynΠ
~p:
[
xi is ti

]n
i=1

→ `
∧[

ci(~x)⇒ ∀y.(y is (adj ~τ (attr ~x ~p))⇔ ri(~x, y))
]m
i=1
∧

(
∧[
¬ci(~x)

]m
i=1
⇒ ∀y.(y is (adj ~τ (attr ~x ~p))⇔ d(~x, y)))

Figure 10: Indirect Partial Attribute Definition Pattern

Attribute Definitions are always indirect as their meaning is always given as a formula and not
by abbreviation. This generates two patterns, for indirect complete and indirect partial attribute
definition. Note that the attribute itself only has one argument that is typed by the mother type
of the attribute and to which the attribute is applied. However, the mother type itself can be
dependently typed (e.g. Element of X) so the arguments are exclusively used for the mother type.

Mode Definitions may be direct or indirect, complete or partial so there are four patterns.
Modes define new types by applying attributes (or clusters of attributes) to an existing type
(direct) or by giving the meaning as a formula (indirect). The patterns are presented below.

Structure Definitions in Mizar’s pattern language act as syntactic sugar since internally they
expand to several constructors. Internally, for each structure definitions, the Mizar processor
generates a structure type, a structure constructor and a finite sequence of selectors, one for each
structure field. Since the constructor number is variable (depending on the number of fields) we
represent structures by a family of patterns, with each having a fixed number of fields. Then a
structure definition becomes an instance of the corresponding pattern, depending its number of
fields. Also, note that in the structure pattern presented in Fig. 16, struct , aggr and sel also
have definitions based on list constructors and selectors defined in the Mizar LF article. We omit
these here but we mention that Mizar selectors act as projection operations over structures and the
natural projection properties needed for adequacy (πi(

[
x1, · · · , xn

]
) = xi and

[
π1(s), · · · , πn(s)

]
=

s) are inherited from those of lists.

5.5 Schemes

Scheme patterns have as parameters a list of arguments, a list of premises and a proposition.
Then, the elaboration states that given the premises the scheme proposition holds.

5.6 Notation

There are two patterns for Notations, one for Antonymic Notation and one of Synonymic notation.

5.7 Registrations

One can create new types by applying attributes (or clusters of attributes) to an existing type.
However, in Mizar, types must be non-empty so before attributes can be used a proof of non-

18

Parameters
Name Type Comment
n int number of arguments
~t tpn definition argument types
τ anyn → tp mother type
m int number of cases
~c (anyn → prop)m cases
~r (anyn+1 → prop)m corresponding results

Elaboration
Name Type
attr Π~x:anyn(τ(~x)→ prop)
mtype Π~x:anynΠ

~p:
[
xi is ti

]n
i=1

→ ∀y.y is (adj ~τ (attr ~x ~p))⇒ y is τ(~x)

means Π~x:anynΠ
~p:
[
xi is ti

]n
i=1

→ `
∧[

ci(~x)⇒ ∀y.(y is (adj ~τ (attr ~x ~p))⇔ ri(~x, y))
]m
i=1

completeness Π~x:anyn

[
xi is ti

]n
i=1
→ `

∨[
ci(~x)

]m
i=1

Figure 11: Indirect Complete Attribute Definition Pattern

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of cases
~c (setn → prop)m cases
~r (setn → tp)m corresponding results
d anyn → tp default result

Elaboration
Name Type
mode anyn → tp

means Π~x:anyn

[
xj is tj

]n
j=1
→

`
∧[

ci(~x)⇒ mode(~x) = ri(~x)
]m
i=1
∧ (
∧[
¬ci(~x)

]m
i=1
⇒ (mode(~x) = d(~x)))

Figure 12: Direct Partial Mode Definition Pattern

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of cases
~c (setn → prop)m cases
~r (setn+1 → prop)m corresponding results
d anyn+1 → prop default result

Elaboration
Name Type
mode anyn → tp

means Π~x:anyn

[
xj is tj

]n
j=1
→

`
∧[

ci(~x)⇒ ri(~x,mode(~x))
]m
i=1
∧ (
∧[
¬ci(~x)

]m
i=1
⇒ d(~x,mode(~x)))

Figure 13: Indirect Partial Mode Definition Pattern

19

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of cases
~c (setn → prop)m cases
~r (setn → tp)m corresponding results

Elaboration
Name Type
mode anyn → tp

means Π~x:anyn

[
xj is tj

]n
j=1
→ `

∧[
ci(~x)⇒ mode(~x) = ri(~x)

]m
i=1

completeness Π~x:anyn

[
xi is ti

]n
i=1
→ `

∨[
ci(~x)

]m
i=1

Figure 14: Direct Complete Mode Definition Pattern

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of cases
~c (setn → prop)m cases
~r (setn+1 → prop)m corresponding results

Elaboration
Name Type
mode anyn → tp

means Π~x:anyn

[
xj is tj

]n
j=1
→ `

∧[
ci(~x)⇒ ri(~x,mode(~x))

]m
i=1

completeness Π~x:anyn

[
xi is ti

]n
i=1
→ `

∨[
ci(~x)

]m
i=1

Figure 15: Indirect Complete Mode Definition Pattern

20

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
τ1 anyn → tp type of field 1
...

...
...

τm anyn → tp type of field m

Elaboration
Name Type
struct anyn → tp

aggr Π~x:anyn

[
xi is ti

]n
i=1
→ Πf1 :any (f1 is τ1)→ · · · → Πfm:any (fm is τm)→ any

aggr prop Π~x:anynΠ
~p:
[
xi is ti

]n
i=1

Πf1 :anyΠρ1 :(f1 is τ1) · · · Πfm:anyΠρm:(fm is τm)

→ (aggr ~x ~p f1 ρ1 · · · fm ρm) is struct
υ1 Π~x:anynΠ

~p:
[
xi is ti

]n
i=1

→ struct(~x)→ any

υ1 prop Π~x:anynΠ
~p:
[
xi is ti

]n
i=1

Πs:struct(~x) → υ1 (~x, ~p, s) is τ1

...
...

υm Π~x:anynΠ
~p:
[
xi is ti

]n
i=1

→ struct(~x)→ any

υm prop Π~x:anynΠ
~p:
[
xi is ti

]n
i=1

Πs:struct(~x) → υ1 (~x, ~p, s) is τm

where m is the number of fields

Figure 16: Structure Definition Pattern

Parameters
Name Type Comment
n int number of arguments
~t tpn argument types
m int number of assumptions
~a (setn → prop)m assumptions
p setn → prop scheme proposition

Elaboration
Name Type

scheme Π~x:anyn

[
xi is ti

]n
i=1
→ `

∧[
ai(~x)

]m
i=1
→ ` p(~x)

Figure 17: Scheme Pattern

Parameters
Name Type Description
n int number of arguments
~t tpn argument types
ν anyn → prop the construct being denoted

Elaboration
Name Type Definition

notation Π~x:anyn

[
xi is ti

]n
i=1
→ prop Λ~x Λ~p ν(~x)

Figure 18: The Synonymic Notation Pattern

21

Parameters
Name Type Description
n int number of arguments
~t tpn argument types
ν anyn → prop the construct being denoted

Elaboration
Name Type Definition

notation Π~x:anyn

[
xi is ti

]n
i=1
→ prop Λ~x Λ~p ¬ν(~x)

Figure 19: The Antonymic Notation Pattern

Parameters
Name Type Description
~n int number of arguments
~t tpn argument types
τ anyn → tp applicable type
m int number of attributes
~a anyn+1 → prop

m
attributes to be clustered

Elaboration
Name Type

registration Π~x:anyn

[
xi is ti

]n
i=1
` ∃x.x is (

[
ai(~x)

]n
i=1

@ τ)

Figure 20: The Registration Pattern

emptiness is required. Similarly, when one clusters several attributes, one must prove that their
intersection is non-empty in order to register that cluster of attributes as valid. We use the
(flexory) notation @ for applying attributes to a type.

6 Translation

The source files for the translation are (some of) the output files of the Mizar processor after some
XSLT post-processing [Urb05].

The translation begins by loading the article imports from the .sgl file, then the notational and
presentation information are read from the .idx, .dcx and .frx files and stored in a dictionary..
Finally, the content file (with the constructor language representation of the article) is parsed
and translated, with notations and presentation information being looked up in the dictionary
whenever necessary.

Note that we use the absolute XML files where inter-article dependencies are resolved and

File Comment
.xml contains the constructor language version of the article (encoded as xml)
.absxml same as .xml but with absolute paths resolved by XSLT post-processing
.sgl contains the names of the articles imported by the current article
.idx contains names for the variables that occur in the article
.dcx contains symbol names (for functors, predicates, etc..)
.frx contains extra presentational information such as the number of left and right argu-

ments for functors or predicates

Figure 21: Source Files Used

22

marked. For example, the description of the basic Mizar type set as generated by the system is:

<Typ kind="M" nr="1">

<Cluster/>

</Typ>

Then, the XSLT processing we have:

<Typ kind="M" nr="1" aid="HIDDEN" absnr="1">

<Cluster/>

</Typ>

so we know it refers to the first mode definition in article HIDDEN.
The translation process consists of two steps, the parser and the translator:

• The Mizar parser is responsible for organizing the output of the Mizar compiler (together
with the output of the XSLT Post-processor) into coherent data structures that correspond
as much as possible to the Mizar pattern-level language. During relevant information is
extracted from the processed Mizar files and stored into Scala classes. Because the internal
structure of Mizar is much different from the of OMDoc the extracting of information is
sometimes tricky, as information the correspond to one “entity” in the Mizar pattern-level
language are sometimes stored in different files or different parts of the same file. The main
task of the parser is to gather this information and construct a level where as much of the
pattern-level language as possible is recovered. The parser contains a Parsing Controller
which acts as a state machine and directs the parsing. The parsing controller first loads
notation and presentation information from auxiliary Mizar output files and stores them in
a dictionary which is then used for lookup during the translation. Following the processing
done by the parser we get a Mizar Article containing a List of Mizar Elements, which may
be Definitions, Registrations, Notations, Schemes or Justified Theorems.

• Then, the translator, in turn, processes the Mizar Article and creates an MMT Article
by translating each element (and if necessary recursing into it). As described in section 5
each top level Mizar element is translated into an instance (or more for structures) while
Mizar propositions, terms and types are translated into MMT terms. In the translation
step, the Mizar Scala classes are processed into MMT classes so the the MMT API can
then be used to generate and/or manipulate the OMDoc files. The Translation Controller
directs the flow of the translator and is responsible for looking up names and notations as
well as keeping track of variable scopes. This is necessary because Mizar uses de Bruijn
indexes internally for bound variables while OMDoc uses named variables and the translator
must be aware of scopes to translate adequately. The translation step must be made as
transparently as possible so to preserve adequacy. The MMT Checker is able to check the
validity of MMT/OMDoc documents but one must further ensure that the content of the
translated documents is preserved and that the result library encodes the same mathematical
information as the MML.

The architecture of the system is described if Fig. 22.
Since there are many primitives in Mizar the packages are split into files which represent

particular parts of the Mizar schema. These parts are split in such a way as to be consistent
throughout the translation so that each package has the same distribution.

• Article contains the Article and the top level classes (DefinitionBlock, JustifiedTheo-
rem, NotationBlock, etc.)

• Definition handles the processing of Definitions, regardless of kind .

• Proposition includes Proposition and Formula and thus will deal with parsing and trans-
lating formulas

23

Mizar.objects

Mizar.reader Mizar.translator

MMT.objects

XML OMDoc

Figure 22: System Architecture

Article

Definition Proposition

Type/Term

Reasoning Reasoning

Figure 23: Data Structures Architecture

• Type/Term handles parsing Types and Terms and thus also deals with resolving variables
with respect to binders

• Reasoning deals with the assumptions needed by the definitions

• Scheme/Reg covers Schemes and Registrations

The dependencies of these elements are described in Fig. 23
Overall, translator consists of 88 Scala classes and 47 Scala objects, which are available at

https://svn.kwarc.info/repos/MMT/src/mmt-mizar.
The entire workflow for generating the OMDoc files consists of 4 steps.

1. Mizar is run over the whole library transforming miz input files to xml. This represents the
state before the work presented here.

2. Our translator reads all xml files (in dependency order) and parses them into custom Scala
classes that model the constructor level Mizar language.

3. The translator then translates each article into Scala classes for OMDoc. The latter are part
of the MMT tool, which serializes them as omdoc files. At this point the Mizar-specific part
of the translation is over.

4. The generic algorithms in the MMT tool elaborate the pragmatic OMDoc to core OMDoc.

Running the steps 2-4 of the pipeline on all 1129 files of the MML takes 41:40 minutes using a
Intel Core i5-2410M Processor and 4GB of RAM. A fine grained breakdown is given in the table
below.

Format Total file size (raw/zipped) Generation time
Mizar source 77.5 MB / 13.5 MB —
Mizar XML 8.6 GB / 425.0 MB —
pragmatic OMDoc 894.8 MB / 22.7 MB 29:46 min
core OMDoc 1015.3 MB / 25.3 MB 11:54 min

24

https://svn.kwarc.info/repos/MMT/src/mmt-mizar

The resulting files are available at https://tntbase.mathweb.org/repos/oaff/mml/

7 Conclusion

In this report we have described a translation of the Mizar mathematical language to the OMDoc
format. At the same time, this may be considered as one step towards translating all the major
libraries of formalized mathematics into one format so that we can achieve seamless integration
between all such libraries.

Currently, the Mizar to OMDoc translation does not cover proofs in the Mizar library (arguably
one of the most important parts), and we are planning to extend the coverage soon.4 To the extent
that Mizar can export proofs, this will be straightforward using our existing formalization of Mizar’s
inference rules in LF. The OMizar format currently only exists at the data structure level in the
MMT system. We also want to give it an XML syntax, so that it can be used as a more accessible
representation format for Mizar– and thus interoperability and/or storage format. We hope that
this will also inform us in the endeavor of creating a truly universal pragmatic level of the OMDoc
format.

References

[Ban03] Grzegorz Bancerek. On the structure of Mizar types. Electronic Notes in Theoretical
Computer Science, 85(7), 2003.

[Ban06a] Grzegorz Bancerek. Automatic translation if Formalized Mathematics. Mechanized
Mathematics and Its Applications, 5(2):19–31, 2006.

[Ban06b] Grzegorz Bancerek. Information retrieval and rendering with MML Query. In Jon Bor-
wein and William M. Farmer, editors, Mathematical Knowledge Management (MKM),
number 4108 in LNAI, pages 266–279. Springer Verlag, 2006.

[BK07] Grzegorz Bancerek and Michael Kohlhase. Towards a Mizar Mathematical Library in
OMDoc format. In R. Matuszewski and A. Zalewska, editors, From Insight to Proof:
Festschrift in Honour of Andrzej Trybulec, volume 10 of Studies in Logic, Grammar and
Rhetoric, pages 265–275. University of Bia lystok, 2007.

[DW97] Ingo Dahn and Christoph Wernhard. First order proof problems extracted from an
article in the mizar mathematical library. In Ulrich Furbach and Maria Paola Bonacina,
editors, Proceedings of the International Workshop on First order Theorem Proving,
number 97-50 in RISC-Linz Report Series, pages 58–62. Johannes Kepler Universität
Linz, 1997.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, 1993.

[HST94] R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic representa-
tions. Annals of Pure and Applied Logic, 67:113–160, 1994.

[IR11] M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathematical Struc-
tures in Computer Science, 21(4):883–911, 2011.

[JFM] Journal of formalized mathematics.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathematical documents
[Version 1.2]. Number 4180 in LNAI. Springer Verlag, August 2006.

4Note that handling of proofs has been typically delayed to the second phase in similar Mizar exporting projects
like MPTP and MML Query, because a lot of useful functionality can be developed already without proofs.

25

https://tntbase.mathweb.org/repos/oaff/mml/

[KRZ10] Michael Kohlhase, Florian Rabe, and Vyacheslav Zholudev. Towards MKM in the
large: Modular representation and scalable software architecture. In Serge Autexier,
Jacques Calmet, David Delahaye, Patrick D. F. Ion, Laurence Rideau, Renaud Rioboo,
and Alan P. Sexton, editors, Intelligent Computer Mathematics, number 6167 in LNAI.
Springer Verlag, 2010.

[PS99] F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical framework
for deductive systems. Lecture Notes in Computer Science, 1632:202–206, 1999.

[RK08] F. Rabe and M. Kohlhase. An Exchange Format for Modular Knowledge. In G. Sutcliffe,
P. Rudnicki, R. Schmidt, B. Konev, and S. Schulz, editors, Proceedings of the LPAR
Workshops on Knowledge Exchange: Automated Provers and Proof Assistants, and The
7th International Workshop on the Implementation of Logics, volume 418 of CEUR
Workshop Proceedings, pages 50–68. CEUR-WS.org, 2008.

[RK11] Florian Rabe and Michael Kohlhase. A scalable module system. Manuscript, submitted
to Information & Computation, 2011.

[RS09] F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Cheney and
A. Felty, editors, Proceedings of the Workshop on Logical Frameworks: Meta-Theory and
Practice (LFMTP), volume LFMTP’09 of ACM International Conference Proceeding
Series, pages 40–48. ACM Press, 2009.

[TB85] A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi,
editor, Proceedings of the 9th International Joint Conference on Artificial Intelligence,
pages 26–28, 1985.

[TR99] Andrej Trybulec and Piotr Rudnicki. On equivalents of well-foundedness. Journal of
Automated Reasoning, 23(3-4):197–234, 1999.

[Try90] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[Urb05] Josef Urban. XML-izing Mizar: making semantic processing and pre-
sentation of MML easy. submitted to MKM 2005, available online at
http://ktiml.mff.cuni.cz/∼urban/mizxml.ps, 2005.

[Urb06a] Josef Urban. Mptp 0.2: Design, implementation, and initial experiments. J. Autom.
Reasoning, 37(1-2):21–43, 2006.

[Urb06b] Josef Urban. XML-izing Mizar: making semantic processing and presentation of MML
easy. In Michael Kohlhase, editor, Mathematical Knowledge Management, MKM’05,
number 3863 in LNAI, pages 346 – 360. Springer Verlag, 2006.

[US08] Josef Urban and Geoff Sutcliffe. Atp-based cross-verification of mizar proofs: Method,
systems, and first experiments. Mathematics in Computer Science, 2(2):231–251, 2008.

[Wie99] Freek Wiedijk. Mizar: An impression, 1999.

26

	1 Introduction
	2 Related Work
	3 Mizar
	3.1 Preliminaries
	3.2 Justified Theorems
	3.3 Function Definitions
	3.4 Predicate Definitions
	3.5 Attribute Definitions
	3.6 Mode Definitions
	3.7 Structure Definitions
	3.8 Review of Definitions
	3.9 Schemes
	3.10 Notations
	3.11 Clusters and Registrations

	4 Representing Mathematics in OMDoc/MMT
	4.1 OMDoc
	4.2 MMT

	5 A Mizar Profile for OMDoc/MMT
	5.1 Encoding of Mizar in LF
	5.2 Pattern level translation
	5.3 Justified Theorems
	5.4 Definitions
	5.5 Schemes
	5.6 Notation
	5.7 Registrations

	6 Translation
	7 Conclusion

