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The Potential of Answer Classes in Large-scale Written
Computer-Science Exams

Dominic Lohr1, Marc Berges2, Michael Kohlhase 3, Florian Rabe4

Abstract: Students’ answers to tasks provide a valuable source of information in teaching as they
result from applying cognitive processes to a learning content addressed in the task. Due to steadily
increasing course sizes, analyzing student answers is frequently the only means of obtaining evidence
about student performance. However, in many cases, resources are limited, and when evaluating
exams, the focus is solely on identifying correct or incorrect answers. This overlooks the value of
analyzing incorrect answers, which can help improve teaching strategies or identify misconceptions to
be addressed in the next cohort.

In teacher training for secondary education, assessment guidelines are mandatory for every exam,
including anticipated errors and misconceptions. We applied this concept to a university exam with
462 students and 41 tasks. For each task, the instructors developed answer classes – classes of expected
responses, to which student answers were mapped during the exam correction process. The experiment
resulted in a shift in mindset among the tutors and instructors responsible for the course: after initially
having great reservations about whether the significant additional effort would yield an appropriate
benefit, the procedure was subsequently found to be extremely valuable.
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1 Introduction

A reliable and fair assessment of exam assignments is a basic requirement for professional
teaching. Especially in large-scale written exams, resources are limited, and high-quality
assessment of submissions is challenging for educators. Inconsistencies in correction are
possible when multiple people correct the same assignment. The feedback provided to
students is very basic at best and often only provided in the form of scoring.

To support the correction process to make it fairer and more objective, in secondary education
and higher education, marking schemes respectively rubrics [AP11] are mandatory when
creating assignments – especially exams. The advantage is reduced required corrections and
more objective task evaluation options. In addition to the model solution, rubrics contain
alternative solutions and a list of possible incorrect answers. This led us to the concept of
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answer classes – groups of answers that share the same underlying idea. The intelligent
clustering of possible solutions into answer classes holds several great potentials for modern
teaching – especially when dealing with so many learners that individual face-to-face
support is impossible.

To investigate the potential of answer classes in large-scale written computer science exams,
we developed a process model that we evaluated in the first iteration of an exam for an
Artificial Intelligence major program that 462 students took. Following the process model,
192 answer classes were developed for 41 tasks. In the sequel, we present a detailed analysis
of five tasks aimed at identifying the specific (possible) causes of incorrect answers and
feeding those back into next year’s teaching process. The results demonstrate the efficacy of
answer classes in creating rubrics for large courses and highlight their significant potential
for enhancing instructional materials, improving the fairness of correction, and developing
adaptive feedback.

A completely unexpected consequence was that the experiment resulted in a paradigm shift
among the tutors and instructors responsible for the course, who – in a university setting –
were not accustomed to rubric practices in secondary education. Despite initial reservations
regarding the additional effort required, the procedure was ultimately deemed valuable and
worthy of undertaking in every future exam.

2 Related Work

Classifying answers in examinations or tasks, in general, is an essential but tedious part of
correcting and rating written exams. It is no surprise that the advent of computers has led to
efforts to automate that.
Auto-grading systems and feedback generation often refer to a set of rules defined by
the author of the task. For instance, this is often done in programming using static and
dynamic code analysis, as seen in the system JACK, which uses a query language in XML
to specify test cases and code structures relevant for grading [St16]. JACK handles diverse
tasks like UML modeling and fill-in-the-gap assignments. For complex programming
tasks, many e-assessment systems detect errors by executing test cases and analyzing
source code [Ih10, SS22]. Automated grading matches human performance [GDG14], with
fine-grained feedback being effective [Fa14]. In contrast, Course Master by Higgins et
al. integrates marking schemes, separating exercises and grading logic as Java classes,
enabling parametrized tasks, marks (grades), and feedback [HST02]. Lawrence et al. explore
performance-based grading, crucial for e-learning and remote exams [LFU23].

Answer Clustering/Classification A different approach to classifying student answers
is conducted by Zehetmeier et al. [Ze15]. They analyzed student submissions to identify
and cluster errors and quantified significant groups to uncover the causes of errors. The
researchers also observed the students while programming, interviewed them about their
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errors at crucial stages, and used the results to create teaching materials and tasks to prevent
similar misconceptions. Nabil et al.’s EvalSeer uses machine learning for classifying answers
and proposes syntax fixes with an appropriate accuracy [Na21]. While many studies focus
on programming tasks due to their complexity, there are other complex tasks in computer
science, such as marking up UML database diagrams [FUL22].

3 Theoretical Background

Fig. 1: The Y-model

Answer classes are one of the four components of the
Y-Model [Lo23] – a model for formalizing tasks in
Computer Science (see Figure 1). The model forms a
basis for a competence-oriented integration of tasks
in adaptive educational systems.

The concept of answer classes enables a selection
process of tasks based on prior knowledge and com-
petency goals, as well as depending on answers given
by students from previous tasks. In addition, specific
error patterns, such as those proposed by Zehetmeier
et al. [Ze15], or Berges et al. [Be16], can be inte-
grated into answer classes and, for instance, infer
possible causes of errors by referring to a correspond-
ing learner model. In addition, answer classes can
act as keys for specifying feedback or hints on how to
proceed. We review the essentials for the discussion.

Answer classes (ACs) can be understood as a set-theoretic propositional form. Each
answer class contains an identifier 𝐴𝐶𝑥 (unique to the task) and a (precise) description
(ACD) of the criteria when a given answer is assigned to this AC. Each answer 𝑅 to a task
can be assigned to one (or more) ACs. For the AC to be reliably annotated by any educator,
the ACD must be unambiguous (free of interpretation) and objectively observable. ACs are
notably not free of intersections, and answers can be a member of several different ACs.

A general distinction is made between context-independent (applicable to any task) answer
classes and context-dependent (related to a specific type of task or subject area). Examples
of the former are provided by AC1 = {𝑅 | 𝑅 is empty}, which contains all responses that
have not been processed, and AC2 = {𝑅 | 𝑅 is crossed out}, which contains answers that
have been written but crossed out. In terms of scoring, these two answer classes have the
same effect, but in the course of a didactic evaluation, it makes a difference whether a
task was not worked on or was attempted. The criteria of task-specific ACs depend on the
knowledge dimension or task.
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4 The Potential of answer classes

Developing and implementing answer classes requires extra work for educators, but there
are also possible benefits. To evaluate the potential of ACs, we first define criteria based on
the benefits of marking schemes or rubrics from different sources (e.g., [WS07], [RA10]):

ST Save time Conventional correction process, involving marginal notes and closing
comments, can be time-consuming. ACs alleviate the need for these annotations,
potentially making the correction process more efficient.

BF Better feedback In most cases, the lack of time during corrections leads to the omission
of valuable feedback. However, developing feedback for each answer class must only
be done once (or for their combinations) and can be effortlessly provided as a table.

MOC More objective correction Multiple educators correct the same task in large courses,
leading to disparate results due to varying personal interpretations. Answer classes
offer a set of precisely defined, objectively observable criteria, enhancing the reliability
of the correction process.

BPE Better pre-estimation Addressing potential student errors in advance helps to ensure
that exam tasks are appropriate and error-free.

IIT Incentives to improve teaching The annotation of answers with ACs allows for a
higher quality evaluation of exam results, providing valuable insights for teaching
improvement. Prevalent error classes can indicate particular areas in the teaching
material that must be revised to avoid misconceptions.

Of course, all of these benefits invite and profit from automation. As a prerequisite, we have
devised a process model to systematically develop and apply the concept of ACs to evaluate
their effectiveness. The model and the results from an initial pilot are presented in this paper.

5 Methodology

To investigate the potential categories stated in section 4, we devised an iterative process
model to develop and apply the answer classes concept systematically (Figure 2).

Upon creation of the exam, the instructors were introduced to the concept of answer classes
as detailed in Section 3. To begin with, a preliminary set of task-specific answer classes was
created based on prior experience with similar tasks (Step 1).

Subsequently, we discussed the initial answer classes for each task in a plenary session
(Step 2). For this purpose, the instructors presented the tasks and the first draft of the set of
answer classes to the group. During this session, all stakeholders checked that the answer
classes were objectively observable and free of subjectivity or ambiguity.
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Fig. 2: Iterative Process of AC-Creation

Considering that the exam was administered as a paper-based test, we developed an AC
mapping form to facilitate the mapping process of students’ submissions to corresponding
answer classes (Step 3). The list contained – besides the students’ IDs – a table with all the
identifiers of the ACs for each task.

Based on a descriptive analysis of the results in Step 3, we selected ACs with frequent
occurrences and further scrutinized them in Step 4. Here we analyzed sample exams of the
respective AC and identified possible underlying factors that led the student to that answer.

The outcomes of Step 4 informed the development of feedback for each answer class. The
development of AC identifiers for automated annotation of submissions with their respective
AC can be incorporated in this step but was left as future work.

If exam task types are reused in later exams, this process is iterative: the revised set of
answer classes after Step 3 serves as the initial set in Step 1 of the subsequent iteration.

6 Results

The procedures outlined in section 5 were initially tested in an exam for the course Artificial
Intelligence 1. Of the 502 registered students, 462 participated in the written exam (90
minutes, conducted in presence). The majority of the students were pursuing their master’s
degree in Data Science (225), Artificial Intelligence (118), and Computer Science (69). The
exam consisted of 12 problems, encompassing 41 distinct tasks. Steps 1 to 3 were done for
all 41 tasks. A total of four common and 192 initial answer classes were developed. Since
steps 4 and 5 were more time-intensive, we selected one problem (containing five tasks) and
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executed these steps. The selected problem focused on searching in a directed graph with
edge costs and node heuristics. The concrete objective was to apply five different search
algorithms (e.g., 𝐴∗-Search, Greedy-Search, ...) starting from an already expanded node
and to give the subsequent four visited nodes (for a full problem description, see Figure 4 in
Appendix). This section describes the application of steps 1-5 to this problem.

ID Answer Class
AC1 {𝑅 | 𝑅 is empty}
AC2 {𝑅 | 𝑅 is crossed out}
AC3 {𝑅 | 𝑅 is fully correct}
AC4 {𝑅 | no suitable AC known}
AC5 {𝑅 | the first node of R is correct}
AC6 {𝑅 | the second node of R is correct }
AC7 {𝑅 | the third node of R is correct}
AC8 {𝑅 | the fourth node of R is correct}
Tab. 1: List of Initial ACs for Problem 2.1 (Step 2)

Table 1 shows the initial set of ACs.
𝐴𝐶1 to 𝐴𝐶4 are the task-unspecific
classes that are the same for all tasks.
Since the tasks differ only in the search
algorithm to be applied, the initially
conceived task-specific answer classes
𝐴𝐶5 to 𝐴𝐶8 were also the same.

It turned out that these initial ACs were
not very helpful for further analysis of
the answers because the information
was limited. They were useful only
in correction since it was possible to
determine the exact score from the
combination of ACs assigned to an answer. However, the feedback that could be generated
from this was only very simple. For this reason, in addition to the AC-mapping process
(Step 3), various answers were recorded in a table via frequency analysis to find an improved
set of new answer classes for these tasks.

Fig. 3: Frequency analysis of given answers to the tasks

The basic assumption of this study was that (incorrect) answers given identically by a large
number of students could represent an identical or similar error pattern and thus provide
justification for further investigation. Figure 3 shows the results of the frequency-analysis.
In addition to the group of correct answers (first line, 𝐴𝐶3), we found many other relevant
clusters of answers that represent potential ACs. Limited resources were available for
further evaluation, so we studied only the largest five groups per task in a group session
with experienced educators to identify possible causes of the errors.
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The groups for which objectively observable criteria could be found were included as
new answer classes (see Table 2 for an excerpt of these). For example, although the task
description clearly states that the start node should not be included in the list of visited
nodes, some of the submissions showed it as the first node visited (AC10). Also, some of the
nodes already visited were re-added to the list of visited nodes (AC11).

While these examples are probably based on a careless reading of the task description, we
also found ACs that indicate deeper technical errors. Most ACs that emerged in the second
iteration were much more focused on the causes of the answers given and made it possible to
develop valuable feedback. In task 4 (greedy search), there was a significantly large number
of submissions (89 out of 462) that had the same error pattern: the detailed analysis revealed
that this error pattern occurs when the greedy search algorithm is misapplied, namely by
always selecting a neighbor of the last selected node instead of the overall cheapest node
(AC30). For the largest group of errors in 𝐴∗-search (52 of 462), the experts conjectured
the cause to be the swapping of the edge direction between nodes 𝐺 and 𝐼. This could be
due to the rather small arrowheads in the task description, which may, in particular, pose a
problem for students with impaired vision.

However, which misconceptions or knowledge gaps are underlying the respective AC cannot
be determined with certainty without information from/about the learner. Further research
would be necessary, for instance, with the help of interviews with the students.

Task ID Answer Class
ST1-5 AC10 start node included in the sequence of visited nodes
ST1-5 AC11 visited node included multiple times (circles/loops)
ST1-5 AC12 use of reverse alphabetical order to break ties

ST1, ST2 AC21 algorithm applied to heuristic instead of costs
ST3, ST4 AC22 algorithm applied to costs instead of heuristic

ST2 AC31 selection of nodes that lie in a horizontal line
ST2 AC32 selection of nodes that lie in a vertical line
ST4 AC30 greedy search considering only neighbors of previous node
ST5 AC30 A* search with reversed edge direction at nodes 𝐺 and 𝐼

Tab. 2: Some answer classes newly found during the analysis

7 Discussion

Applying the steps described in section 5 required additional time. Whether the use of
ACs saves time (see ST in section 4) cannot be answered based on the results in this paper.
In the long term, however, we assume that time savings can be substantial, especially in
shared tasks and re-used settings. Even in task variants – e.g., by “changing numbers,”
ACs can often be transferred (at least in spirit). In particular, if predominant error patterns
are documented and suitable feedback has already been developed, the correction effort
(and providing feedback) is thus reduced to the annotation with ACs. In our example of
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problem 2.1, many of the ACs found are general for tasks involving the application of search
algorithms to graphs (or trees).

While it is impossible to tell without further knowledge of the learner whether an answer
ended up in a particular AC due to a misunderstanding or just sloppy work, it is possible to
determine possible causes of errors and address them specifically in subsequent cohorts.
Referring to AC30 in task 4, we discussed in plenary what the reason could be that so
many students incorrectly applied the greedy search algorithm. The instructor assumes that
one prominent example given in the lecture was misread in a way that supported the false
reading of the algorithm. In the example, a city network was used, which was traversed step
by step. This can create the misconception to only pay attention to nodes directly connected
to the previously visited node because, when physically traveling, it is usually not optimal to
travel back to an already visited city to try out an alternative route. Also, the possible cause
of AC30 in task 5 made the educators decide to scale the arrows larger in the next exam.

The use of answer classes can induce an improvement in feedback (BF), especially in cases
where limited correction time disincentivizes writing the same (helpful) feedback into the
answer sheets over and over again. Just marking the ACs and thus referring to a general
feedback table for the exam can allow significant practical improvements of BF. Even if it
is impossible to perform steps 4 and 5 for every answer class in large exams, it can still be
used to handle the largest groups of answers.

The question of whether ACs result in a more objective correction (MOC) can be answered
clearly from our point of view. Due to predefined, objectively observable criteria, interpreta-
tions or subjective decisions are less likely, even when multiple humans are correcting an
exam. If ACs are linked to numerical values, their combinations correspond to the task’s
scoring. It has also been found that corrections can be made much more fairly without
additional effort. For instance, previously, students who started with the wrong starting
node, but performed the algorithm correctly, did not get any points in the exam because all
the mentioned nodes did not match the sample solution. However, these submissions are all
in the same ACs (wrong starting node, correct algorithm). Thus, it is possible to realize a
point deduction for the wrong start node but to consider consequential errors.

The annotation of answers with ACs enables a higher quality evaluation of the exam results,
which are of great use for the further development of teaching. Particularly pronounced
error classes can indicate weaknesses in the teaching material that trigger misconceptions
and may even suggest ways to heal them. Moreover, using suitable tasks in subsequent years
may help verify whether the suspected causes and remedies were effective. Incorrect or
ambiguous tasks could be identified and corrected in advance (steps 1 and 2) (BPE), and
potential for improvement could be identified after analyzing the submissions (step 3). Thus,
applying the concept of answer classes stimulated incentives to improve teaching IIT, as
the instructors developed new instructional materials that targeted uncovered problems and
revised existing materials to avoid potential misconceptions in future courses.
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8 Conclusion and Future Work

We have picked up the concept of answer classes from the Y-Model [Lo23] and evaluated
it in practice in a large-scale written exam. We have fleshed out a practical procedure
for implementing answer classes in a written presence exam with manual paper-based
correction. The results of this experiment are very encouraging for the quality of education
by implementing answer classes. To quote the instructor of the course (who is a co-author
of this paper):

I was very skeptical whether this concept from secondary education could carry over to
the university setting and whether the effort of AC annotation would be sustainable in a
correction process that keeps my entire research group busy full-time for a week. Frankly,
I only agreed to this to make my didactics colleague happy. [. . . ] But the result of the
experiment has utterly convinced me of the approach, even in a paper-based setting. Seeing
the discussions among the graders induced by developing and annotating ACs and the
content awareness in the grading process made the added effort worthwhile. [. . . ], and
that is before we have taken a closer look at the data that this experiment generated.

Encouraged by this, we are now preparing to digitize the process presented in section 5 in a
browser-based application that presents scanned exam papers and supports AC assignment,
AC-based grading, AC-based feedback, and eventually exam review also to reap the
scalability benefits conjectured in section 4 and discussed in section 7.

Developing and annotating ACs is time-consuming, and creating them individually in all
situations may not be feasible. Therefore, future efforts should investigate the generalizability
of answer classes, e.g., for similar and variant tasks, and whether any global answer classes
can be used across all types of tasks.

We have not yet studied AC-based feedback generation and communication in detail.
However, in the past, students received no feedback on their exam answers except from
verbal discussions during exam review sessions. Therefore, the limited experience from the
experiment reported in this paper shows the potential ACs to give standardized feedback
that vastly improves the status quo. Future research must clarify whether AC-based feedback
can fully replace individual feedback or whether the inclusion of, e.g., a learner model is
necessary to automate learner-specific feedback.

Finally, the automation of AC assignment is out of scope for this paper and was left to future
research. In single/multiple-choice tasks like problem 2.1 focused on above, the respective
(combinations of) choices directly correspond to ACs, so automation is trivial. But about
half of the exam tasks were more open-ended. Already for fill-in-the-blanks tasks, we have
to pre-meditate or collect specific ACs, but given those, grading automation should be
relatively easy to implement in general. For open-answer tasks, the problem of automating
grading seems AI-hard – i.e., if we can solve that, we can also solve the general AI problem.
In situations where we have a lot more data – with ACs and human classifications as a gold
standard – supervised deep learning methods might be successful in the future.
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9 Appendix
Problem 2.1 (Search Algorithms) 8 pt
Consider the following graph:

𝐴 : 10

𝐵 : 8 𝐶 : 9

𝐷 : 7

𝐸 : 5

𝐹 : 4 𝐺 : 3

𝐻 : 4 𝐼 : 0

6 3

3

1 1

2

5

1

2 5

5 8 1

1

Every node is labeled with 𝑛 : ℎ(𝑛) where 𝑛 is the identifier of the node and ℎ(𝑛) is the heuristic for
estimating the cost from 𝑛 to a goal node. Every edge is labeled with its actual cost.
Assume you have already expanded the node 𝐴. List the next four nodes (i.e., excluding 𝐴) that will
be expanded using.

1. depth-first search 1 pt.

2. breadth-first search 1 pt.

3. uniform-cost search 2 pt.

4. greedy search 2 pt.

5. A*-search 2 pt.

If there is a tie, break it using alphabetical order.
Fig. 4: The analyzed task consisting of 5 subtasks


