
Flyspeck in a Semantic Wiki
Collaborating on a Large Scale Formalization of the

Kepler Conjecture

Christoph Lange1, Sean McLaughlin2, and Florian Rabe1

1 Computer Science, Jacobs University Bremen,
{ch.lange,f.rabe}@jacobs-university.de

2 School of Computer Science, Carnegie Mellon University, Pittsburgh,
seanmcl@gmail.com

Abstract. Semantic wikis have been successfully applied to many prob-
lems in knowledge management and collaborative authoring. They are
particularly appropriate for scientific and mathematical collaboration.
In previous work we described an ontology for mathematical knowledge
based on the semantic markup language OMDoc and a semantic wiki us-
ing both. We are now evaluating these technologies in concrete application
scenarios. In this paper we evaluate the applicability of our infrastructure
to mathematical knowledge management by focusing on the Flyspeck
project, a formalization of Thomas Hales’ proof of the Kepler Conjecture.
After describing the Flyspeck project and its requirements in detail, we
evaluate the applicability of two wiki prototypes to Flyspeck, one based on
Semantic MediaWiki and another on our mathematics-specific semantic
wiki SWiM.

1 Scientific Communication and the Flyspeck Project

Spiral

The

Creativity

Compute/
Experiment

Specify/
Formalize

Prove

Visualize

Conjecture
Com−
munication

Publication

Teaching

Application

(B. Buchberger, 1995)

Scientific communication consists mainly of ex-
changing documents, and a great deal of scien-
tific work consists of collaboratively authoring
them. Common instances are writing down first
hypotheses, commenting on results of experi-
ments or project steps, and structuring, annotat-
ing, or re-organizing existing items of knowledge,
as depicted in Buchberger’s figure on the right.
Semantic markup languages for representing structures of scientific knowledge,
and editing tools understanding them, are a promising approach to supporting
this work.Besides generic approaches like SALT [6], the most extensive work in
semantic markup has been in the domain of mathematics. Mathematical logic,
depending on symbols and relationships between symbols, naturally lends itself
well to formal exposition. Languages like MathML [24], OpenMath [29], and
OMDoc [14] were developed to represent the clearly defined and hierarchical
structures of mathematics in a way that preserves the intricate relationships.
OMDoc employs Content MathML or OpenMath for structurally representing

mathematical objects (symbols, numbers, equations, etc.) and adds two layers
on top: Objects or informal text can be annotated as mathematical statements
(symbol declarations, definitions, axioms, theorems, proofs, examples, etc.), and
collections of interrelated statements can be grouped into theories.

With SWiM, a semantic wiki for mathematical knowledge management [22],
we have investigated collaborative editing of OMDoc documents. Additionally,
we host a public knowledge base and experimental ground about mathematical
knowledge management on the web, powered by Semantic MediaWiki3. It has
become evident that a wiki is a suitable tool for supporting the workflow of
incremental formalization inherent to scientific writing. Wikis have not only shown
to be appropriate for writing, but are also effective for project management, e. g. in
corporate settings [23, 36]. We are therefore interested in applying our technologies
to scientific knowledge engineering projects.

(http://tinyurl.com/3bxx2t)
Fig. 1. The face centered
cubic packing

The target of our case study is the Flyspeck
Project, which seeks to formally verify Thomas
Hales’ proof of the Kepler Conjecture [8, 9]. This
conjecture asserts that the density of a packing of
unit spheres in 3 dimensions is at most π/(3

√
2),

the density of the face centered cubic and hexagonal
close packings. Posed by Kepler in 1611, it formed
part of Hilbert’s 18th problem, and until its solution
was recognized as one of the most famous unsolved
problems of mathematics. Hales’ proof, completed in 1995, was not accepted
immediately by the mathematical community. Besides its considerable length,
the proof relies essentially on computer calculations. The 300 pages of text and
many thousands of lines of computer code made checking the proof for errors in
the referee process unusually difficult, leading to a publication delay of nearly 10
years. In 2003, Hales proposed using computers to rigorously check the entire
proof in detail, including the computer code. He dubbed this effort Flyspeck4.
The software systems used in such formalizations are called theorem provers or
proof assistants5, examples being Isabelle [31], Coq [3], and Twelf [32]. With
adequate human assistance they can verify that a purported proof follows from a
given set of axioms and inference rules.

Modern proof assistants are still far from being able to check proofs at the
level given in most journals and textbooks. A typical estimate is that it takes
about a week to formalize a single page of mathematical text. Hales expects that
it will take around 20 man-years to complete Flyspeck. Hales is compiling a LATEX
3 http://mathweb.org/wiki/
4 The word “flyspeck” means, “to examine closely”. It was found by Hales using a
regular expression search of an English dictionary for the expression “F.*P.*K”, for
“Formal Proof of Kepler”

5 The word “formalize” is used in many contexts in this field. In the remainder of this
paper, we use “formal” and “formalize” loosely, possibly referring to any degree of
colloquial or scientific formalization. We use “computerized” to mean that a theorem,
proof or definition has been expressed in a proof assistant. Note that we consider
computerized definitions and proofs formal “documents” as well.

2

book [10] of lemmas from different areas of mathematics that are needed in his
proof. Its 450 pages contain a significant percentage of the mathematical results
used in the proof, covering such disparate topics as plane, solid, and spherical
geometry, graph theory and hypermaps, single and multivariable calculus, and
plane and spherical trigonometry.

The first steps toward a computerized proof have already been taken. Nipkow
and Bauer [27] proved the correctness of a fundamental algorithm in Isabelle.
The other two main parts of the computer code, linear programming and global
optimization, are currently being investigated in doctoral dissertations [39, 28].
A project page documents some of this progress and has a source repository
containing the book of lemmas, as well as the formalized definitions of some
important functions and inequalities [11]. Despite this considerable progress on
the computer code, the bulk of the mathematical formalization remains to be
done. This formalization will consist of two broad phases. First, a number of
elementary mathematical theories (e.g. spherical geometry) need to be defined
and the relevant lemmas proved. Then the specific aspects of the Kepler proof
that relies on the elementary results need to be formalized. Given the content of
the book mentioned above, we suspect that Flyspeck, in its final form, will consist
of dozens of theories, with hundreds of definitions and thousands of lemmas.

Flyspeck is particularly appealing as a use case for a semantic wiki approach.
While the ultimate result is to be a highly formal computerized proof, the current
proof involves both highly formal and semi-formal mathematical knowledge. It
contains descriptive and motivating yet informal text that should be preserved
for human understanding. This quasi-formal information would be difficult to
present in a strictly formal setting of a proof assistant. Secondly, the large number
of lemmas, many independent or only loosely coupled, suggests a “crowdsourcing”
approach will be beneficial. Both can be supported by a (semantic) wiki, as we
will show in the following.

2 Supporting Flyspeck in a Semantic Wiki

Our focus in this work is on making the extent and structure of Flyspeck
comprehensible, communicating where work needs to be done, and allowing
collaborators to improve the structure and finally to contribute computerized
proofs. For this the outline of the whole proof from the book [10] needs to be
represented in the wiki, where the mathematical statements (including definitions,
lemmas, and theorems) are available in a human-readable way (with formulae
in LATEX or presentational MathML) as well as a computerized presentation
suitable for using in a theorem prover. In order to obtain a well-structured
network of knowledge items, each mathematical statement should be presented
on one wiki page, which shows its human-readable representation taken from
the book, offers additional space for annotation, and allows for downloading a
formal representation. Here, we are not yet considering formal proof checking
inside the wiki, but rather using the wiki for communication about the projects
and annotation of informal text.

3

2.1 Scenario

An example usage scenario is as follows (cf. fig. 2). A user wishes to contribute
to Flyspeck. She looks at our wiki main page, which shows her what still needs
to be done. Preferring trigonometry, she searches for open problems in that field.
This returns a list of lemmas related to analysis from which she can choose one
that seems possible given her time constraints. She reads the text of a paper
proof culled from Hales’ book and annotated by other wiki collaborators and
downloads the relevant formal definitions and lemmas. She uses a proof assistant
to begin formalizing the paper proof. At some point, she needs clarification on
some definition and additionally has an idea on how to generalize this lemma.
She thus asks for help, makes comments on the discussion pages of the wiki, and
refines the annotations of the lemma. She completes her proof, and uploads the
proof assistant file to the wiki. The wiki uses a theorem prover to check the proof
for correctness and, if it is correct, adds it to the database.

Lemma 1.3
The cosine is an even function.
The sine is an odd function.
cos(−x) = cos(x)
sin(−x) = −sin(x)

[Download Twelf representation]
Page type: Lemma
Topic: Trigonometry
Proven: no (3 attempts)

Cosine
cos

[Download Twelf representation]
Page type: Definition
Topic: Trigonometry

Cosine
cos

[Download Twelf representation]
Page type: Definition
Topic: Trigonometry

Cosine
cos : R → R, x 7→ . . .

[Download Twelf representation]
Page type: Definition
Topic: Trigonometry

To do
Unproven lemmas:
Topic Lemma Score Discussion
Trigonometry 1.3 3 5 posts
Hypermaps 4.2

[Download Twelf representation]
Page type: Overview

1. Browse

2. Download

usesSymbol

references

Fig. 2. Page Structure and Navigation

2.2 Requirements

With this scenario in mind, we propose that the wiki should minimally offer:

A knowledge base of the theory, constant, and lemma definitions.
A theory browser where a user can browse the knowledge by category, or

search with keywords.
An editor to annotate and structure informal texts on their way to computeri-

zation.
A download area where one can download existing computerized definitions,

lemmas, and proofs.
An upload area where one can upload new proofs.
Discussion pages to discuss issues involved in the formalizations.

4

The following set of annotations should support this minimal infrastructure:

Categorization by topic: In the beginning, one would mirror the narrative
structure of the book (e. g. “sphere” being a subsection of “primitive volumes”,
which in turn is a section of the chapter “volume calculations”). Standardized
ways of classifying mathematical topics, such as the Mathematical Subject
Classification (MSC) [1], could be added later.

Project-organization metadata such as whether the proof of a lemma has
already been computerized, or if someone is currently attempting a proof.
This is essential so that two people do not duplicate work.

Dependency links: These can be links from individual symbols in mathemat-
ical formulae to the place where they are declared, or from any page p to
other pages containing knowledge that is required for understanding p: either
pages in the same wiki, or external resources like PlanetMath or Wikipedia
articles. Authors should be able to add them where they are missing.

Discussion posts should be strongly tied to the topic being discussed, and
classified into categories like question, answer, explanation, etc.

An enticing page for visitors and potential collaborators should give an
impression of the extent and structure of the project (e. g. its size and its
specialization into diverse fields of mathematics). For the developer, there should
be tools for browsing and querying the knowledge. Not only should it be possible
to query knowledge items by their annotations, but important query results must
also be available as dynamically generated lists. Examples for queries are:

1. “Which lemmas about composite regions need to be proved?”
2. “What lemmas are difficult to prove?”

(a) . . . in the sense that many people have already attempted them, but given
up

(b) . . . in the sense that many people have asked questions in the related
discussion

3. “Are there textual resources I can read in order to understand the Jordan
Curve Theorem?”

4. “What other lemmas could help me to prove this one?” (e. g. because they
prove a related statement)

A volunteer who is willing to work out and contribute a computerized proof for
a lemma should be able to download a self-contained computerized representation
of this lemma and everything it depends on. Different notions of “dependency”
can be supported, the most straightforward being that a lemma depends on the
declarations and definitions of all symbols it uses and on the transitive closure of
all symbols used by the latter. Related lemmas could be downloaded and assumed
as axioms, under the assumption that those will be proved later, perhaps by
other collaborators. Finally, assuming that the Flyspeck book [10] is written in a
linear order, all definitions and lemmas before the current one in the narrative
order could be used.

5

During the formalization of the knowledge, we anticipate that the definitions
will undergo refactoring in order to facilitate the actual development of the
proofs. (Historically, this has been the case with many large computerized proofs,
cf. [5].) Refactoring support by the wiki would thus be advantageous. In fact, as
definitions rely so heavily on each other, and the lemma statements rely on the
definitions, Hales needs to oversee the computerization of the definitions so that
the mathematical constants are correct6. This could be done by allowing him and
other experienced mathematicians to rate the contributions of the collaborators.

3 Case Studies and Evaluation

So far, the Flyspeck project has four core members who collaborate via Google-
Code [11]. While the services offered by GoogleCode (a Subversion repository, a
mailing list, and others) were found to be sufficient for the core development team,
we were not satisfied with the wiki integrated into the GoogleCode web interface.
Lacking support for mathematical formulae, it would not even allow for presenting
the theorems and lemmas to be computerized in a human-readable fashion. This is
important, as we suspect people would prefer to look at traditional mathematics
text than proof assistant scripts when browsing. Furthermore, GoogleCode offers
very little structuring support, which we believe will be essential for browsing
and querying Flyspeck’s large knowledge collection.

In the following sections, we evaluate two semantic wiki prototypes for their
applicability to Flyspeck with regard to their support for annotations, browsing,
and querying, as specified in section 2.2. One is based on Semantic MediaWiki, the
other one on our own semantic wiki SWiM. For the case study, we took a simplified
view of Flyspeck, using only the TEX sources of the Flyspeck book [10] and a
Twelf [32] computerization of the definitions and lemmas of the chapter dealing
with the foundations of trigonometry. The goal was to present the trigonometry
chapter in a compelling way that we believed would scale 2-3 orders of magnitude.

Both systems are semantic wikis, where one resource (e. g. one mathematical
theorem) is represented by one wiki page and relations between resources by links
between pages. Both pages and links can be typed with terms from ontologies [30],
which are either preloaded into the wiki or modeled ad hoc [17]. This is the
prevalent approach of adding semantics to wikis, although other ways have been
investigated [37]. Note that we have developed an ontology for mathematical
knowledge (see sec. 3.2), but as this only focuses on the most essential structures,
keeping it extensible in the wiki may be beneficial. Semantic wikis offer enhanced
navigation capabilities. For example, they can usually display a summary of all
typed links, grouped by type, for each page. They support searching for pages
by type or by a page being source or target of a typed link7. Such queries can
either be executed interactively or automated as inline queries embedded into
6 For example, one can represent a vector as a function from the integers to the reals, or
as a tuple of reals. The operations of vector spaces will depend on this representation,
etc.

7 Both explicit and inferred links (RDF triples) can be considered [17]

6

the content of a page [17]. Both systems we consider support this basic set of
semantic wiki features.

3.1 Semantic MediaWiki 1.0

Semantic MediaWiki [17] is a semantic extension to MediaWiki, the system
driving Wikipedia. Plain MediaWiki supports mathematical formulae written in
LATEX and allows for categorizing pages. Semantic MediaWiki interprets category
membership as an instance-of relationship and supports the creation and editing
of typed links (called properties). External ontologies can be referenced from the
wiki, but at most sites powered by Semantic MediaWiki, site-specific ontologies
are developed in an ad hoc manner [34].

Prototype In Semantic MediaWiki, we imported the Twelf master source of
Flyspeck via a custom upload page. The Twelf file was first enhanced by special
comment lines marking the beginning and end of a declaration with information
about topical categorization. The Twelf upload page handler breaks an uploaded
file down into declarations and creates two wiki pages for each Twelf declaration:
one page that just contains the Twelf listing, categorized in the OMDoc document
ontology (e. g. Lemma; see section 3.2), and one container page that includes the
Twelf page via MediaWiki’s template inclusion mechanism, but also allows for
including a LATEX representation and leaves space for free-form annotations made
by the contributors. Additionally, MediaWiki offers a discussion page for each
page of mathematical content. The Twelf pages are overwritten on every import
from the master source, whereas existing container pages remain untouched. This
allows one to change the computerized version of a Twelf constant in the master
source (e. g. if it is incorrectly specified) and re-importing it without losing the
semantic markup and comments. During the import of a new symbol x, the
upload extension recognizes all previously imported symbols y in the definition
of the new symbol and creates links between x, y in the wiki.

The generated annotations can be used for browsing, either via the “fact
box” (the summary of all typed links), or by the special “browse” page. For
querying, Semantic MediaWiki offers a simple triple search, as well as inline
queries. The query language corresponds to the small description logic EL++ [17],
which, for example, does not support unrestricted negation. A query for unproven
lemmas about a certain topic could only be performed if the “unprovenness” were
explicitly annotated. The following queries additionally ask for lemmas available
in a Twelf formalization:

<ask>[[Category:Unproven]] [[Category:Lemma]]
[[Category:Trigonometry]] [[written in::Twelf]]</ask>

Exporting computerized representations of knowledge items is not yet sup-
ported conveniently. The Twelf listings can be viewed on their own pages, but
due to the auto-generated symbol links in the source code, these are not suitable
8 See http://mathweb.org/wiki/Flyspeck

7

Fig. 3. A Flyspeck lemma in Semantic MediaWiki8

for download. One would either have to implement a special Twelf download
page that cleans these sources again, or one would have to implement the symbol
linking as an extension of the rendering process.

Evaluation We found the ad hoc ontology development useful while prototyp-
ing the annotations that might be required for Flyspeck, e. g. project-related
metadata like the information whether a lemma has already been proven, or
categorization by topic. Semantic MediaWiki did not meet the requirements in
places where ontologies already existed. For example, in structures of mathe-
matical documents, it was possible to reference vocabulary from the OMDoc
document ontology (see below), but not to apply further inference rules given
there to items of mathematical knowledge. This is because Semantic MediaWiki
does not support a full import of external ontologies. Most annotations were
modeled by categorization, i. e. instantiation of classes—certainly not the most
formal way of structuring knowledge in view of many classes just corresponding
to narrative sections of the book, but the one that is supported best by Semantic
MediaWiki. The inline queries were intuitive to write but not as powerful as
required. Complex reasoning tasks like inference of dependencies are not possible
in Semantic MediaWiki; in the restricted domain-specific setting of Flyspeck one
could realize them by hard-coded extension functions. Semantic MediaWiki does
not understand the semantics of mathematical formulae, as the LATEX formulae
cannot be annotated. The Twelf listings could be annotated, but at the cost of
making them harder to download.

3.2 SWiM 0.2

SWiM is a semantic wiki targeted at mathematical knowledge management.
Based on the general-purpose semantic wiki IkeWiki [17], it adds support for

8

browsing, editing, rendering, importing and exporting mathematical documents
written in OMDoc. The semantics of mathematical knowledge is mainly captured
in the OMDoc markup, and more explicitly in a document ontology ; whenever a
wiki page containing OMDoc fragments is saved, its type and its (typed) relations
to other items of mathematical knowledge in the wiki are extracted from the
OMDoc XML markup and explicitly represented as RDF triples using terms
of the OMDoc document ontology [18]. This ontology models those aspects of
the three layers of mathematical knowledge supported by OMDoc to the extent
supported by the expressivity of OWL-DL [25], including a limited inference of
dependencies. Modeling all modules of the OMDoc specification in this ontology
is not totally complete, though most mathematical statements as well as key
aspects of theories have been implemented. Relevant classes for Flyspeck would be
Lemma/Theorem/Corollary/. . . (all being subclasses of Assertion), Proof, Symbol
(a symbol declaration), Definition, and the properties Proof–proves–Assertion
and Symbol–hasDefinition–Definition.

Statement

Definition Symbol Assertion Proof

Lemma Corollary Theorem

v v

uses uses proves

depends on

hasDefinition

Fig. 4. A relevant subset of the OMDoc document ontology

In the current version 0.2 of SWiM, the browsing of mathematical documents
is powered by the document ontology; whenever RDF triples having the current
page as subject or object are available9 the IkeWiki user interface can display
them either as navigation links (see figure 5) or in a graph view. Documents
are presented as XHTML+MathML, with mathematical symbols linked to their
declarations.

Prototype We manually converted part of the trigonometry lemmas to OMDoc
for SWiM. Additionally, we can auto-generate OMDoc documents from the Twelf
source with a converter and import them into SWiM using the built-in import
functionality.

As every SWiM page has an associated discussion page and discussion posts
are semantically represented using the SIOC ontology [35], one can support the
coordination of the project by queries like query 2b from section 2.2. Work on
determining a relevant subset of OMDoc and its document ontology for discussions
9 In a mathematical document such as those we consider, most of these triples use
from the OMDoc document ontology.

9

Fig. 5. A Flyspeck lemma in SWiM

is currently in progress. Pages and non-OMDoc links can be annotated with
types from ontologies loaded into the wiki10.

Another powerful feature of SWiM is that authors can embed inline SPARQL
queries into wiki pages. Query 1 can be posed without explicitly annotating
“unprovenness”, making use of negation as failure [33]:

SELECT ?l WHERE { ?l rdf:type odo:Lemma .
?l swrc:isAbout <Composite_Regions> .
OPTIONAL { ?p rdf:type odo:Proof .

?p odo:proves ?l . }
FILTER (! bound(?p)) }

As OMDoc supports all degrees of formalizing mathematical knowledge,
computerized data can be downloaded in their OMDoc representation using
SWiM’s export feature and then be converted to Twelf by client-side software [14,
chap. 25.2].

Evaluation Annotating mathematical structures with SWiM is easy if the built-
in OMDoc editor is used. Other annotations required for Flyspeck, such as
categorizations or information about the progress of the project, can be made,
but not in an ad hoc way, which we would have found useful in the prototyping
phase. Instead, one would have to import an existing ontology into the wiki,
or create it using the built-in ontology editor, and then one would be able to
annotate documents using terms from that ontology.

Browsing is well supported, with incoming and outgoing navigation links
being displayed. Additionally, the neighborhood of the current resource in the
RDF graph can be browsed visually.

Queries are powerful, but not always short and intuitive (see above). Al-
ternatively, one could enhance the ontology and make use of the integrated
Pellet OWL-DL reasoner (see [17]), which supports a more powerful logic than
Semantic MediaWiki, and get the same result with a simple query for instances

10 Types of OMDoc links are automatically extracted from the markup; see above.

10

of a specially defined class. For unproven lemmas, the following axiom would
suffice:

LemmaWithoutProof ≡ Lemma u ¬(∃proves−1.Proof)

However, it remains to be evaluated how well the wiki scales with DL reasoning
enabled. First experiments with Pellet let the system considerably slow down (an
experience also made by the IkeWiki author [17]), so alternatives will have to be
investigated as well.

System Semantic MediaWiki SWiM
Ontology availability none built in sufficient (OMDoc)
Ontology editing/
extensibility

easy, ad hoc in place easy, but only via dedi-
cated user interface

Page annotation easy but not sufficiently
expressive

easy and expressive

Inline queries easy to write but not suffi-
ciently powerful

harder to write but more
powerful

Browsing intuitive intuitive, optional graph
browser

Reasoning not sufficient powerful but slow
Semantics/annotation
of formulæ

not supported very powerful but harder
to author

Annotation of
computerized content

not directly supported
by our extension

powerful (OMDoc
markup)

Fig. 6. Summary of the evaluation of the features

4 Related Work

Outside of wikis, the combination of computerized proofs and human-readable
text has been investigated in Isar [38], an alternative literate programming
language for Isabelle, and in Mizar [26], whose language of Mizar is close to
mathematical vernacular. In contrast to Isar, there is a large web-based library
of Mizar proofs. It is browsable and searchable on the web but managed in a
centralized and hierarchical way, which is not comparable to wiki collaboration.

Informal mathematical knowledge is currently managed in comprehensive
encyclopediæ like the mathematical sections of Wikipedia11 or in PlanetMath11,
which focuses on mathematics and is powered by a highly customized wiki-like
system. The pages in these systems are categorized and searchable in full-text,
with additional metadata records in PlanetMath. Neither of the systems is a
semantic wiki, and for lacking typed links they fail to answer queries essential for
11 See http://www.wikipedia.org or http://www.planetmath.org, respectively,

and [19] for a more comprehensive evaluation.

11

Flyspeck, such as query 1 from section 2.2, and they do not link mathematical
symbols to their declarations; instead, the author has to provide links he considers
relevant in the text surrounding the formula.

Recently, there is a growing interest in integrating proof assistants with wikis.
Logiweb is not a wiki but a distributed system for publishing machine checked
mathematics in high-quality PDF that shares part of the key wiki principles [7].
Anybody can contribute to a Logiweb site and edit new pages in a simple text
syntax. On the other hand, Logiweb does not offer other essential features. For
example, browsing by traversing links is supported neither in the editor nor in
the generated PDF, and a built-in search or query facility is not offered. Logiweb
does not allow for exchanging knowledge as required for Flyspeck: Documents
can only be exported in presentational formats like PDF or TEX, but their
semantic structures cannot be exported in mathematical markup or theorem
proving languages. The way Logiweb checks proofs is not compatible with other
theorem provers, as all calculi and proof tactics need to be defined in the Logiweb
system itself. ProofWiki is an integration of the ProofWeb Coq frontend into
MediaWiki [4]. Coq’s export tools are used to generate browsable HTML or
LATEX with linked symbols from the proof scripts. Generating index pages, such
as lists of all definitions or all theorems, is planned, but not yet in a way that
could be customized by users. So far, there is just text search, and dependencies
among knowledge items are only computed for exporting proofs but not used
for browsing inside the system. Pages can either be formal proof scripts (with
restricted possibilities to include informal comments) or informal wiki pages.
Semi-formal documents or stepwise formalizing of knowledge are not supported.
Importing and exporting Coq proof scripts to and from the wiki is possible. While
the authors provide instructions on how to integrate other theorem provers, doing
so would be a lot of work, as there is no abstraction layer or metalanguage for
exchanging or converting data. Both Logiweb and ProofWiki are “semantic” in the
sense that the integrated proof checker utilizes the mathematical knowledge in the
wiki pages. But the semantics is not utilized for anything else, such as facilitating
browsing or editing, or connecting to semantic web services. Developing and
verifying formal proofs in the wiki is not yet the focus of Flyspeck in this early
stage, but it may be required later.

5 Conclusion and Further Work

Our preliminary experiments lead us to believe that, due to its rich semantic
web and OMDoc infrastructure, future work toward supporting Flyspeck should
continue in the SWiM infrastructure. For the text-based page format of Media-
Wiki, features that rely on structures like the linking of symbols could only be
realized in an ad hoc way using, say, regular expressions. Relying on the XML
infrastructure of OMDoc, these features are either already available or easier
to develop. However, rapidly prototyping our first ideas about the wiki support
required for Flyspeck was easier in Semantic MediaWiki due to its ability to

12

design ad hoc ontologies and its implementation in the interpreted language
PHP.

Importing For this case study, we created OMDoc from Twelf. OMDoc also offers
support for the alternative workflow of stepwise formalization as well. One could
either start by converting the Flyspeck book from LATEX to HTML with MathML
formulæ and formalize the presentation markup into content markup step by step,
or one could start the formalization on the TEX side. There, one would formalize
the book to sTEX, a content-oriented TEX notation for OMDoc, which can then
be converted to OMDoc [13]. Either way involves a TEX-to-XML transformation,
which has been tested in large scale in our group [2].

Annotating The case study showed that the editing of ontologies in SWiM should
become more flexible. While a fixed OMDoc document ontology can be preloaded,
it should be possible to add other annotations ad hoc. We have not focused on
document editing in detail here, but additional editing services relying on the
document ontology are planned for SWiM 0.3 [20, 21]. Finally, using the module
system of OMDoc and refactoring the knowledge into more smaller theories
could help to simplify the structure of Flyspeck for browsing and to explicate
the dependencies between components of the proof.

Browsing In the Semantic MediaWiki prototype we realized that the narrative
structure of the book is not adequately represented by a simple hierarchy of
categories. OMDoc has more powerful ways of putting content into narrative
structures [15]. We are going to cover them with the document ontology and
utilize them for browsing.

Querying Proof search will be greatly simplified if the semantic-aware search
engine MathWebSearch [16] is used. It applies substitution tree indexing to
mathematical formulae. That means, for example, that a query for

∫
f(x ? z)dx

would also find
∫
f(y + z)dy. Equivalence up to α-renaming of bound variables

is obviously essential for a serious query language.

Different Theorem Provers If several parts of the proof are done in different
theorem provers, highly non-trivial and mostly novel translations become nec-
essary to provide one single proof object. Here OMDoc could be used as an
exchange format between theorem prover languages, and formal translations
could be specified in OMDoc itself. While this line of research is interesting, it is
difficult for us to foresee what kinds of translations, if any, will be needed.

Download Dependencies, which we need for bundling download packages, can
partly be inferred by a DL reasoner using the document ontology, but for a
complete support of OMDoc’s notion of dependency, an OMDoc-specific calculus
will have to be applied, which is currently in development.

13

Upload We have not implemented uploading a proof directly to the wiki to have
it checked. This is easy in theory as we simply need to hook up the theorem
prover, but requires some effort to get the theorem prover to run on the wiki
server. This should be done soon, as it will relieve the maintainers.

Acknowledgments We would like to thank Stefan Decker, Michael Kohlhase,
and Immanuel Normann for their feedback particularly during the case studies.

References

1. American Mathematical Society. 2000 mathematics subject classification. http:
//www.ams.org/msc/, 2000.

2. arXMLiv: Translating the arχiv to xml+mathml, 2007. http://kwarc.info/
projects/arXMLiv/.

3. Y. Bertot and P. Castéran. Interactive theorem proving and program development:
Coq’Art: the Calculus of Inductive Constructions. Texts in theoretical computer
science. Springer, 2004.

4. P. Corbineau and C. Kaliszyk. Cooperative repositories for formal proofs. In Kauers
et al. [12].

5. G. Gonthier. A computer-checked proof of the four colour theorem. Unpublished
manuscript, 2005.

6. T. Groza, S. Handschuh, K. Möller, and S. Decker. SALT – Semantically Annotated
LATEX for scientific publications. In E. Franconi, M. Kifer, and W. May, editors,
ESWC, volume 4519 of Lecture Notes in Computer Science. Springer, 2007.

7. K. Grue. The layers of Logiweb. In Kauers et al. [12].
8. T. Hales. A proof of the Kepler conjecture. Annals of Mathematics, 162:1065–1185,

2005.
9. T. Hales. The Kepler conjecture. Discrete and Computational Geometry, 36(1):1–

269, 2006.
10. T. Hales. Flyspeck : A Blueprint of the Formal Proof of the Kepler Conjecture.

Unpublished manuscript, 2008.
11. T. Hales and S. McLaughlin. The Flyspeck Project. http://code.google.com/p/

flyspeck, 2007.
12. M. Kauers, M. Kerber, R. Miner, and W. Windsteiger, editors. MKM/Calculemus

2007, number 4573 in LNAI. Springer, 2007.
13. M. Kohlhase. sTEX: A LATEX-based workflow for OMDoc. In OMDoc – An open

markup format for mathematical documents [Version 1.2] [14], chapter 26.15.
14. M. Kohlhase. OMDoc – An open markup format for mathematical documents

[Version 1.2]. Number 4180 in LNAI. Springer, 2006.
15. M. Kohlhase, C. Müller, and N. Müller. Documents with flexible notation contexts

as interfaces to mathematical knowledge. In P. Libbrecht, editor, Mathematical
User Interfaces Workshop, 2007.

16. M. Kohlhase and I. Şucan. A search engine for mathematical formulae. In T. Ida,
J. Calmet, and D. Wang, editors, Artificial Intelligence and Symbolic Computation,
AISC, number 4120 in LNAI. Springer, 2006.

17. M. Krötzsch, S. Schaffert, and D. Vrandečić. Reasoning in semantic wikis. In
G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P.-L. Pătrânjan, and
R. Tolksdorf, editors, 3rd Reasoning Web Summer School, volume 4636 of LNCS.
Springer, 2007.

14

18. C. Lange. The OMDoc document ontology. http://kwarc.info/projects/
docOnto/omdoc.html, 2007.

19. C. Lange. SWiM – a semantic wiki for mathematical knowledge management.
Technical Report 5, Jacobs University Bremen, 2007.

20. C. Lange. SWiM development roadmap. https://trac.kwarc.info/swim/
roadmap/, 2007.

21. C. Lange. Towards scientific collaboration in a semantic wiki. In A. Hotho and
B. Hoser, editors, Bridging the Gap between Semantic Web and Web 2.0, 2007.

22. C. Lange. SWiM – a semantic wiki for mathematical knowledge management. In
S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, editors, ESWC,
volume 5021 of Lecture Notes in Computer Science, pages 832–837. Springer, 2008.

23. B. Leuf and W. Cunningham. The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley Professional, 2001.

24. Mathematical Markup Language (MathML) version 3.0. W3C working draft, World
Wide Web Consortium, 2007. http://www.w3.org/TR/MathML3.

25. D. L. McGuinness and F. van Harmelen. OWL web ontology language overview.
W3C recommendation, W3C, 2004.

26. Mizar mathematical library. Web Page at http://mizar.org/library/.
27. T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame Graphs. In U. Furbach

and N. Shankar, editors, International Joint Conference on Automated Reasoning,
volume 4130 of LNCS. Springer, 2006.

28. S. Obua. Proving bounds for real linear programs in isabelle/HOL. In J. Hurd and
T. F. Melham, editors, Theorem Proving in Higher Order Logics, volume 3603 of
LNCS. Springer, 2005.

29. The Open Math standard, version 2.0. Technical report, The Open Math Society,
2004. http://www.openmath.org/standard/om20.

30. E. Oren, R. Delbru, K. Möller, M. Völkel, and S. Handschuh. Annotation and
navigation in semantic wikis. In Völkel et al. [37].

31. L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS. Springer,
1994.

32. F. Pfenning and C. Schürmann. System description: Twelf : A meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, 16th International Conference
on Automated Deduction (CADE), volume 1632 of LNAI. Springer, 1999.

33. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C
Recommendation, World Wide Web Consortium, 2008. http://www.w3.org/TR/
2008/REC-rdf-sparql-query-20080115/.

34. Sites using Semantic MediaWiki. http://www.semantic-mediawiki.org/w/index.
php?title=Sites_using_Semanti%c_MediaWiki&oldid=781, 2008.

35. SIOC – Semantically-Interlinked Online Communities, 2007. http://sioc-project.
org/.

36. D. Tapscott and A. D. Williams. Wikinomics – How Mass Collaboration Changes
Everything. Portfolio, 2006.

37. M. Völkel, S. Schaffert, and S. Decker, editors. 1st Workshop on Semantic Wikis,
volume 206 of CEUR Workshop Proceedings, 2006.

38. M. Wenzel. Isar — a generic interpretative approach to readable formal proof
documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Théry,
editors, Theorem Proving in Higher Order Logics: TPHOLs’99, volume 1690 of
LNCS, pages 167–184. Springer, 1999.

39. R. Zumkeller. Formal global optimisation with taylor models. In U. Furbach
and N. Shankar, editors, International Joint Conference on Automated Reasoning,
volume 4130 of LNCS. Springer, 2006.

15

