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Abstract. There is a large ecosystem of mathematical software sys-
tems. Individually, these are optimized for particular domains and func-
tionalities, and together they cover many needs of practical and theo-
retical mathematics. However, each system specializes on one particular
area, and it remains very difficult to solve problems that need to involve
multiple systems. Some integrations exist, but the are ad-hoc and have
scalability and maintainability issues. In particular, there is not yet an
interoperability layer that combines the various systems into a virtual
research environment (VRE) for mathematics.
The OpenDreamKit project aims at building a toolkit for such VREs.
It suggests using a central system-agnostic formalization of mathematics
(Math-in-the-Middle, MitM) as the needed interoperability layer. In this
paper, we report on a case study that instantiates the MitM paradigm
the systems GAP, SageMath, and Singular to perform computation in
group and ring theory.
Our work involves massive practical efforts, including a novel formaliza-
tion of computational group theory, improvements to the involved soft-
ware systems, and a novel mediating system that sits at the center of a
star-shaped integration layout between mathematical software systems.

1 Introduction

There is a large and vibrant ecosystem of open-source software systems for math-
ematics. These range from calculators, which perform simple computations, via
mathematical databases, which curate collections of a mathematical objects, to
powerful modeling tools and computer algebra systems (CAS).

Most of these systems are very specific – they focus on one or very few
aspects of mathematics. For example, among databases, the “Online Encyclope-
dia of Integer Sequences” (OEIS) focuses on sequences over Z and their prop-
erties, and the “L-Functions and Modular Forms Database” (LMFDB) [Cre16;
LMFDB] on objects in number theory pertaining to Langland’s program. Among
CAS, GAP [GAP] excels at discrete algebra with a focus on group theory, Singu-
lar [SNG] focuses on polynomial computations with special emphasis on commu-
tative and non-commutative algebra, algebraic geometry, and singularity theory,



and SageMath [Sage] aims to be a general purpose software for computational
pure mathematics by loosely integrating many systems including the aforemen-
tioned ones.

For a mathematician, however, (a user, which we call Jane) the systems them-
selves are not relevant. Instead, she only cares about being able to solve problems.
Because it is typically not possible to solve a mathematical problem using only a
single program, Jane has to work with multiple systems and combine the results
to reach a solution. Currently there is very little tool support for this practice,
so Jane has to isolate sub-problems that the respective systems are amenable
to, formulate them in the respective input language, collect intermediate results
and reformulate them for the next system – a tedious and error-prone process at
best, a significant impediment to scientific progress at worst. Solutions for some
situations certainly exist, which can help get Jane unstuck, but these are ad-hoc
and only for specific often-used system combinations. Moreover, each of these
ad hoc solutions requires a lot of maintenance and scales badly to multi-system
integration.

One goal of the OpenDreamKit project is tackling these problems system-
atically by building virtual research environments (VRE) on top of the exist-
ing systems. To build a VRE from individual systems, we need a joint user
interface – the OpenDreamKit project adopts Jupyter [Jup] and active docu-
ments [Koh+11] – and an interoperability layer that allows passing problems
and results between the disparate systems. For the latter, it proposes the Math-
in-the-Middle (MitM [Deh+16]) paradigm, an interoperability framework based
on a central, system-independent ontology of mathematical knowledge. In this
paper we instantiate the MitM paradigm in a concrete case study using a dis-
tributed computation involving GAP, SageMath, and Singular.

We will use the following running example from computational group theory:
Jane wants to experiment with invariant theory of finite groups. She works in
the polynomial ring R = Z[X1, . . . , Xn], and wants to construct an ideal I in this
ring that is fixed by a group G ≤ Sn acting on the variables, linking properties
of the group to properties of I and the quotient of R by I.

To construct an ideal that is invariant under the group action, it is natural
to pick some polynomial p from R and consider the ideal I of R that is gener-
ated by all elements of the orbit O = Orbit(G,R, p) ⊆ R. For effective further
computation with I, she needs a Göbner base of I.

Jane is a SageMath user and wants to receive the result in SageMath, but
she wants to use GAP’s orbit algorithm and Singular’s Gröbner base algorithm,
which she knows to be very efficient. For the sake of example, we will work with
n = 4, G = D4 (the dihedral group1), and p = 3 · X1 + 2 · X2, but our results
apply to arbitrary values.

In Section 2, we recap the MitM paradigm. MitM solutions consist of three
parts: a central ontology, specifications of the abstract languages of the involved
systems (which we call system dialects), and the distributed computation infras-

1 Incidentally, this group is called D4 in SageMath but D8 in GAP due to differing
conventions in different mathematical communities – a small example of the obstacles
to system interoperability that MitM tackles.



tructure that connects the systems via the ontology as an intermediate repre-
sentation. The rest of the paper develops these three parts for our case study: In
Section 3, we contribute a fragment to the MitM ontology that formalizes com-
putational group theory. In Section 4, we specify the abstract languages of GAP,
SageMath, and Singular and their relation to the ontology. Finally in Section 5,
we present the resulting virtual research environment built on these systems in
action. Section 6 concludes the paper and compares MitM-based interoperability
with other approaches.

2 Math-in-the-Middle Interoperability
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Fig. 1. MitM Paradigm

Figure 1 shows the basic MitM design. We want
to make the systems A to H with system dialects
a to h interoperable. A P2P translation regime
(n(n − 1) translations between n systems) is al-
ready intractable for the systems in the Open-
DreamKit project (more than a dozen). Alterna-
tively, an “industry standard” regime, where one
system dialect is declared as the standard is infea-
sible because no system dialect subsumes all oth-
ers – not to mention the political problems such a
standardization would induce. Instead, MitM uses
a central mathematical ontology that provides
an independent mediating language, via which
all participating systems are aligned. All mathematical knowledge shared be-
tween the systems and exposed to the high-level VRE user is expressed using
the vocabulary of this ontology. Crucially, while every system dialect makes
implementation-driven, system-specific design choices, the MitM ontology can
remain close to the knowledge published in the mathematical literature, which
already serves as an informal interoperability layer.

The following sections describe the three components of the MitM paradigm
in more detail.

2.1 The MitM Ontology

In the center, we have the MitM Ontology, which is a formalization of the
mathematical knowledge behind the systems A to H. As a formalization frame-
work, it uses the OMDoc/MMT format [Koh06; RK13; MMT], which was de-
signed with this specific application in mind. We do not go into the details
of OMDoc/MMT here – for our purposes, it suffices to assume that an OM-
Doc/MMT theory graph formalizes a language for mathematical objects as a set
of typed symbols with a (formal or informal) specification of their semantics. For
example, the MitM-symbol PolynomialRing takes a ring r of coefficients and a
number n of variables and returns the ring r[X1, . . . , Xn] of polynomials.

Note that the purpose of the MitM ontology is not the formal verification of
mathematical theorems (as for most existing formalizations of group theory), but



to act as a pivot point for integrating systems. This means that it can be much
nearer to the informal but rigorous presentation of mathematical knowledge in
the literature. While each system dialect makes compromises and optimizations
needed for a particular application domain, the MitM ontology follows the exist-
ing and already informally standardized mathematical knowledge and can thus
serve as a standard interface layer between systems.

Importantly, the MitM ontology does not have to include any definitions2

or proofs – it only has to declare the types of all relevant symbols and state
(but not prove) the relevant theorems. This makes it possible for users like Jane
to extend the MitM ontology quickly whereas extending formalizations usually
requires extensive efforts by specialists.

2.2 Specifying System Dialects

System Dialects It is unavoidable that each system induces its own language
for mathematical objects. This is the cause of much incompatibility because
even subtle differences make naive integration impossible. Moreover, due to the
difficulty of the involved mathematics and the effort of maintaining the imple-
mentations, such differences are aplenty.

Fortunately, we can at least easily abstract from the user-facing surface syn-
tax of these languages: scalable interoperability can anyway only be achieved
by acting on the internal data structures of the systems. Thus, only the much
simpler internal abstract syntax needs to be considered.

The symbols that build the abstract syntax trees can be split into two kinds:
constructors build primitive objects without involving computation, and op-
erations compute objects from other objects (including predicates, which we
see as operations that return booleans). For purposes of interoperability it is
desirable to abstract from this distinction and consider both as typed symbols.
This abstraction is important because systems often disagree on the choice of
constructors. Thus, we can represent the interfaces of the systems A to H as
OMDoc/MMT theory graphs a to h that declare the constructors and opera-
tions (but omit all implementations of the operations) of the respective system.

Given the theory graph a representing the system dialect of A, we can ex-
press all objects in the language of system A as OMDoc/MMT objects using the
symbols of a. We refer to these objects as A-objects. It is conceptually straight-
forward to write (or even automatically generate) the theory graph a and to
implement a serializer and parser for A-objects as a part of A.3 This is be-
cause no consideration of interoperability and thus no communication with the
developers of other systems is needed.

Alignments with the Ontology The above reduces the interoperability problem to
relating each system dialect to the MitM ontology. Each system dialect overlaps
with the language of the ontology, but no system implements all ontology sym-
bols and every system implements idiosyncratic operations that are not useful

2 Of course, definitions are one possible way to specify the semantics of MitM-symbols.
3 However, as we see below, this may still be surprisingly difficult in practice.



as a part of the ontology. Therefore, some system dialect symbols are related to
corresponding symbols in the MitM ontology. We use these symbols of the MitM
ontology as an intermediate representation to bridge between any two systems,
e.g., by translating A-objects to the corresponding ontology objects and then
those to the corresponding B-objects.

However, even when A and B deal with the “same mathematical objects”,
these may be constructed and represented differently, e.g., symbols can differ in
name, argument order/number, types, etc. A major difficulty for system inter-
operability is correctly handling these subtle differences. To formalize the details
of this relation, [Mül+17b] introduced OMDoc/MMT alignments. Technically,
these are pairs of OMDoc/MMT symbol identifiers decorated by a set of key-
value pairs. The alignments of a-symbols with the MitM ontology determine
which A-objects correspond to MitM-objects.

The alignment of a-symbols to ontology symbols must be spelled out manu-
ally. But this is usually straightforward and easy even for inexperienced users. For
example, the following line aligns GAP’s symbol IsCyclic (in the file lib/grp.gd)
with the corresponding symbol cyclic in the MitM ontology. The key-value pairs
are used to signify that this alignment is part of a group of alignments called
“VRE” and can be used for translations in both directions.

gap:/lib?grp?IsCyclic mitm:/smglom/algebra?group?cylic

direction="both" type="VRE"

Thus we can reduce the problem of interfacing n systems to i) curating
the MitM ontology for the joint mathematical domain, ii) generating n theory
graphs for the system dialects, iii) maintaining n collections of alignments with
the MitM ontology.

Alignments form an independent part of the MitM interoperability infras-
tructure. Incidentally, they obey a separate development schedule: the MitM
ontology is developed by the community as a whole as the understanding of a
mathematical domain changes. The system dialects are released together with
the systems according to their respective development cycle. The alignments
bridge between them and have to mediate these cycles.

2.3 MitM-based Distributed Computation

The final missing piece for a system interoperability layer for a VRE toolkit is a
practical way of transporting objects between systems. This requires two steps.

Firstly, if the system dialects and alignments are known, we can automatically
translate A-objects to B-objects in two steps: A to ontology and ontology to B.
This two-step translation has been implemented in [Mül+17a] based on the MMT
system [Rab13; MMT], which implements the OMDoc/MMT format along with
logical and knowledge management algorithms.

Secondly, each system A has to be able to serialize/parse A-objects and to
send them to/receive them from MMT. In the OpenDreamKit project we use
the OpenMath SCSCP (Symbolic Computation Software Composability) pro-
tocol [Fre+] for that. It is straightforward to extend a parser/serializer for A-



objects to an SCSCP clients/server by implementing the SCSCP protocol on top
of, e.g., sockets or using an existing SCSCP library.

3 The MitM Ontology for Computational Group Theory

Jane’s use case involves groups and actions, polynomials, rings and ideals, and
Gröbner bases, all of which must be formalized in the MitM ontology. Due to
space restrictions, we only describe the ontology for computational group theory
(CGT) as an example. This formalization can be found at [Mitb].

3.1 Type Theory and Logic

OMDoc/MMT formalizations must be relative to foundational logic, which is
itself formalized in OMDoc/MMT. As foundation for all formalizations in MitM
[Mita], we use a polymorphic dependently typed λ-calculus with two universes
type and kind (roughly analogous to sets and proper classes in set theory) and
subtyping. It provides dependent function types {a:A}B(a), representing the type
of all functions mapping an argument a:A to some element of type B(a). If B
does not depend on the argument a, we obtain the simple function type A→B.

For formulas, we use a type prop and a higher order logic where quantifiers
range over any type. We furthermore follow the judgments-as-type paradigm by
declaring a function `:prop→type mapping propositions to the type of their
proofs, which allows us to declare proof rules as functions mapping proofs (of
the premises) to a proof (of the conclusion).

The judgment A<:B expresses that A is a subtype of B. We use power types
(the type of subtypes of a type) and predicate subtyping {’a:A | P(a)’}. The latter
makes type-checking undecidable, but that is necessary for natural formalizations
in many areas of mathematics.

Fig. 2. MitM ontology Fragment

Additionally we extend our type
theory with record types, which is
critical for formalizing mathematical
structures. In particular, ModelsOf T
is the record type of models of the
theory T. This lets us, e.g., define
groups by the theory of operations
and its signature and axioms, while
group=ModelsOf group theory is the
type of all models of said theory, i.e., all groups, as seen in Figure 2. Any element
g:group thus represents an actual group, whose operations and axioms can be
accessed via record field projections (e.g. g.inverse yields the inverse operation of
g. Since axioms are turned into record type fields as well, actually constructing
a record of type group corresponds to proving that the field universe and the
operations provided in the record do in fact form a group.

3.2 Group Theory

Our formalization of CGT follows the template of its implementation in GAP,
and requires different levels of abstraction – currently abstract, representation,



implementation, and concrete. From our experience, we expect this pattern to
be applicable across computational algebra, possibly with additional levels of
abstraction. The left box in Figure 3 shows the levels and their relation to the
constructors and operations of GAP.

Level

abstract

repn.

impl.

concrete

MitM Ontology

Abstract GT

Permutation
Groups

Matrix
Groups

Finitely
Presented
Groups

G ≤ Symmetric([1..n]) G ≤ GL(n, F ) G = Fn/K

Mathieu(11) ≤ Symmetric([1..11])

GAP API

IsGroup

IsPermGroup IsMatrixGroup IsFpGroup

Group((1,2,3))

Group([[0, 1], [2, 0]])

MathieuGroup(11)

Fig. 3. Alignments between the MitM Ontology and the GAP API

Abstract Level This contains the theory of Groups: the group axioms, generating
sets, homomorphisms, group actions, stabilisers, and orbits. This also easily leads
into definitions of centralisers – i.e. stabilisers of elements under conjugation
– and normalisers – i.e. stabilisers of subgroups under conjugation, stabiliser
chains, Sylow-p subgroups, Hall subroups, and many other concepts.

OMDoc/MMT also allows expressing that there are different equivalent def-
initions of a concept: We defined group actions in two ways and used views to
express their equivalence.

Representation Level Abstract groups are represented in different ways as con-
crete objects suitable for computation: as groups of permutations, groups of
matrices, finitely presented groups, algebraic constructions of groups, or using
polycyclic presentations.

Many representations arise naturally from group actions: If we are consider-
ing symmetry in a setting where we want to apply group theory, we start with a
group action, for example a group acting on a graph by permuting its vertices.

The universal tool to bridge the gap between groups, representations and
canonical representatives are group homomorphisms, particularly embeddings
and isomorphisms, which are used extensively in GAP. This is reflected in our
approach.

Implementation Level At this level we encode implementation details: Permu-
tation groups in GAP are considered as finite subgroups of the group SN+, and
defined by providing a set of generating permutations. GAP then computes a
stabiliser chain for a group that was defined this way, and naturally considers
the group to be a subgroup of S[1..n], where n is the largest point moved.



Concrete Level It is at the concrete level where the computation happens: while
the higher levels are suitable for mathematical deduction and inference, this level
is where GAP (or any other system providing computational group theory) does
its work. If a group (or a group action) has been constructed by giving generators
through MitM, GAP can now compute the size of the group, its isomorphism
type, and perform all the other operations that are available via the GAP system
dialect.

4 The System Dialects of GAP, SageMath, and Singular

We now show how we produce OMDoc/MMT theory graphs that specify the
system dialects of GAP, Singular, and SageMath. The three systems are suffi-
ciently different that we can consider the development presented in this section
a meaningful case study in the methodology and difficulty of exposing the APIs
of real-world systems as of formally described system dialects.

In each case, we had to overcome major implementation difficulties and invest
significant manpower. In fact, even the serialization of internal abstract syntax
trees as OMDoc/MMT objects proved difficult, for different system-specific rea-
sons. In the following, we summarize these efforts.

4.1 SageMath

We first consider our previous work [Deh+16] regarding a direct (i.e., with-
out MitM) integration of SageMath and GAP. Here SageMath’s native interface
to GAP is upgraded from the handle paradigm to the semantic handles
paradigm. In the former, when a system A delegates a calculation to a system
B, the result r of the calculation is not converted to a native A object (unless
it is of some basic type); instead B just returns a handle h (i.e., some kind of
reference) to the B-object r. Later, A can run further calculations with r by
passing it as argument to functions or methods implemented by B. Addition-
ally, with a semantic handle, h behaves in A as if it was a native A object. In
other words, one adapts the API satisfied by r in B to match the API for the
same kind of objects in A. For example, the method call h.cardinality() on a
SageMath handle h to a GAP group G triggers in GAP the corresponding function
call Size(G).

This approach avoids the overhead of back and forth conversions between A
and B and enables the manipulation of B-objects from A even if they have no
native representation in A. However, if these B-objects need to be acted on by
native operations of A or other systems (as in Jane’s scenario), we actually have
to convert the objects r between A and B.

API In [Deh+16] we describe the extraction of some of SageMath’s API from
its categories. This exploited the mathematical knowledge explicitly embedded
in the code to cover a fairly large area of mathematics (hundreds of kinds of
algebraic structures such as groups, algebras, fields, ...), with little additional



efforts or need to curate the output. This extraction did not cover the construc-
tors, knowledge about which is critical for (de)serialization, nor other areas of
mathematics (graph theory, elliptic curves, ...) where SageMath developers cur-
rently do not use categories (usually because the involved hierarchies of abstract
classes are shallow and easily maintained by hand).

To extract more APIs, we took the following approach:

1. We constructed a list of typical SageMath objects.
2. We used introspection to analyze those objects, crawling recursively through

their hierarchy of classes to extract constructors and available methods to-
gether with some mathematical knowledge.

At this stage, the list of objects was crafted by hand to cover Jane’s scenarios
and some others. In a later stage, we plan to take advantage of one of SageMath’s
coding standards: every concrete type must be instantiated at least once in
SageMath’s tests and the instance passed trough a generic test suite that runs
sanity checks for its advertised properties (e.g. associativity, ...). Therefore, by a
simple instrumentation of SageMath’s test framework, we could run our exporter
on a fairly complete collection of SageMath objects.

The process remains brittle and the export will eventually require much cu-
ration:

– The signature of methods is incomplete: it specifies the number and names
of the arguments, but only the type of the first argument.

– For constructors, the type of all the arguments is known, but only for the
specific call that led to the construction of the introspected object.

– There is no distinction between mathematically relevant methods and purely
technical ones like data structure manipulation helpers.

– The export is very large and seems of limited use without alignments with
the MitM ontology. At this stage we do not foresee much opportunities to
produce such alignments other than manually.

Nonetheless, we consider this an important first step toward fully automatic
extraction of the SageMath API. Moreover, we expect further improvements
by code annotations in SageMath (e.g., the ongoing porting of SageMath from
Python 2 to Python 3 will enable gradual typing, which we hope to become
widely adopted by the community) or using type inference in SageMath and/or
MitM.

Serialization and Deserialization Because SageMath is based on Python, it
benefits from its native serialization support. For example, the dihedral group
D4 is serialized as a binary string, which encodes the following straight line
program to be executed upon deserialization:

pg unreduce = unpickle global(’sage.structure.unique representation’, ’unreduce’)
pg DihedralGroup =

unpickle global(’sage.groups.perm gps.permgroup named’, ’DihedralGroup’)
pg make integer = unpickle global(’sage.rings.integer’, ’make integer’)
pg unreduce(pg DihedralGroup, (pg make integer(’4’),), {})



The first three lines recover the constructors for integers and for dihedral groups
from SageMath’s library. The last line applies them to construct successively the
integer 4 and D4.

Up to concrete syntax, this serialization is already close to the desired Sage-
Math system dialect. We can therefore extend Python’s native (de)serializer to
use OMDoc/MMT as an alternative serialization format (using the Python li-
brary [POMa]). This has the advantage of using optimizations implemented in
Python’s serialization, e.g., structure sharing for identical subexpressions.

Still, systematically expanding OMDoc/MMT serialization to the entire Sage-
Math library requires significant manpower and can only be a long-term goal.
To increase community support, our design elegantly decouples the problem into
(i) instrumenting the serialization to generate OMDoc/MMT as an alternative
target format, and (ii) structural improvements of the serialization that benefit
SageMath in general.

In particular, our serialization of SageMath objects is by construction
rather than by representation, i.e., we serialize the constructor call that was
used to build an object instead of the low-level Python representation of the
resulting object. This is important to hide implementation details and allow for
straightforward alignments. From the origin, the SageMath community has inter-
nally promoted good support for serialization as this is a fundamental building
block for communication between parallel processes, databases, etc. Thus, it al-
ready values serialization by construction as superior because it is usually more
concise and more robust under changes to SageMath. Therefore, independent of
the purposes of this paper, we expect a synergy with the SageMath community
toward improving serialization.

4.2 GAP

In [Deh+16], we already described our general approach to extract APIs from
the GAP system. We have now improved on this work considerably.

Firstly, we improved the MitM foundation so that the primitives of GAP’s
type system can be expressed in the MitM ontology.4 GAP’s type system heavily
uses subtyping: filters express finer and finer subtypes of the universal type
IsObject. Moreover, an object in GAP can learn about its properties, meaning its
type is refined at runtime: a group can learn that it is Abelian or nilpotent and
change its type accordingly.

Secondly, we devised and implemented a special treatment of GAP’s construc-
tors during serialization. As GAP only has a weak notion of object construction,
we achieved this by manually identifying and annotating all functions that cre-
ate objects in the GAP code base and then instrumenting them to store which
arguments they were called with. With the constructor annotation in place, it
is possible to have GAP represent any object in a running session as either a
primitive type (integers, permutations, transformations, lists, floats, strings), or
as a constructor applied to a list of arguments.

The instrumentation itself is minimal – 57 lines of GAP code, plus 100 lines
for serializing and parsing. The main – and indeed considerable – challenge was

4 In the future MMT might even serve as an external type-checker for GAP.



to identify the constructors and their arguments. In GAP, objects are created
by calling the function Objectify with a type and some arguments. Hence we
analyzed all call-sites to this function and some light inference of the enclosing
function. This amounted to 665 call sites in the GAP library and an additional
1664 in the standard package distribution. The instrumentation will be released
as part of a future version of GAP, making GAP fully MitM capable.

As a major positive side-effect of our work, this instrumentation led to general
improvements of the type infrastructure in GAP. For example, it enables static
type analysis, which can be used to optimize the dynamic method dispatch and
thus hopefully lead to efficiency gains in the system.

4.3 Singular

As we only need a very small part of Singular for our case study, we were able to
use the existing OpenMath content dictionaries for polynomials [OMCP] as the
Singular system dialect. These are part of a standard group of content dictionaries
that describe (some) mathematical objects at a high level of abstraction to be
universally applicable. OMDoc/MMT understands OpenMath, i.e., it can use
these content dictionaries as OMDoc/MMT theories.

Building on the OpenMath toolkits for OpenMath phrasebooks [POMa] and
SCSCP communication [POMb] in Python – which were developed for SageMath
in the OpenDreamKit project, we wrapped Singular in a thin layer of Python
code that provides SCSCP communication. This work was undertaken by the
sixth author as part of a summer internship in about a week without prior expert
knowledge of the system. Of course, if we want to achieve a more comprehensive
coverage of the Singular dialect, we will have to either manually write a theory
graph or instrument Singular for extraction as we did for SageMath or GAP above.

4.4 Alignments

Finally we have to curate the alignments between the system dialects and the
MitM ontology. These alignments are currently produced and curated manually
using the approach, repository, and syntax described in [Mül+17b; Mül+17a].
In the future, we will also consider automatically extracting alignments from
the existing ad-hoc SageMath-to-X translations. These are (mainly) given as
SageMath code annotations that relate SageMath operations and constructors
with those of system X.

5 Distributed Computational Group Theory

Figure 4 shows the overall architecture with an MitM server as the central me-
diator. All arrows represent the transfer of OMDoc/MMT objects via SCSCP.
Critically, the MitM server also maintains the alignments and uses them to con-
vert between system dialects.

We have extended the MMT system [Rab13] with an SCSCP server/client
so that it can receive/send objects from/to computation systems. For the GAP
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Fig. 4. MitM Interaction in Jane’s Use Case

server, we built on pre-existing SCSCP support. To obtain an SCSCP server for
Singular, which does not have native SCSCP support, we wrapped Singular in a
python script that includes the pyscscp library [POMb]. In SageMath, we directly
programmed the client interface to the MitM server.

The resulting system forms the nucleus of the OpenDreamKit interoperabil-
ity layer. It can already delegate computations between the three participating
systems as long as the exchanged objects are covered by the MitM ontology, the
alignments, and the formalizations of the system dialects.

Jane’s Use Case Initially, Jane has already built in SageMath the ring R =
Z[X1, X2, X3, X4], the group G = D4, the action A of G on R that permutes the
variables, and the polynomial p = 3 ·X1 + 2 ·X2. She now calls

MitM.Singular(MitM.Gap.orbit(G, A, p)).Ideal().Groebner().sage()

which results in the following steps (the numbers on the edges of the graph of
Figure 4 indicate the order of communications when processing Jane’s use case):
1. Jane uses SageMath to call the MitM server with the command above, which

includes both the computation to be performed and information about which
system to use at which step.

2. The MitM server translates MitM.Gap.orbit(G, A, p) to the GAP system di-
alect and sends it to GAP.

3. GAP returns the orbit:

O = [3X1 + 2X2, 2X3 + 3X4, 3X2 + 2X3, 3X3 + 2X4,

2X2 + 3X3, 3X1 + 2X4, 2X1 + 3X4, 2X1 + 3X2] .

4. The MitM server translates MitM.Singular(O).Ideal().Groebner() to the Sin-
gular system dialect and sends it to Singular.

5. Singular returns the Gröbner base B.
6. The MitM server translates B to the SageMath system dialect and sends it

to SageMath, where the result is shown to Jane.

B = [X1 −X4, X2 −X4, X3 −X4, 5 ∗X4] .

Alternative Use Case Suppose Jon, one of Jane’s colleagues, prefers working
in GAP, and he wants to compute the Galois group of the rational polynomial



p = x5 − 2. He discovers the GAP package radiroot, which promises this func-
tionality, but unfortunately the package does not work for this polynomial and
thus GAP alone cannot solve Jon’s problem.

Jon hears from Jane that he should use SageMath, because she knows it can
compute Galois groups. So, from GAP, he calls

G := MitM(”Sage”, ”GaloisGroup”,p)

which gives him the desired Galois group as a GAP permutation group. Having
heard of Jane’s experiments, he can further run her orbit and Gröbner basis
calculation starting from this new group, without leaving his favorite computing
environment.

Finally, Jon, being a proficient GAP user, also knows that he can now install
a method in GAP by calling

InstallMethod(GaloisGroup, ”for a polynomial”, [IsUnivariatePolynomial],
p −> MitM(”Sage”, ”GaloisGroup”, p))

that will compute the Galois group of any rational polynomial transparently
for him whenever he calls GaloisGroup for a rational polynomial in GAP. And
thus (at the price of using multiple systems) a significant part of the 1800-line
radiroot package can be replaced by a few lines in GAP, taking advantage of the
work of the SageMath community and participating in any future improvements
of SageMath. In fact, Sage itself delegates to the PARI system – another one of
the OpenDreamKit systems – for this computation. So in the future GAP might
directly delegate to PARI instead, bypassing the need of iterated translations.

6 Conclusion

We have implemented the MitM approach to integrating mathematical software
system based on formalizations of the underlying mathematical knowledge. The
main investment here was the curation of an MitM Ontology, the generation of
formal specifications of system APIs for SageMath, GAP, and Singular, identifying
the alignments of these APIs with the ontology, implementing an MitM server
that can use alignments to translate between systems, and implementing the
SCSCP protocol for all involved systems.

Our case study showed that MitM-based integration is an achievable goal.
Delegation-based workflows can either be programmed directly or embedded into
the interaction language of the mathematical software systems.

The main advantages and challenges claimed by the MitM framework come
from its loosely coupled and knowledge-based nature. Compared to ad-hoc trans-
lations, MitM-based interoperability is relatively expensive as objects have to be
serialized into (possibly large) OMDoc/MMT objects, transferred via SCSCP to
MMT, parsed, translated into another system dialect, serialized and transferred,
and parsed again. On the other hand, instead of implementing and maintaining
n2 translations, we only have to establish and maintain n collections of system
APIs and their alignments to the MitM ontology. This makes the management
of interoperability much more tractable:



1. The MitM ontology is developed and maintained as a shared resource by the
community. We expect it to be well-maintained, since it can directly be used
as a documentation of the functionality of the respective systems.

2. All the workflows are star-shaped: instead of requiring expert knowledge
in two systems – a rare commodity even in open-source projects, and even
for the system experts involved in this paper – and keeping up with their
changes, the MitM approach only needs expertise and change management
for single systems.

All in all, these translate into a “business model” for MitM-based cooperation
in terms of the necessary investment and achievable results, which is based on
the well-known network effects: the joining costs are in the size of the respective
system, whereas the rewards – i.e. the functionality available by delegation – is
in the size of the network.

This network effect can be enhanced by technical refinements we are cur-
rently studying: For instance, if we annotate alignments with a “priority” value
that specifies how canonically/efficiently/powerfully a given system implements
a given MitM operation, then we can let the MMT mediator automatically choose
a suitable target system for a requested computation (as opposed to our cur-
rent setup where Jane specifies which systems she wants to use). On the other
hand, for workflows where we do not need or want service-discovery, alignments
can be “compiled” into n2 transport-efficient direct translations that may even
eliminate the need for serialization and parsing.
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