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Abstract

We present the theoretical foundation, design, and implementation, of a system that
automatically determines the subset relation between two given axiomatizations of
propositional modal logics. This is an open problem for automated theorem prov-
ing. Our system solves all but six out of 121 instances formed from 11 common
axiomatizations of seven modal logics. Thus, although the problem is undecidable
in general, our approach is empirically successful in practically relevant situations.
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1 Introduction and Related Work

Modal logics are extensions of classical logic that handle the concept of modal-
ities. Modern modal logic was founded by Clarence Irving Lewis in his 1910
Harvard thesis, and further developed in a series of scholarly articles beginning
in 1912. In his book Symbolic Logic (with C. H. Langford), he introduced the
five well-known modal logics S1 through S5 (Lewis and Langford, 1932). The
contemporary era in modal logic began in 1959 when Saul Kripke introduced
semantics for modal logics (Kripke, 1963). The mathematical structures of
modal logics are modal algebras — Boolean algebras augmented with unary
operations. Their study began to emerge with McKinsey’s proof that S2 and
S4 are decidable (McKinsey, 1941). Today plain propositional modal logic
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is standard knowledge, see, e.g., Hughes and Cresswell (1996), and first order
modal logic has been thoroughly studied, e.g., Fitting and Mendelsohn (1998).
Henceforth in this paper attention is limited to propositional modal logic with
the standard modalities possibility and necessity.

Many modal logics have multiple axiomatizations that are equivalent, in the
sense that they generate the same theory - the same set of theorems. Similarly,
one modal logic may be stronger than another in the sense that the stronger
logic’s theory is a strict superset of that of the weaker logic. Finally, two modal
logic may be incomparable with one another, because each has theorems that
the other does not. Such relationships between different axiomatizations of
individual modal logics and between different modal logics, are well known
(Hughes and Cresswell, 1996).

The Modal Logic $100 Challenge (Sutcliffe, 2006) calls for a program that can
determine the relationships between common Hilbert-style axiomatizations of
the modal logics K, T, S1, S1°, S3, S4 and S5 (see Halleck (2006) for an
overview and a list of references to various modal logics and axiomatizations).
The program cannot simply encode known relationships. Rather, it must use
logical reasoning from input axiomatizations to establish the relationships as
if they were unknown. The syntactic representation of the axiomatizations can
be anything reasonable, but the use of the TPTP syntax is encouraged. The
challenge was sponsored by John Halleck, who has a practical need for such a
program as an aid to maintaining his overview (Halleck, 2006).

Determining the relationship between two axiomatizations is undecidable in
general (Blackburn et al., 2001). Decidability can be established separately for
some modal logics. Historically, finding a complete Kripke semantics (Kripke,
1963) and establishing the finite model property by filtration (Lemmon, 1966)
were used to obtain decidability of theoremhood. However, checking the sub-
set relation between modal logics also involves checking the admissibility of
rules. Here, decidability has been shown for a few cases, including K4 and
S4 (Rybakov, 1997). Recently a framework has been developed in which ad-
missibility is reduced to terminating analytic proofs for a variety of modal
logics (Iemhoff and Metcalfe, 2007). In (Kracht, 1990) splittings are used to
decide the admissibility of a rule for some logics, which correspond to transi-
tive Kripke frames, but no algorithm is known for obtaining a splitting for an
arbitrary logic. None of these methods is applicable to the full range of dif-
ferently axiomatized modal logics. So far sophisticated implementations have
focused on deriving theoremhood. (Goré et al., 1997) describe the Logics Work
Bench program that is capable of reasoning about the modal systems K, KT,
KT4, KT45 and KW. (Giunchiglia et al., 2002) use a SAT solver to decide a
few classical systems. (Schmidt and Hustadt, 2006) give an overview over var-
ious methods based on translations of modal logic into first-order logic (e.g.
Ohlbach and Schmidt, 1997). (Hustadt and Schmidt, 2000) extends the first-



order theorem prover SPASS with the ability to apply such translations to its
input.

This paper describes an implemented and tested system within which relation-
ships between modal logics can be determined. The system has been applied
successfully to the $100 challenge. A partial preliminary version of this work
has been presented as (Rabe, 2006b). The core idea is to use a simple trans-
lation to first-order logic (described in Section 3 of (Schmidt and Hustadt,
2006)), which encodes modal logic formulae as first-order terms, modal logic
axioms and theorems as first-order atoms, and modal logic rules as first-order
implications. This translation comes at the price of efficiency (McCune and
Wos, 1992). We use it because it is applicable to any modal logic, in particular
non-normal logics. Since we do not presuppose any semantics, the applicabil-
ity of any other translation would itself have to be established automatically
(which we do in the Kripke-based strategy described in Section 3.4). With
this encoding, reasoning is performed using several modularly implemented
(possibly incomplete) strategies, using first-order automated reasoning tools
to prove or disprove the subset relationship: direct strategies, strategies based
on Kripke semantics, and algebraic strategies that represent modal logics as
modal algebras.

Section 2 provides the necessary background in modal logic and the encoding
in first-order logic. Section 3 describes the implementation of our system, and
the theoretical basis and implementation of the strategies. Section 4 docu-
ments and analyzes the results achieved by the system in attacking the $100
challenge. Section 5 concludes and provides directions for future research.

2 Modal Logics

2.1 Formulas and Rules

Modal formulae F, G, . .. are defined as the elements of the languages generated
from the atomic formulae and connectives given in Figure 1 (note that prefix
notation is used for the binary connectives). Rules are of the form

H ... H,
C

where the H,; and C' are modal formulae. The semantics of a rule is that if for
any substitution o of formulae for the propositional variables, all o(H;) are
derivable, then so is o(C). The case n = 0 means that C' is an axiom. The
rules with n # 0 relevant for the $100 challenge are given in Figure 2.



p,q,... a countably infinite set of propositional variables

—F negation (primitive)

NG conjunction (primitive)

OF possibility (primitive)

VE'G disjunction =defn NG

— FG  implication =defn "ANF2G

— FG  equivalence =defn N= FG—GF

= FG  strict implication =g¢p, O— FG
& FG  strict equivalence =g A= FG =GF

oF necessity =defn 7O

Fig. 1. Atomic formulae and connectives

An aziomatization of a modal logic is a set of axioms and rules, from which the
theory is generated by finitely many (including no) rule applications. A modal
logic is characterized by its theory. For an axiomatization £ and a formula F,
L F F denotes that F'is a theorem of £. A rule R is an admissible rule of £
if £ and LU {R} are equivalent; this is denoted by L R.

2.2  The Modal Logics of the $100 Challenge

The relationships between the modal logics to be compared in the $100 chal-
lenge are shown in Figure 3. A solid arrow shows that an axiomatization of
the logic at the head can be constructed by adding axioms or rules to an ax-
iomatization of the logic at the tail. A dashed arrow shows that the logic at
the head is stronger than the logic at the tail, but the axiomatizations have
different heritages, e.g., the axiomatization of T is built by adding to K rather
than by adding to S1. Regardless of the type of arrow, any path from one logic
to another shows that the logic at the head of the path is stronger than the
logic at the tail.

The axiomatizations used for the logics are given in Figure 4. There are two
starting points for their construction - the propositional calculus PC and the
strict system S1°. Since different axiomatizations can generate the same the-
ory, some axiomatizations are equivalent, e.g., all four axiomatizations of S5
are equivalent. Different axiomatizations of the same logic are differentiated
by Greek subscripts.

PC is defined by the Hilbert and Bernays (Hilbert and Bernays, 1934), Luka-



Us uniform substitution o(F)

MP  modus ponens Fﬁ?LG
SMP  strict modus ponens Fﬁ?&
AD  adjunction FW;G

EQ  substitution of equivalents W
EQS substitution of strict equivalents W

o a substitution of propositional with formulae
G[F ~ F']: formed from G by replacing some occurrences of F with F’

Fig. 2. Rules

siewicz (Lukasiewicz, 1963), Rosser (Rosser, 1953), and Principia (Russell and
Whitehead, 1910) axiomatizations as follows.

Definition 1 (PC). The axiomatizations of PC are defined by the rules US,
MP, and the following axioms:

For PCH (Hilbert-style): For PCL (Lukasiewicz-style):
MT :— ——=p-qg—qp CN1:— —pqg— —qr—pr
Al:— Apgp CN2 :—p——pq
A2:— Apqq CNS3 :— — —ppp
?]3 :pp:qz)/\pq For PCR (Rosser-style):
12 :— —p—pg—pq KNI1:—pApp

KN2:— Apqp

19:= =pa=—=qr=pr KN :— —pq— - Agr=Arp

01 :—pVpq

02:—qVpq For PCP (Principia-style): 3
08 :— —pr— —qr—\Vpgqr RI1:— Vppp

El:— < pg—pq R2:—qVpq

E2:— < pg—qp R3:—VpgVqp

ES8:— —pg— —qp—pq R4 :—NpVagrvqVpr

RS :— —qr—VpgVpr

S1° is axiomatized in the Lewis-style, as taken from Zeman (1973). The Lem-
mon-style axiomatization of S1°, which is an extension of PC, was not used
because it requires the weakened necessitation rule “if A is a PC theorem then
OA is a theorem”, which is unreasonable to encode using the single-sorted

3 Note that the axioms include the redundant R/, which can be proved from the
others (Bernays, 1926).



Fig. 3. The Hierarchy of the Modal Logics

first-order approach taken in this work.

Definition 2 (S1° — Lewis-style). The axiomatization S1° is defined by the
rules US, SMP, AD, and EQS, and the axioms

M1: = Apg/Agp

M2: = Npgp
M3 : = AApgqrApAqr
M4 =pApp

M5: =N =pqg=qr =pr

Note that all the axiomatizations include the structural rule US, which is
crucial for the soundness of the first-order encoding described in Section 2.3.

2.3 First-order Encoding

Modal formulae are encoded as first-order formulae with equality, the first-
order connectives are written as =, A , and — , the universal quantifier
as VX,Y, ..., and equality as =. T FOL F denotes that F is a first-order
theorem of the theory T

The first-order signature used for encoding modal formulae consists of the
following symbols:

e unary function symbols: not, poss, necess,
e binary function symbols: and, or, impl, equiv, s_impl, s_equiv,
e unary predicte symbol: thm.



Nec : I

K = PC + OF
+ K: —0O—pg— Oplg
T = K + M: —Opp
S1 = S1° + M6: =pop
S3 = S1 + 53 = =pg=-0-Cp
S4, = S3 + M9: =C0pdp
S4g = T + 4: —DOpoop
S5, = S4, + B: —pdop
S5 = S43 + B: —pOdp
S5, = SI° + Mi0: =< p0Odp
Sbs = T + 5 —OpOdp

Fig. 4. Axiomatizations to be Compared
Then the encoding £(+) is defined as follows:

(1) for an axiomatization £ = {Ry,..., R, }:

is a first-order theory over the above signature where Def consists of the
following axioms:

e VXY or(X,Y) = not(and(not(X),not(Y))),

e VX,Y impl(X,Y) = not(and(X,not(Y))),

e VXY equiv(X,Y) = and(impl(X,Y), impl(Y, X)),

e VX,Y s_impl(X,Y) = necess(impl(X,Y)),

o VXY s equiv(X,Y) = and(s_impl(X,Y), s_impl(Y, X)),

e VX necess(X) = not(poss(not(X))).

(2) for arule R = H, el Hy with propositional variables pi, ..., pmn:

E(R) =VX1,..., Xp (E(H) A .. A E(H,)) — E(C)),

(3) for a modal formula F: E(F) = thm(e(F')), where ¢(F) encodes every
formula F' as a first-order term by
e c(\F'G) = and(¢(F),e(G)) and similarly forV, —, <, =, and <,
e ¢(0OF) =necess(e(F)) and similarly for = and <,
e =(p;) = X, for a propositional variable p;.



For example, for the rule MP, we have
E(MP) =YXy, X5 (thm(X;) A thm(impl(X), X5))) — thm(X5))

Note that the rules US, EQ and EQS cannot be encoded in this way. US is
inherent in the encoding as Theorem 3 shows. Section 3.2.2 shows how FE(@)
and EQS are replaced by congruence rules, and Section 3.2.3 shows how the
congruence rules can be replaced by formulae allowing use of efficient first-
order equality reasoning.

The following soundness result guarantees that reasoning about the first-order
encoding is equivalent to reasoning about the encoded axiomatization.

Theorem 3. Let L be an axiomatization. Then for modal rules R

E(L) FOF £(R) if and only if £ F R.

Proof. Since £(L) contains only Horn formulae, there is a free first-order
model M of £(L) such that M is term-generated and £(R) holds in M iff
E(L) FFOL E(R). The universe of M can be constructed by taking the set
of equivalence classes generated by equality axiomatized by reflexivity, sym-
metry, transitivity, congruence and the equality axioms. Let [t] denote the
equivalence class of t. Clearly, two terms are equal in M iff the modal for-
mulae they represent can be transformed into each other by eliminating and
introducing abbreviations of modal formulae.

Function symbols are interpreted in M as induced by the equivalence relation.

And thn? is the smallest fixed point of the following operation: [t] € thm™ iff
there is a rule in £ encoded as

VX1, X ((¢Bm(hy) A .. A thm(hy)) — thm(c))

and a substitution « for the variables Xi, ..., X,, such that [a(h;)] € thm
fori=1,...,m and a(c) =t.

Then because US is admissible in £, we have for every modal formula F' and
every substitution a:

[a(e(F))] € tho™ if and only if £ F F“
where F'* denotes the uniform substitution instance of F' under «. Therefore,

the definition of £ F R is equivalent to saying that £(R) holds in M, which
completes the proof. O



3 Solution

In this section our solution to the $100 challenge is presented. This section
is organized as follows. In Section 3.1, we give an overview over our system,
and in the remaining sections, we present its theoretical basis and the imple-
mentation. In particular, Section 3.2 describes the preprocessing phase, and
Sections 3.3 to 3.5 describe the comparison strategies used.

3.1 System Architecture and Process

Our system is implemented in Standard ML of New Jersey (SML, 2007). The
source code can be obtained from (Rabe, 2006a). After loading the sources into
the SML top-level, the user can call a function compare : string * string
-> unit. This function takes the filenames of the logics to be compared as
arguments, and prints the results of the comparison.

The input files must contain two axiomatizations, £ and M, in the TPTP
format (Sutcliffe and Suttner, 1998). In addition to the encoded axioms and
rules, the input files can contain special rules of the form:

fof(name, special rule,ignored).

where name identifies the special rule and the rest is ignored. Special rules
are used to import PC axiomatizations into PC based modal logics, and to
represent aspects that require special processing, e.g., rules for substitution of
equivalents. After reading in the files, two phases can be distinguished.

The preprocessing phase, described in Section 3.2, includes the expansion of
special rules into sets of normal rules, and optimizations related to congruence
relations. We also try to establish certain properties of the logics, like normal-
ity, so that these properties can be reused later. The preprocessing returns
two different but equivalent axiomatizations for every logic. For £ and M, we
obtain £° & £ and M" & M?*. The b axiomatizations are “big”, containing
redundant axioms, useful lemmas, etc., and are used when proving from the
logic. The s axiomatizations are “small” and used when proving to the logic.

The comparison phase, described in Sections 3.3 to 3.5, attempts to deter-
mine the relationship between the two input axiomatizations. First the sys-
tem checks whether £? is stronger than M?, and then it checks whether M? is
stronger than £°. In both directions the following happens: The system tries
to prove every axiom and rule of the s logic from the b logic. Several proving
strategies are available for proving each axiom and rule. The strategies are
tried in turn until one succeeds or all have failed. Axioms and rules that fail



to be proved are passed to disproving strategies. The disproving strategies try
to find a counterexample for each axiom and rule, establishing that the axiom
or rule cannot be proved.

Three kinds of strategies are used in the comparison phase: direct strategies are
described in Section 3.3, strategies based on Kripke semantics in Section 3.4,
and strategies based on algebraic encodings in Section 3.5. All strategies are
parametric in the specific first-order prover or model finder that is used.

If both directions succeed, whether by proving or by disproving, the relation-
ship between the logics is decided, and L C M, M C L, L = M or L
incomparable to M is printed. If only one direction succeeds, a partial result
is printed.

3.2 Preprocessing

3.2.1 Special Rule pc

The special rule pc is expanded into an axiomatization of PC. The four ax-
iomatizations of PC defined in Section 2.2 are equivalent (see also McCune
et al. (2002)). This can be demonstrated automatically by proving the axioms
of each from the axiomatizations of each other (as all axiomatizations use the
same rules, the rules do not need to be proved), which was done using the
ATP system VAMPIRE 8.1 with a 180s CPU time limit, on a 2.8GHz PC with
1GB memory and running Linux 2.6. The results are summarized in Fig. 5,
which gives the CPU times in seconds for the proofs of the axioms from the
named axiomatizations, or TO for proof attempts that timed out at 180s.
The results show that the Hilbert axiomatization can prove the Lukasiewicz
and Principia axioms, the Lukasiewicz axiomatization can prove the Rosser
axioms, and the Principia axiomatization can prove the Lukasiewicz axioms.
While the results are not all positive, the results are useful: (i) if the Hilbert
axiomatization can be proved, that is sufficient for claiming that all four ax-
iomatizations have been proved, and (ii) if the Hilbert axiomatization is used
as a basis for constructing modal logics, then it is possible to add the other
three axiomatizations’ axioms as lemmas.

Due to these results, the pc special rule is expanded into the Hilbert axioms
when computing an s axiomatization, and into the union of all four PC ax-
iomatizations when computing a b axiomatization. For simplicity, the proofs
justifying this treatment are not executed explicitly every time.



Prove— PCH

From| | MT A1 A2 A3 O1 02 0811 12 13 E1 E2 ES3
PCL 124 3 68 0 TO TO TO 0 3TO 69 72 TO
PCR 110 5 11 TO 0 5 132 2 5TO 0 4 TO
PCP 0 0 55 16 2 0 4 2 0TO 2 0TO
Prove— PCL PCR PCP

From| |CNI CN2 CN& KN1 KN2 KN3 R1 R2 R3 R4 RS
PCH 0 0 1 0 0 TO 1 0 2 4 4
PCL - - - 58 58 59 112 TO TO TO TO
PCR TO 4 3 - - - 1 5 1TO TO
PCP 16 1 4 0 2 TO - - - - -

Fig. 5. Relationships between PC Axiomatizations

3.2.2  Special Rules eq and eqs

The special rules eq represents the E(Q rules, which cannot be expressed di-
rectly using the first-order encoding. The first step around this is to use the
following rules that define <~ to be a congruence relation:

—FG —FF GG —FG
—F-G (EQ1) S AFGAF'G (EQ2) — OO (EQ3)
—FG F
T(ECM) <—>7FF(EQ5)

The following lemma then relates EQ) to «» being a congruence relation in
the context of the modal logic under consideration.

Lemma 4. If L+ EQ5, then LU{EQ} and LU {EQ1, EQ2 EQS3, EQ4} are

equivalent.

Proof. It LU{EQ1, EQ2, EQS3, EQ/} is given, we need to derive EQ. Let F
F" and G be as in the definition of F(), where we can assume without loss
of generality that no defined connective occurs in them. We need to derive
G[F ~ F']. We construct a backwards proof, firstly applying FQ4, to reduce
to«> G(G[F ~» F']). This can be derived by repeated application of EQ1-FQ3
along the structure of G until all open proof goals are «» F'F’ or are instances
of EQ5 under US. Conversely, let £ U {FEQ} be given. We need to derive the
rules FQI-EQ4. EQ1-EQS3 are special cases of E(Q with, e.g., G =+« —p—p,
and EQ4 is the special case of F(Q) where F' = G. O]



Given Lemma 4, when the special rule eq is found, an attempt is made to
prove FEQ5. If this succeeds the special rule is expanded to FQ1-FEQ)/, and the
proved F(Q)5 is added to the axiomatization. The analogue of Lemma 4 for
strict equivalence can be proved, and the rule £QS is handled correspondingly
by a special rule egs.

3.2.8  Congruences

None of the axiomatizations of the challenge is defined to include the rule EQ).
However, this rule is extremely powerful, and is necessary for success when
proving relationships between modal logics. Section 3.2.2 explains that EQ
is represented in input files as a special rule, and is expanded to EQI-EQ/
if £Q)5 can be proved. The congruence rules are inefficient in implementing
substitution. A much more efficient approach is to exploit the equational rea-
soning of a first-order theorem prover. If the relation £ - F'G is a congruence
relation on the set of modal formulas, the rule

VX,V (thm(equiv(X,Y)) — X =Y) ()
is added to £°. The soundness of this addition is given by the following lemma:

Lemma 5. If L+ EQi for alli=1,...,5, then adding (x) to the first-order
encoding of L does not destroy the soundness of the encoding.

Proof. Let M be the free model constructed in the proof of Theorem 3. Be-
cause L has the rules mentioned above and due to Lemma 4, if < F'G is deriv-
able in £, either both F' and G are derivable in £ or none. Then, by induction
on the construction of M, it follows that adding the above rule will never iden-
tify two terms in the term model of which only one corresponds to a derivable
modal formula. Therefore, the terms that are in the equivalence classes in the
interpretation of thm stay the same, and soundness is preserved. O

For a PC based axiomatization £, proving £ + EQi for all i = 1,...,5 can
be done in parts. The proofs of PC - {EQ1, EQ2, EQ/4, EQ5}, which do not
mention the modal operators, can be done offline in advance. This is described

below. Then given a PC based axiomatization L it is necessary to prove only
L EQS.

The proofs of PC - {EQ1, EQ2, EQ4, EQ5} were done using the combined
axiomatization PC = PCHUPCLUPCRUPCP (whose combination is justified
above), and the same hardware and software environment as above. EQ1 was
proved in 50s, £Q)4 in Os, and EQ5 in 1s. However, FQ2 could not be proved,
and two lemmas were used as stepping stones:



/ <_>pp/
EQ2 —— (EQ2b
(EQ20), P (BQ2)

—pp
— ApgAp'q

EQ2a was proved in 79s and EQ2b in 95s. Attempts to prove EQ2 from the
combined axiomatization augmented with the two lemmas were not successful.
However using only PCH augmented with the two lemmas produced a proof
of EQ2 in 6s (the redundancy in the combined axiomatization clearly affected
VAMPIRE’s search in this case).

The rule EQS is used in S1° (based) axiomatizations. The analogue of Lemma 5
for strict equivalence can be proved, and the rule £QS is handled correspond-
ingly. The proofs of the analogues of £ - EQi are all trivial, because S1° based
axiomatizations include the eqs special rule, which would have been expanded
to those rules beforehand.

3.2.4  Testing the Applicability of Advanced Strategies

We use advanced strategies the applicability of which has to be proved itself.
Those parts of these proofs that depend only on the modal logic we are proving
from (and not on the axiom or rule to be proved or disproved) are executed
in the preprocessing phase, and the results of the computations are stored
along with £° and £* to represent £. The details of these preprocessing steps
are given in Sections 3.4 and 3.5 when describing these advanced strategies,
namely the strategies kripke pos and s10_pos.

The strategy kripke_pos uses a relational translation into first-order logic,
which depends on the normality of the logic £. Therefore, we try to prove
that £ is normal, i.e., closed under the rules of K. If so, those rules are added
to £°. This translation can be further improved by finding a property of Kripke
frames that characterizes £. Therefore, we identify the Sahlqvist axioms of £
and find their corresponding frame properties.

The strategy s10_pos, which uses an algebraic encoding of S1°, requires an
axiomatization of £ that consists of the axioms and rules of S1° and additional
axioms. Therefore, we try to find such an axiomatization. We also try to bring
the additional axioms into a certain form to enhance the algebraic encoding.

3.3 Direct Strategies

In this section, the direct strategies are presented. The two proving strate-
gies are purely syntactic, and the disproving strategy uses a first-order model



finder. All the direct strategies are always applicable and do not require ad-
ditional knowledge about the logics.

3.3.1 Proving

Let £ be an axiomatization produced by the preprocessing and let M’ be as
M but with an additional rule R. Obviously, we have:

Lemma 6. If R is an aziom,
M’ C Lif and only if M C Land L+ R,
and if R is not an axiom,

M CLUEMCLand LF R.

Lemma 6 is used to implement the strategy direct pos. It takes a logic £
and a rule R as input and calls a first-order theorem prover to prove L - R.

In Lemma 6, the “only if” direction does not hold for rules. This is because
deriving R from L requires showing that whenever £ contains instances of the
hypotheses of R, it also contains the appropriate instance of the conclusion.
For the “only if” direction to hold, we would need the weaker condition that
whenever M’ (which is a subset of £) contains instances of the hypotheses of
R, then L contains the appropriate instance of the conclusion. For a trivial
example, let M be the empty axiomatization, R be the rule

4

-p

and £ be any consistent non-empty axiomatization. Clearly, R is not admis-
sible in £ because L is consistent. But M’ is still empty because an axiom-
atization without axioms has no theorems even if it contains an inconsistent
rule, and therefore, M is a subset of L.

Furthermore, a theorem prover will often not even find a proof of £ F+ R,
in particular if R is a rule that is admissible in £ but not derivable. The
simplest such case arises when R is the necessitation rule and £ is an S1°-
based axiomatization of S4 or S5. The following lemma gives an inductive
admissibility criterion.

Lemma 7. Let R be of the form



for some formula F in one propositional variable p. We write F(G) for sub-
stituting p in F with G. Then M' C L if

e M CL and
o for every rule of L with hypotheses Hy, ..., H, and conclusion C, the rule
H ... H, FH,) ... F(H,)
F(C)

s derivable from L.

Proof. We need to show that R is admissible in £, i.e., whenever a formula
G is derivable, then so is F'(G). This is proved by a straightforward induction
over the theorems of £. The base case means that £ F(A) for every axiom
A. This holds due to the above condition (here n = 0). The induction step is a
rule application leading from Hj, ..., H, to C: Under the induction hypothesis
that F'(H;) is a theorem for i = 1,...,n, F(C) must be a theorem. This is
exactly what the above condition states. O]

The necessitation rule arises in the special case where F'(p) = Op. Lemma 7
is used to implement the strategy direct_ind pos, which takes £ and R as
input and calls a first-order theorem prover to prove every induction step.
Note that it would also be sufficient if the second condition quantified over
the rules of M’ instead of those of £. But since these rules include R, it is less
successful in practice.

3.3.2  Disproving

The direct strategy to disprove the subset relation M C L is to show a certain
satisfiability.

Lemma 8. If R is an axiom or rule of M, and if there is a first-order model

M of E(L)U{-E(R)}, then M L L.

This approach is implemented in the strategy direct neg, which calls a first-
order model finder to search for a model of £(L)U{= E(R)} if R could not be
proved by any positive strategy. This criterion is not complete since we only
check finite models; see Section 4 for a discussion.

3.4 Strategies using Kripke semantics

This subsection presents a proving and a disproving strategy using relational
translations, which we call Kripke-based strategies.



3.4.1 Proving

By standard first-order translation, we mean the translation based on the
relational semantics of modal logics by making worlds explicit, e.g., Up is
translated to Yw Vz (Acc(w,z) — p(z)) for an accessibility relation Acc (see
Section 4.1 in Schmidt and Hustadt (2006)). Then we have:

Lemma 9. Let

(1) L be normal,

(2) F be a set of theorems of L that are Sahlquist formulas,

(3) P be the first-order property of Kripke frames completely characterized
by F,

(4) R be the standard first-order translation of the modal formula R,

(5) R be first-order provable from P.

Then L+ R.

This result follows from Sahlqvist’s theorem (Sahlqvist, 1975). Lots of prac-
tically relevant axioms are Sahlqvist formulas, e.g., any formula of the form
F' — G where G is a positive formula and F' is constructed by applying con-
junction, disjunction and possibility to boxed atoms and negative formulas.
To compute P from F, we use the SCAN algorithm (Gabbay and Ohlbach,
1992; Goranko et al., 2004) for second-order quantifier elimination, for which
an implementation is available. 4

In our implementation, the first three steps, i.e., proving normality of £ and
computing P, are done in the preprocessing phase. The direct strategies are
used for the normality proof. Then the strategy kripke_pos computes R’ from
R, where R is the rule or axiom that is to be proved from L, and calls a first-
order theorem prover to prove R’ from P.

Note that we cannot use relational semantics in general, because Kripke se-
mantics may not be sound (e.g., for S1) or not be complete (see, e.g., Thoma-
son (1974)) for a given modal logic. It is necessary to find a set of Kripke
frames that corresponds to the modal logic and show that this set of frames
is complete for it. Lemma 9 gives the most important class of modal logics for
which this has been proved.

4 Technically, a SCAN implementation is only available for SunOS. Our Linux
system outputs SCAN command lines, and the user has to run them on a SunOS
machine and submit the result to a database.



3.4.2  Disproving

We cannot easily use the proving approach as a disproving strategy because, in
general, it only gives us a sublogic of £ that is characterized by the property
of Kripke frames. But this is not necessary anyway because the following
simpler and more general strategy is successful. We search for a Kripke model
m’ = (U, Acc, ) such that the formulas satisfied by m' include the theorems
of £ but not F, in order to prove M ¢ L for M F F; here U is the set of
worlds, Acc’ the accessibility relation, and « an assignment of truth values to
the propositional variables of F'. This means that, firstly, m’ must satisfy all
rules of £, i.e., an instance of the conclusion of a rule must hold in all worlds
whenever the appropriate instances of all hypotheses of the rule hold in all
worlds. Secondly, m’ must satisfy —F in one world.

This is non-trivial to implement. If Kripke semantics is used to translate modal
logic to first-order logic, the first-order language is not a meta-language any-
more, i.e., modal formulas are translated to first-order formulas, not to terms.
Therefore, the possibility of quantifying over all modal formulas is lost, which
is necessary to express that a model satisfies a rule. To circumvent this prob-
lem, we fix the number of worlds in U, say n, and proceed as follows: We
assume that all propositional variables are of the form p; for some natural
number j. We search for a first-order model m, from which we can construct
the Kripke model m’. Let the first-order signature ¥ contain the following
symbols: constants 1,...,n (intended semantics: one constant for every world
of U), the constants ¢t and f (intended semantics: truth values of truth and
falsity), the binary predicate Acc (intended semantics: the accessibility rela-
tion Acc’), and one constant a;; for every variable p; occurring in F' and for
every i = 1,...,n (intended semantics: a;; gives the value of the assignment
o to p; in world 7). Now let £(-) be the translation from modal logic rules and
formulas to first-order logic over ¥ defined as follows.

(1) A rule with hypotheses Hy, ..., H, and conclusion C' containing the pro-
positional variables pq,...,ps is translated to

VX110 X, Xot, oo Xan 2 ((E(HY) A ... A E(H)) — E(C))

(2) £(= FG) and £(< FG) are reduced to the other cases by replacing them
with their definitions,

(3) A formula F is translated to £(F) = 7\ Ei(F) where (F) is given by
i=1

o ENFG) = E(F) A £(G) and accordingly for the other binary propo-
sitional connectives,

o £1(~F) = £(F)

o E(OF) = A (Acc(ij) — EI(F)),

J=1



o Ei(O(F) = V (Acc(i,f) A EI(F)),

7j=1
e &i(p;) = (Xj; =) for a propositional variable p; (where the first equal-
ity sign is a meta-operator and the second one the logical symbol).

Here, the intended semantics of E(F) for a formula F is that F holds in all
worlds of m/ and that of £/(F) is that F holds in the world . With these
definitions, we have the following lemma.

Lemma 10. If F' is a theorem of M and there is an n such that a first-order
Y-model m exists satisfying the following axioms

= ¢ =d for all constants ¢ and d of %,

aj;; =t \V aj = f for all constants aj; of ¥,

E(R) for every rule R of L,

- " where F' is as EN(F) but with all variables X;; replaced with a;;,

then M € L.

Proof. From m, m’ is constructed by

e U: the universe of m minus the interpretations of ¢ and f,

e Acc: the restriction of the interpretation of Acc to U,

e for a variable p; of F' and a world ¢ of U, a(p;)(7) is true if (a;; = t) holds
in the model, and false if (a;; = f) holds.

Let T be the set of modal formulas that hold in all worlds of m’. Then, we
observe that the above translation indeed has the intended semantics, i.e., if
for a rule R, € (R) holds in m, then if 7' contains the hypotheses of R, T" also
contains the conclusion of R. Therefore, T' C L. And also by the translation,
since = F” holds in m, F' does not hold in world 1 of m/, and therefore F' & L.
Because F' is a theorem of M, we have M ¢ L. O

This criterion can be applied regardless of whether £ has a complete Kripke
semantics, £ does not even have to be normal. Whereas for the proving case,
the lack of a complete Kripke semantics threatens soundness, for a disproving
strategy, it only threatens completeness, which is harmless.

Lemma 10 is used to implement the strategy kripke neg, which executes the
above translation and calls a first-order model finder to search for the model m.
Experiments showed that very low values of n, e.g., n = 3, already lead to very
satisfactory results. For example, when trying to show S1 ¢ S1° with F' = M6,
our test runs returned m’ as U = {0, 1,2} and Acc := U*\{(1,1), (1,0)} with
the only constant p; being true in the worlds 0 and 1 and false in world 2.



Indeed, m' satisfies all rules of S1° (This is always the case if all worlds of m’
are a successor of some world.), and M6 does not hold in world 0.

3.5  Algebraic Strategies

In this section, we describe an algebraic strategy for exploring extensions of
S1°. For a modal logic £ we construct a Boolean algebra II* such that we can
convert reasoning about formulae in £ to algebraic reasoning about IT¢. In
general, this procedure could be applied to any modal logic, but we focus on
extensions of S1°, for which the other strategies are not very successful.

Originally, the idea of using algebraic means to analyze the structure of modal
systems appeared in (McKinsey, 1941), and it was further developed by Tarski
and Jonsson (Jonsson and Tarski, 1951, 1952).

Since the focus of the paper is on the empirical results, we will only present
the main theorems that are required to describe the strategy and only sketches
of the proofs. The complete derivation of the theoretical background can be
found in (Pudlak, 2006).

3.5.1 Theoretical Basis

First, let us give definitions of a few concepts that we shall use often through-
out this section.

Definition 11 (Strict formulae). We shall call a formula strict if its topmost
connective is O or =.

One of the defining rules of S1° is the substitution of strict equivalents EQS
(recall Definition 2). Therefore, we can factor the set of formulae by strict
equivalence and explore the constructed factor. The following lemma summa-
rizes the main properties. This can be proved easily from basic properties of
S1°, and therefore, we omit the proof.

Lemma 12. Let L be an extension of S1°. If we construct the (Lindenbaum-
Tarski) algebra of L by factoring the modal formulae by strict equivalence,
then the algebra is a Boolean algebra defined by F NG = ANFG and F = —F.
Its top element T s the class of propositional tautologies, and we write T to
abbreviate any such tautology whose variables are used nowhere else.

Furthermore, if we view the algebra as a lattice, the relation L= FG is the
ordering of the lattice. In particular, L == FG if and only if L = FAFG
(which is the same as L < — FGT ).



Looking at extensions £ of S1° our aim is to express £ + F' using strict
equivalence. Then we are able to express it as an equality in the algebra. It
is not difficult to express the trueness of strict formulae, which can again be
proved easily using basic properties of S1°:

Lemma 13. S1° - OF if and only if S1° -< FT.

However, we would like to be able to express trueness of all formulae. Let
us first examine the special case that the extension is formed by just strict
axioms.

Lemma 14. If L is an extension of S1° that can be constructed from S1° by
qdding onlg s?fm'ct axioms, then the rule DLTF (or equivalently ﬁ)
1s an admissible rule of L. In other words, OT 1is the weakest true formula of
the extension with respect to strict implication.

Proof sketch. This is shown by induction on the proof of F. Since all the
axioms are strict, the base case follows from Lemma 13, and we omit the
induction step. O

The next lemma shows that if the extension is formed by adding arbitrary
axioms, we can add a new logical constant 7 (a connective of arity 0) that will
represent the weakest true formula:

Lemma 15. Let L be the logic S1° extended by the axioms H, ..., H,. Let
us construct an extension L. of this logic by adding a new symbol © to the
language of L and by adding the axiom and the rule

Ay

F
R, :
=7l

<07" equivalently (:>FT>
—T

Then, L, is a conservative extension of L, that is if I does not contain w,
then L. = F if and only if L+ F. Moreover, L, &= F if and only if L, F=7F,
which is the same as L, < —7FT.

Proof. In the proof we shall often replace 7 in a formula F' by another formula
G. F[m ~» G] is the formula obtained by replacing all occurrences of the symbol
min F by G.

We shall first prove two auxiliary propositions and then use them to prove the
main statement.



(1) If £'+ F in an extension £ of S1° (F' may or may not contain 7) then
there is a proof® of F' such that the first part of the proof consists only
of applications of the rule of substitution for propositional variables to
axioms, and the rest of the proof uses only the remaining three rules
(substitution of strict equivalents, strict detachment and adjunction).

Proof. 1f we examine the three remaining rules, we see that the rules are
closed under substitution for propositional variables. Instead of deriving
F by one of the three rules and then substituting for variables, we can
first substitute for variables and then apply the particular rule. Hence, we
can propagate all uses of the rule of substitution for variables backwards,
until the substitution is performed on only the axioms.

(2) If we can prove a formula F' in £, without using the rule R, then there
is a formula E (not containing 7) such that £, = E and such that we
can prove L, = AETF|[r ~» AE7| without using R,.

Proof. By (1) we can construct a proof of F' of the form

Gi,...,Gp Hy,... H,
—_——
instances of the axioms only the three remaining rules being used

where H,, = F. Let E be the formula A...AG; ...G. This formula is
surely true. We shall prove by induction on the length of the proof of H;
that £, F= AE7H; for 1 <i <n. And moreover, each of the proofs will
not use R,.

It is clear that L, F=AE7G; for all Gs. By examining the all possible
rules we show that £, = A EmH,; assuming that it is true for all H;s
(1 <j <1). Now, since L, - AET and since we have never used the rule
R, we can replace m by AlEm and get a proof of the formula

= ANENETF[m ~ N NET| == ANNEETF |1 ~> NET| == ANETF |1 ~~> NET].

We now prove the main statement of the lemma. Let F' be a formula proved
inside £, such that F' does not contain the symbol 7. We shall show that F
can also be proved just inside L.

First, we use induction on the number of applications of R, to prove that if G
is any formula provable inside £, then there is a formula D such that we can
construct a proof of G[r ~» D] without using R.. Let Hy,..., H, be the proof
of G and let H; be the first application of the rule R.. Thus, H; is = 7H,

® By a proof of I/, we mean a sequence G1,...,G, such that G,, = F and each G;
is either the axiom of £ or Gj is derived from some of G, ...,G;_1 using one of the
rules of L.



where 1 < j < i < n. By (2) we can find a formula £ and construct a proof
of = ANEmH;[m ~» NE7| without using R,. Then the sequence

(proof of = ANEmH,[r W/\E?T]), Hy[r ~NET), ..., Hy|m ~> NET]

is a proof of G[m ~» AET]. If some Hy (1 < k < n) is the axiom A, : 7, then
Hi|m ~ NEm] = AET is a provable formula, and if some Hy == 7wH,, is the
result of the application of the rule R, to some formula H,,, then Hy[m ~-
NET) == ANEnH,,[r ~~ AET|. To prove it, we apply R, to Hp[r ~» AET],
get L, F= nH,, [t ~> AE7], and by combining it with £, F= A Enr we get
L. = ANETH, [ ~ NET]|.

Recall that H; is the first result of the application of R,. Since H;[m ~» AET]
is just = AEmH;[m ~» AET|, we have proved G[r ~» AET| using one less
application of R,. By induction hypothesis, we can then prove G[r ~» D] for
some formula D without using R, at all.

Thus, since the formula F', whose proof we are looking for, does not contain
7, we can construct a proof Fi, ..., F,, F' of I without using the rule R,. Now
we replace m by an arbitrary axiom (we choose M/) and the sequence

Fi[m ~>=pAppl, ..., Flm ~>=pApp], F

is a proof of F' without 7 at all, hence a proof within L. O

The extensions with the added symbol 7 have one significant disadvantage —
rules cannot be disproved. If we prove that a rule is an admissible rule of £,
then it is surely an admissible rule of £. But the case where a rule is not an
admissible rule of £, is problematic. For example, the necessitation rule DLF

is an admissible rule of S4, but not a rule of S4, since we know nothing about

Ox. Clearly, finding out that % is not a rule of S4, gives no information

about admissibility of the rule in S4.

Therefore, we add m whenever possible and finally obtain the following theorem
as the basis of our strategy.

Theorem 16. Let L be the logic S1° extended with the axioms Hy, ..., H,. Let
1% be the free algebra defined by the theory Def given in Section 2.3 extended
with constants true and 7, and the following azioms® (where, for brevity, we

6 The relation (1) is an implication of equations. Thus, these equational relations
do not form a variety but a quasi-variety.



omit the universal quantifiers):

and(X,Y) = and(Y, X)

and(X, and(Y, 7)) = and(and(X,Y), Z)

and(X,or(X,Y)) =X

and(X, or(Y, 7)) = or(and(X,Y), and(X, 7))

true = not(and(X, not(X)))

and(s_impl(X,Y), s_ampU(Y, Z)), s_impL(X, Z)) = true
7, necess(true)) = true

wmpl
wmpl
impl(m, necess(X)) = true — X = true (1)

m,e(Hy)) = true

~—~ N /N

wmpl

impl(m,e(H,)) = true
(1) If all the axioms Hy, ..., H, are strict, we also add the equation
T = necess(true)

Then L+ A for a formula A if and only if
IT° FFOL smpi(necess(true),c(A)) = true
(2) If some of the axioms are not strict, then L+ A if and only if

IT* FOL smpi(m, e(A)) = true

Proof sketch. The axiom A, : m and the rule R : :f; T in the extension £,
from Lemma 15 together with the rule of strict detachment guarantee that
deriving £, F= 7 is equivalent to deriving £, = G and hence equivalent to
L+ G, if G does not contain 7. If in addition all the axioms H,, ..., H, are
strict then the conditions of Lemma 14 are satisfied and we can explicitly set
T = necess(true).

It can be easily proved that for all these equations the corresponding equiv-
alences are true in the corresponding system £,. Rule (1) is just Lemma 13.
The rule of substitution of strict equivalents justifies combining equivalences
in extensions of S1° just in the same way as equations, therefore anything we
derive from the equations can be derived as an equivalence within £, as well.

Now, let us prove the opposite, that if £ F G then we can derive
impl(m, e(G)) = true

using the equations. We shall prove that by induction on the number of steps
of the proof of a formula GG. This is trivial for the additional axioms Hy, ..., H,



of £ and it can be also easily shown for the axioms M1-M5 of S1°. We then
complete the proof by examining the last rule from the proof of G and showing
that if we can derive the equality for all preceding formulae in the proof then
we can derive the equality for G. ]

3.5.2  Implementation

The algebraic strategy for an axiomatization £ with axioms A and other rules
R is prepared by the following steps which are executed in the preprocessing
phase:

(1) Try to prove all the axioms and all the rules of S1° from L. If successful,
then £L=S51°+ A+ R.

(2) For every rule R € R try to prove R from S1° + A. If successful, then
L=51°+ A

(3) Try to prove that the rule % is admissible in S1° + A.

(4) Construct A’ from A as follows: For every every axiom F' € A that is not
strict, prove S1° + A F OF and replace F' in A with CJF. If successful,
then £ = S1°+ A’

The mentioned proofs are attempted using the direct proving strategy. Then
Theorem 16 yields the soundness of the following strategy, which is called to
prove or disprove R from L:

e If steps 1 to 4 have been successful, construct the algebra I3 4" with the
additional equation m = necess(true). Call a first-order theorem prover or
model finder to prove or disprove R, respectively.

e If only steps 1 and 2 have been successful, construct the algebra
(without the additional equation). If R is an axiom, call a first-order theorem
prover or model finder to prove or disprove R, respectively. If R is not an
axiom, call a theorem prover to prove R (i.e., the strategy is not applicable
for disproving rules).

H51°+A

4 Results

We ran our implementation on all 121 pairs of axiomatizations of the modal
logic challenge on a machine with an 3.0GHz PC with 1GB memory, running
Linux 2.6. For the proving strategies, we used the prover VAMPIRE 7.45 (Ri-
azanov and Voronkov, 2002) with a time limit of five minutes, and for the
disproving strategies we used the model finder PARADOX 1.3 (Claessen and
Sorensson, 2003) with 8 elements per model for the direct and algebraic strate-
gies and 3 worlds per Kripke-model for the Kripke-based strategy. All tools



were used with default settings. To compare the strategies against each other,
we repeated the experiment three more times switching off the Kripke-based
or the algebraic strategies or both, respectively.

The results are given in Fig. 6. For the run with all strategies switched on, we
took the run time. First all axiomatizations went through the preprocessing
which was timed independently. Then for every pair (£, M) of axiomatiza-
tions, both directions of the comparison were run and timed separately. The
results of (dis-)proving M from L are given in row £, column M. Remember
that when (dis-)proving M from L, the system tries to prove every rule or
axiom of M from L trying every applicable proving strategy. The strategies
were applied in the order Kripke-based, algebraic, direct. If that fails, it tries
to disprove the relationship.

It can be seen that the system can solve all but six instances of the chal-
lenge. In all five attempted derivations of K-based axiomatizations from S5,
which failed even when all strategies were used, the direct strategies failed
only because the induction step for the axiom B in the derivation of Nec in
the strategy direct_ind pos failed. Thus normality could not be established
either, and the Kripke-based strategies could not be applied. The algebraic
strategy was not successful either because the S1°-based axiomatization in-
volves a non-strict axiom, which makes it less efficient. Note that because S4,,
does not have the axiom B, we could prove more inclusions from S4, than
from the stronger system S5,. The sixth failing case is to disprove S1° from K.
Here the problem is that only those axioms and rules that could not be proved
are used as potential counter-examples. A stronger strategy could apply the
unproved rules to generate more formulae that may be counter-examples.

The preprocessing times are very high because the preprocessing already in-
volves proving tasks, and every failed proving attempt takes five minutes. In
particular, the ultimately failing attempts to establish normality lead to very
high preprocessing times. On the other hand, this significantly reduces the run
time spent in the comparison phases.

The execution time for the comparisons where the inclusion must be disproved
is extremely high. This was to be expected because disproving is tried only
after all proving strategies have failed. A reimplementation should switch be-
tween trying to prove and disprove the inclusion. Due to the preprocessing,
when the inclusion can be proved, the execution time is either very small or
medium. This mainly depends on how often a strategy is invoked that fails.
For example, proving an S1°-based axiomatization from itself can take surpris-
ingly long because the algebraic strategy may time out for one rule, which is
then proved instantaneously by the direct strategy. All proved inclusions take
less than 900 seconds, i.e., there are at most two failing proving attempts.
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P: Preprocessing time in minutes

c or ¢ in row £, column M: M C L or M € L, respectively
number: (dis-)proving time in seconds

e or o: system returned correct answer or failed, respectively
bottom symbol: only direct strategies used

middle left symbol: direct and Kripke-based strategies used
middle right symbols: direct and algebraic strategies used
top symbol: all strategies used

Fig. 6. Experimental Results

When comparing the strategies, we find that the Kripke-based and the alge-
braic strategy complement each other nicely. This is not surprising since the
former is strong for normal logics and the latter for S1°-based axiomatizations.
It cannot be seen from the table that the direct proving strategy was not su-
perfluous: Apart from being needed to establish applicability of the other two
more sophisticated strategies, it occasionally succeeded when the other ones
failed, e.g., in the example above. Furthermore, the inductive direct strategy
direct_ind _pos was often needed to prove the necessitation rule.

The disproving results show that the direct disproving strategy was never



successful. The reason for the failure is that only finite models are considered,
while the first-order universe of the model needs to contain an interpretation
of every formula. Using Herbrand models promises to be a more successful
strategy, which is possible using the DARWIN model finder (Baumgartner et al.,
2005). However, since the other two strategies were so successful, we have not
pursued this. In general, we were surprised to find the disproving cases to be
the much simpler than the proving cases.

5 Conclusion and Future Work

We have presented a system that approaches the open challenge problem of
automatically determining the subset relationship between modal logics. The
correctness of the system is based on theoretical development that in turn
depends on successful proofs, in order to admit the various preprocessing steps
(e.g., the proofs that show equivalence of the four axiomatizations of PC) and
comparison strategies (e.g., proofs of the congruence rules to admit efficient
equational reasoning). The full system has been tested on 121 pairs of 11
axiomatizations of 7 common modal logics. Only six cases could not be solved
because of, in total, two failing subcases, thus obtaining a high degree of
empirical success.

Future work will focus mainly on improving the efficiency and usability of
the system. It may prove useful to develop heuristics that govern the order of
strategy application. The system should switch between trying to prove and
trying to disprove an inclusion. It is also promising to conduct experiments in
order to further optimize the time limits for proving and the model sizes for
disproving attempts or to change these values dynamically.

Only minor improvements of the underlying theoretical results are necessary.
In particular, the strategy direct_neg should be improved to check infinite
models. If there are rules that cannot be proved, they should be applied a few
times to generate theorems which can serve as potential counter-examples for
the disproving strategies. It may also be worthwhile to investigate whether
an algebraic treatment of normal logics is more powerful than using Kripke
semantics. Of course, it is generally interesting to consider integrating more
strategies, e.g., the decidability results of Rybakov (Rybakov, 1997), if they
can be formulated to apply to big classes of logics with decidable applicability
conditions.
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