
Extracting Theory Graphs from Aldor Libraries

Florian Rabe1 and Stephen M. Watt2

1 Computer Science, University of Erlangen-Nuremberg, Germany
2 David R. Cheriton School of Computer Science, University of Waterloo, Canada

florian.rabe@fau.de and smwatt@uwaterloo.ca

Abstract. Aldor is a programming language for computer algebra that
allows natural expression of algebraic objects while also allowing compi-
lation to efficient code. Its language primitives, however, do not corre-
spond exactly to those of modern proof assistants nor to those of data
formats used in mathematical knowledge management. We discuss these
difficulties and export the Aldor library as a diagram in the category of
theories and theory morphisms, using a simplified model of the Aldor
language that retains its essential expressivity. This allows us to capture
a rich set of expert-designed interfaces for use in mathematical knowledge
management settings.

Background

Aldor emerged from the Scratchpad II project at IBM Research, developed as
a generalization of a language first described in [3] and known first as A♯ [9],
and the Axiom Library Compilerbefore its release as Aldor as an independent
package. Types are run-time values, with run time domains providing abstract
data types, and categories qualifying domains by requiring certain operations or
properties. The application to symbolic mathematical computation influenced
the design to use dependent types pervasively, conditional run-time category
membership, and ex post facto type extension [7,8].

Theory graphs are categorical diagrams of theories using truth-preserving
compositional interpretations as morphisms between theories. They are an im-
portant language-independent tool for high-level knowledge representation, in-
terrelating diverse constructs, and modular theory development [2]. A critical
choice in the design of formal languages for mathematics is whether theories and
morphisms are provided by a meta-layer formalism (which is always possible
and relatively straightforward) or built into the language as first-class objects
(which greatly increases both expressivity and complexity). For mathematical
knowledge, the built-in design is very appealing because it enables using theories
as the types of mathematical structures, thus elegantly capturing mathematical
practice. Thus, many systems choose it, including Aldor. But the meta-layer de-
sign is superior for integrating developments across different languages, systems,
and libraries because they can share the theory layer, which provides exactly
the interfaces needed for interoperability. This poses a recurring challenge for
the integration of mathematical software systems.

In this paper, we present (i) a system for translating Aldor libraries into the
language-independent theory graph formalism provided by Mmt [6], and (ii) the
data obtained by translating the available Aldor libraries in this way. The result
comprises 440 theories and morphisms. This is valuable because (i) it makes the
(so far unpublished) Aldor libraries accessible to the general community and (ii)
provides insights into the general issue of connecting the built-in and meta-layer
design choices. In particular, our work can serve as a starting point for porting
the Aldor library to or as an interface for integrating Aldor computations in
other mathematical software systems.

Modeling Aldor in MMT

As a running example we use the definition in Figure 1, based on
∑it

[1]. Here
the function ResidueClassRing takes two arguments R and p and returns a

define ResidueClassRing(

R: CommutativeRing, p: R): Category ==

CommutativeRing with {

modularRep: R -> %;

canonicalPreImage: % -> R;

if R has EuclideanDomain then {

symmetricPreImage: % -> R;

if R has SourceOfPrimes then

if prime? p then Field;

} }

Fig. 1. ResidueClassRing in Aldor

theory (called a category in
Aldor). Theories are used as
types akin to record types,
and their elements (called do-
mains in Aldor) provide defi-
nitions for all abstract fields
of the category. Each Aldor
domain provides a representa-
tion type (written %), which
corresponds to a carrier set.
The name of a domain dou-
bles as a reference to that
representation type, mimick-
ing the mathematical practice of using the same name for a structure and its
carrier. Here R is a domain, typed by a previously defined category, and p is an
element of the carrier of R.

The category is defined to extend the category CommutativeRing with sev-
eral declarations. Critically, Aldor allows conditional declarations: if R addition-
ally has category EuclideanDomain (an extension of CommutativeRing), then
ResidueClassRing is defined to also declare symmetricPreImage, and if R ad-
ditionally has category SourceOfPrimes, ResidueClassRing is defined to also
include the category Field. For example, ResidueClassRing(Integer, 7) ex-
tends Field with all three listed operations because the domain Integer has
those two categories.

Representing Aldor Primitives We use a manually written Mmt theory
Aldor to declare the about 30 primitive operators of Aldor.3 The theory Aldor

occurs as the governing language (called meta-theory in Mmt) of all theories we
generate from Aldor libraries.

For simplicity, we have not formalized Aldor in a logical framework, instead
we declare it directly as a primitive language in Mmt. Therefore, the constants

3 This theory can be found at https://gl.mathhub.info/aldor/language/.

2

https://gl.mathhub.info/aldor/language/

in Aldor are untyped and provide only notations (via the # symbol). For exam-
ple, we declare an operator Qualify # L1 $ 2 for Aldor’s primitive operation
modularRep $ C of accessing the field modularRep of some domain variable C of
category ResidueClassRing. Mmt’s notation language is expressive enough to
mimic many details of Aldor’s concrete syntax such as the $-notation for qual-
ified names. These Mmt constants occur as the heads of the Mmt expressions
representing Aldor expressions. For example, we export the expression above as
the following Mmt object (here given in OpenMath XML syntax):

<OMA><OMS cd="aldor" name="Qualify"/>

<OMS cd="ResidueClassRing" name="modularRep"/><OMV name="C"/></OMA>.

Interpreting Categories and Domains as Theories and Morphisms
Category-valued Aldor functions become parametric theories in Mmt. For ex-
ample, Fig. 2 shows the HTML+MathML rendering produced by Mmt from our
export of our example theory. The two kinds of declarations in Aldor categories
(typed constants and category extensions) can be directly represented using the
analogous features of Mmt.

If a domain is declared at top level, it can be seen as a theory morphism
from its type (which must be a category and thus be represented as an Mmt
theory) to the empty theory, i.e., the Mmt theory Aldor. More generally, a
domain-returning function can be represented as a theory morphism into the

Fig. 2. ResidueClassRing in MMT

anonymousMmt theory declar-
ing the function’s arguments.
If the type of a domain is
the union of some Aldor cat-
egories, the domain of the
Mmt morphism is the corre-
sponding union of Mmt the-
ories. If the type is an anony-
mous category, we generate
a name for it and add it to
the Mmt theory graph. Fi-
nally, Aldor allows domains
typed by an anonymous cat-
egory and no definiens; this is Aldor’s way of grouping statically available con-
stants. We represent such domains as Mmt theories.

The Implicit Carrier Type The type % is built into every Aldor category
and treated specially by the system. We represent this in Mmt by manually
writing a special theory Carrier that declares only a type %. This theory is then
included by every theory generated from an Aldor category. In Fig. 2, this include
is not present explicitly because it is already inherited from CommutativeRing

by composition of inclusions.
Each domain must define the name Rep to define the carrier set. In the

language of theory graphs, this is simply the assignment to the constant %, and
we translate it accordingly in the Mmt theory morphism. To represent the Aldor
type system correctly, we have to add a coercion rule that turns every use of an
Aldor domain R in a position where a type is expected into the expression %$R.

3

Categories as Types Contrary to Aldor categories, Mmt theories cannot
be meaningfully used as types directly. In fact, Mmt does not impose any type
system at all. Instead, it is the task of the meta-theory to declare appropriate
constants and typing rules. We have previously presented a solution for using
theories as types in [5], and we follow the same approach here: the constant
Category of the theory Aldor serves as the type of categories, and we provide
the rules

theory T includes Carrier

T : Category

c : Category

c : type

to turn each category (including those that are created dynamically) into a type.
Thus, we can represent the type of the variable R in the running example simply
as an OpenMath object referencing the theory ResidueClassRing.

Conditional Declarations Mmt does not allow for conditional declarations,
and intentionally so because that makes it statically undecidable what the names
provided by a theory are. We found two novel solutions to encode Aldor’s con-
ditional declarations that will have to be evaluated in the future.

First, we extend our representation of Aldor’s type system with a propositions-
as-types principle and represent the condition as an additional argument. For ex-
ample, in Fig. 2 the condition of the constant symmetricPreImage is represented
by the type ⊢ R Has EuclidenDomain (which uses Aldor’s built-in operator Has
for testing if a domain implements a category). This requires providing a proof
every time the constant is used. In Aldor these proof obligations are discharged
by direct computation, which amounts to a very simple sound-but-incomplete
theorem prover. Therefore, we do not synthesize proof terms for them and in-
stead generate a placeholder for an unknown subterm to be reconstructed by the
reusing application.

This approach does not work for conditional includes though. Therefore, we
developed a second solution that is more involved but would also be applicable to

Fig. 3. ResidueClassRing theory graph fragment

for every conditional declara-
tion, we produce a nested the-
ory that declares first the con-
dition as an axiom and then
the actual declaration. For ex-
ample, in Fig. 2 the inclusion
of Field is guarded by the
conjunction of the two con-
ditions in whose scope it oc-
curs. We need to generate a
name for this new theory, and
we use some heuristics to pick
a helpful name for it, in this
case EuclideanDomain. Now
given a proof of the condition,
we can construct a theory morphism from the nested theory into its parent, via
which the conditional declarations can be accessed.

4

Representing Aldor Libraries as MMT Theory Graphs The Aldor dis-
tribution includes six libraries, but we focus on the two that have the most reuse
value: the base library and the algebra library. We follow the best practice [4]
of exporting a system-near export that is then imported into the target system
using a general purpose data format (in our case: Lisp S-expressions) as an in-
termediate representation. We have adapted the Aldor compiler to produce the
intermediate representation (as one .axy file for each of the 321 Aldor source
files available), and we have written an Mmt import tool that implements the
representation described above. The (very verbose) intermediate representation
makes up 360 MB (18 MB gzipped). This yields 440 Mmt theories and mor-
phisms, written out as OMDoc files totaling 0.5 MB, which is similar in size to
the zipped Aldor sources. The import time is on the order of 1 minute on mod-
ern laptops. A fragment of the resulting theory graph is shown in Figure 3. Here
the conditional inclusion from our running example would appear as an edge
from Field to ResidueClassRing/EuclideanDomain, which our theory graph
layouting algorithm currently places it outside of the screenshot. We have also
generated many smaller graphs representing individual parts of the library.We
are able to release the generated .axy and OMDoc files and theory graphs. These
are available at https://gl.mathhub.info/aldor/distribution and can be
regenerated by running Mmt.

Conclusions and Future Work

We have seen that the algebraic framework of the Aldor language and libraries
carries over in a natural way to Mmt theories. Certain language features, in-
cluding conditional categories and ex post facto extensions appear to be useful
more generally and we anticipate incorporating these in Mmt.

References

1. M. Bronstein. SUM-IT: A strongly-typed embeddable computer algebra library. In
Proceedings of DISCO’96, pages 22–33. Springer LNCS 1128, 1997.

2. W. Farmer, J. Guttman, and F. Thayer. Little theories. In Automated Deduction—
CADE-17, pages 115–131. Springer, LNCS 607, August 2000.

3. R.D. Jenks and B.M. Trager. A language for computational algebra. ACM SIG-
PLAN Notices, 16(11):22–29, November 1981.

4. M. Kohlhase and F. Rabe. Experiences from exporting major proof assistant li-
braries. Journal of Automated Reasoning, 65(8):1265–1298, 2021.

5. D. Müller, F. Rabe, and M. Kohlhase. Theories as types. In D. Galmiche, S. Schulz,
and R. Sebastiani, editors, Automated Reasoning, pages 575–590. Springer, 2018.

6. F. Rabe and M. Kohlhase. A scalable module system. Information and Computation,
230(1):1–54, 2013.

7. S.M. Watt. Handbook of Computer Algebra, chapter 4.1.3 Aldor, pages 265–270.
Springer Verlag, 2003.

8. S.M. Watt. Post facto type extension for mathematical programming. In Proc.
Domain-Specific Aspect Languages, pages 26–31. SIGPLAN, ACM, October 2006.

9. S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, J.M. Steinbach, and R.S. Sutor.
A first report on the A♯ compiler. In Proc. ISSAC, pages 25–31. ACM, July 1994.

5

https://gl.mathhub.info/aldor/distribution

	Extracting Theory Graphs from Aldor Libraries

