
Morphism Equality in Theory Graphs

Florian Rabe[https://orcid.org/0000−0003−3040−3655] and Franziska
Weber[https://orcid.org/0000−0003−3379−5922]

University Erlangen-Nuremberg, Germany

Abstract. Theory graphs have theories as nodes and theory morphisms
as edges. They can be seen as generators of categories with the nodes as
the objects and the paths as the morphisms. But in contrast to generated
categories, theory graphs do not allow for an equational theory on the
morphisms. That blocks formalizing important aspects of theory graphs
such as isomorphisms between theories.
MMT is essentially a logic-independent language for theory graphs. It
previously supported theories and morphisms, and we extend it with
morphism equality as a third primitive. We show the importance of this
feature in several elementary formalizations that critically require stating
and proving certain non-trivial morphism equalities. The key difficulty of
this approach is that important properties of theory graphs now become
undecidable and require heuristic methods.

1 Introduction and Related Work

Theory Graphs and Motivation Logical theories are an essential meta-level
concept for encapsulating a set of declarations and axioms. For example, the
theory Group of first-order logic declares a base set U , a binary operation ◦ on
U , a unary operation −1, a neutral element e, and the usual axioms.

Theory morphisms extend this to a category. A theory morphism from S
to T interprets S in T or, equivalently, constructs a model of S if provided a
model of T . Formally, it maps every constant declared in S to a T -expression
in a way that the homomorphic extension preserves all types and theorems. For
example, we can define the theory DivGroup of division groups, an alternative
way to define groups, using a binary division operation /. Then we can define
a theory morphism GtoDG : Group −→ DivGroup by mapping x ◦ y to x/(e/y),
x−1 to e/x and e to e and proving all Group axioms of the thus-defined group.

The category of theories has proved extremely valuable in the large scale
structuring of mathematical formalizations, especially when combined with mod-
ule systems [FGT92,SW83,AHMS99]. A diagram in this category is also called a
theory graph. Many formal systems provide support for constructing large the-
ory graphs over various logics, including proof assistants such as IMPS [FGT93]
and PVS [ORS92], specification systems such as Hets [MML07] and Specware
[SJ95], and logical frameworks such as LF [RS09] and Isabelle [KWP99].1

1 The individual theory graphs are implicit in the respective libraries and usually not
the subject of specific publications.

However, maybe surprisingly, none of these systems includes support for
morphism equality. In category theory, a diagram consists of three compo-
nents: a set of objects (nodes of the theory graph), a set of atomic morphisms
between objects (edges), from which the set of morphisms (paths) is generated
by composition, and a set of pairs of equal morphisms between the same objects
(equality of two paths between the same nodes). But practical systems for theory
graphs have restricted attention to the former two components even though the
latter is critical for the diagram chase–style arguments that are a hallmark of
category theory.

For example, we can give a second morphism DGtoG : DivGroup −→ Group

that maps (among others) x/y to x ◦ y−1. We can then see that DGtoG; GtoDG =
idDivGroup and GtoDG; DGtoG = idGroup, i.e., that Group and DivGroup are isomor-
phic. If we encode theories and morphisms in some type theory (e.g., as record
types and functions or as signatures and functors), it is often possible to encode
these equalities correspondingly.

But existing systems that specifically work with theory graphs and the cate-
gory induced by them, do not make it possible, let alone easy, to express, prove,
and use such equalities as a part of the theory graph development. Our goal is to
design a theory graph language that supports defining theories and morphisms
and proving equalities of morphisms.

Application to Realms A parallel motivation of our work was provided by the
goal of formalizing realms.

Working with multiple isomorphic formalizations of the same mathematical
theory is often both unavoidable and cumbersome. In 2014, Carette, Farmer, and
Kohlhase introduced the concept of realms [CFK14] as a high-level structuring
feature for formal mathematics. Their basic idea is to provide an abstraction
layer at which multiple isomorphic formalizations are identified. For example,
users should be able to ignore the difference between Group and DivGroup: when
creating a group, giving either ◦ or / should suffice; and when using a group,
both should be available.

However, while the idea of realms was well-received (best paper award), nei-
ther [CFK14] nor any follow-up work conducted a detailed investigation of how
realms should be implemented in a practical system.

In a work-in-progress paper [RW22], we partially formalized several examples
that were given informally in [CFK14]. A key result of these case studies was that
theory graph languages with morphism equality are needed to formalize realms.
This motivated the present paper, in which we introduce such a language.

Contribution and Overview We start with the Mmt language [RK13], which
already allows defining theories and morphisms. Mmt is independent of the
base language, but some assumptions about the base language are needed to
state equalities — therefore, we work with Mmt’s instantiation with the logical
framework LF [HHP93].

Our main contribution is introducing, in Sect. 4, morphism equalities to
Mmt. Concretely, we add morphism equalities as a third kind of Mmt toplevel

declaration in addition to theories and morphisms. To our knowledge, that yields
the first formal system for categories of theories in which users can state and
prove the equality of arbitrary morphisms.

We apply this language, in Sect. 5, to develop a pattern for formalizing
realms. Concretely, we formalize the realms of lattices and topological spaces.
This shows that Mmt with morphism equality can serve as a lightweight for-
malism for realms, and we anticipate this formalism to be more practical than
the more involved definition of [CFK14].

A major technical hurdle was that many intuitively true morphism equalities
do not actually hold on the nose but depend on the choice of equality. Therefore,
to support practical morphism equalities, we first extend LF in Sect. 3 in a way
that allows flexibly choosing what logic-specific equality to consider.

We begin by introducing Mmt and LF in Sect. 2.

2 Preliminaries

2.1 LF-Expressions

We use LF [HHP93] as a logical framework for defining the logics, in which we
state the theories. This is a dependently-typed λ-calculus whose expressions are
the universes type and kind, typed variables x, typed or kinded constants c, de-
pendent function types Πx : A.B, abstraction λx : A.t, and function application
t t′:

E,A,B, s, t ::= x | c | λx : A.t | Πx : A.B | t t | type | kind

Theories Σ declare constants c : A where A is a type or kind. Contexts Γ
declare variables x : A where A is a type. The type/kind of a constant and the
type of a variable may refer to previously declared constants resp. variables. We
usually use A,B as meta-variables for types, s, t for typed terms, E for arbitrary
expressions, and we write A → B for Πx : A.B if x does not occur in B and
E[x/t] for the substitution of t for x in E.

The judgments are typing Γ ⊢Σ t : A and equality Γ ⊢Σ E
expr
= E′. The rules

are standard, and we give the rules for expressions in Fig. 1.

Example 1 (Typed First-Order Logic). We sketch the definition of typed first-
order logic FOL as an LF-theory. This representation is routine [HHP93].

o : type

pf : o → type

⇔ : o → o → o
∀ : (ΠA : tp.tmA) → o

tp : type

tm : tp → type
FOL
= : ΠA : tp.tmA → tmA → o

. . .

Here o is the type of proposition, pfF is the type of proofs of proposition
F , tp is the LF-type of FOL-types, and tm a is the LF-type of FOL-terms of FOL-

type a. Note that FOL provides its own equality connective
FOL
= , which is different

Γ ⊢Σ type : kind

U ∈ {type, kind} Γ, x : A ⊢Σ E : U

Γ ⊢Σ Πx : A.E : U

U ∈ {type, kind} Γ ⊢Σ E : U Γ, x : A ⊢Σ t : E

Γ ⊢Σ λx : A.t : Πx : A.E

Γ ⊢Σ f : Πx : A.E Γ ⊢Σ t : A

Γ ⊢Σ f t : E[x/t]

Γ ⊢Σ E
expr
= E

Q ∈ {λ,Π} Γ ⊢Σ A
expr
= A′ Γ, x : A ⊢Σ E

expr
= E′

Γ ⊢Σ Qx : A.E
expr
= Qx : A′.E′

Γ ⊢Σ E
expr
= E′ Γ ⊢Σ F

expr
= F ′

Γ ⊢Σ E F
expr
= E′ F ′

Γ ⊢Σ (λx : A.E)F
expr
= E[x/F]

Γ ⊢Σ f : Πx : A.B

Γ ⊢Σ λx : A.(f x)
expr
= f

Fig. 1. Typing and Equality Rules of LF

from the LF-judgment
expr
= . We use higher-order abstract syntax for binders (e.g.,

∀A (λx : i.F) represents the proposition ∀x : A.F) and curried functions for the
connectives (e.g., ⇔ F G represents F ⇔ G), and we will use the common
notations in the sequel for those expressions.

2.2 Theory Graphs in Mmt

The grammar of the instantiation of Mmt with LF is given in Fig. 2, where
A,E, t are LF-expressions as above and ∅ denotes the empty theory graph.

G ::= ∅ | G, theory s = {σ} | G, theory s = S

| G,morph m : S −→ T = {µ} | G,morph m : S −→ T = M

σ ::= D∗ D ::= c : A | include S [= M]

µ ::= d∗ d ::= c[: A] = E | include S = M

S ::= s | S ∪ S

M ::= m | idS | M ;M | M ∪M

Fig. 2. Mmt Grammar

A theory graph G consists of theory and morphism declarations. A primitive
theory declaration theory s = {σ} introduces the theory named s given
by the list of declarations σ. The declarations in the body of a theory are of
the form c : A where c is a name and A is the type/kind of c. Alternatively,
we can introduce a defined theory by theory s = S, which defines s as
an abbreviation for a theory expression S. Theory expressions S are either
references s to theory names or unions S ∪ T of theories.

meta-vars. thy. morph.
name s m
expression S M
body σ µ

The syntax of morphisms is analogous to that of
theories. The names we use for meta-variables are sum-
marized on the right. A primitive morphism decla-
ration morph m : S −→ T = {µ} introduces the
morphism named m from S to T given by the list of
declarations µ. The declaration is well-formed if µ contains exactly one declara-
tion c[: A′] = E for every constant c : A of S such that E : m(A) holds over T .
(The type A′ is redundant and must be equal to m(A) if given.) m induces a
compositional type-preserving mapping m(−) of S-expressions to T -expressions
by homomorphic extension, i.e., by replacing every constant with the image pro-
vided by µ.

Alternatively, we can introduce defined morphisms by morph m : S −→
T = M for a morphism expression M . Morphism expressions M are ref-
erences m to morphism names, identity morphisms idS : S −→ S, compo-
sitions M ;N : R −→ T of M : R −→ S and N : S −→ T , or unions
M1 ∪M2 : S1 ∪ S2 −→ T of M1 : S1 −→ T and M2 : S2 −→ T . Every morphism
expression M defines a compositional homomorphic mapping M(−) given by,
respectively, m(−), the identity map, the composition of M(−) and N(−), and
the union of M1(−) and M2(−). In particular, we have (M1 ∪M2)(E) = Mi(E)
if E is an Si-expression.

In addition to the above, a primitive theory or morphism may contain in-
clude declarations. In a theory with name t, the declaration include S[= M]
reuses all constants of S for t. A recent and previously unpublished feature of
Mmt that will prove critical for our formalizations is that such includes may
carry a definiens M : S −→ t. Defined includes can be seen as analogous to
defined constants: from the perspective of t, (i) a morphism M : S −→ t can be
seen as an object of “type” S, (ii) an include of S specifies that t is a subtype of
S, and (iii) a definiens M specifies that t can be viewed as an instance of S via
M . In terms of object-oriented programming an undefined include is inheritance
of S into t, and a defined include is delegation from t to M for interface S. Sim-
ilarly, in a primitive morphism m : S −→ T , the declaration include R = N for
a morphism N : R −→ T reuses all mappings of N , i.e., we have m(c) = N(c)
for every R-constant c.

Example 2. We spell out our running example in Mmt syntax in Fig. 3. We
omit the axioms for brevity and only remark that axioms are treated in the
same way as constants: they are declared as constants (of type pfF for some
F) and mapped by morphisms to appropriate FOL-proof terms. Note how the
morphisms include idCarrier. This makes explicit that, e.g., GtoDG is equal to the
identity when restricted to the smaller domain Carrier.

Relative to a theory graph G, the type system uses judgments given in
Fig. 4. Due to include declarations, the semantics of a theory now depends
on the entire theory graph. Therefore, we have to index the LF-judgments for
expressions with G as well.

Fig. 5 gives the most important rules, which we explain in the remainder.
But before doing so, we state the main theorem about Mmt to solidify the

theory Carrier = include FOL, U : tp
theory Group =

include Carrier

e : tmU
◦ : tmU → tmU → tmU
−1 : tmU → tmU

theory DivGroup =
include Carrier

e : tmU
/ : tmU → tmU → tmU

morph GtoDG : Group −→ DivGroup =
include idCarrier

e = e
◦ = λx, y : x/(e/y)
−1 = λx : e/x

morph DGtoG : DivGroup −→ Group =
include idCarrier

e = e
/ = λx, y : x ◦ y−1

Fig. 3. Example Theory Graph in Mmt

Judgment Intuition

Γ ⊢G
T E : E′ typing of LF-expression over theory T

Γ ⊢G
T E

expr
= E′ equality of LF-expressions over theory T

⊢G T THY well-formed theory expression

⊢G S
M
↪→ T S included into T (M = idS if omitted)

⊢G M : S −→ T well-formed morphism expression

⊢G M
mor
= N : S −→ T morphism equality

Fig. 4. Mmt Judgments

intuition of morphisms: they preserve all judgments, i.e., the following rules are
admissible

Γ ⊢G
T t : A ⊢G M : S −→ T

M(Γ) ⊢G
S M(t) : M(A)

Γ ⊢G
T t

expr
= t′ ⊢G M : S −→ T

M(Γ) ⊢G
S M(t)

expr
= M(t′)

The rules for well-formed theories are straightforward. Technically, we
need an equality judgment for theory expressions here with rules for definition
expansion and idempotence, commutativity, associativity of union, but we omit
that for brevity.

The rules for the inclusion judgment ⊢G S
M
↪→ T build the category gen-

erated by the include declarations in theories. The morphism M is optional,
and if it is omitted, we assume M = idS . Its intuition is formalized in the rule
Lookup, which makes all constants from an included theory available to the in-
cluding theory. Consider a declaration include S in a primitive theory t. Then

we have ⊢G S
idS
↪→ t, and Lookup makes any declaration c : A of S available to

T unchanged. The second conclusion of Lookup vacuously establishes c
expr
= c.

Alternatively, consider a declaration include S = M for ⊢G M : S −→ t. Now

⊢G S
M
↪→ t, and Lookup makes the declaration c : M(A) available to T , and its

theory t = {σ} in G c : A in σ ⊢G t
M
↪→ T

⊢G
T c : M(A) and ⊢G

T c
expr
= M(c)

Lookup

theory t = in G

⊢G t THY

⊢G S THY ⊢G T THY

⊢G S ∪ T THY

theory t = {σ} in G include S[= M] in σ

⊢G S
[M]
↪→ t

⊢G T ↪→ T

⊢G R
M
↪→ S ⊢G S

N
↪→ T

⊢G R
M ;N
↪→ T

morph m : S −→ T = in G

⊢G m : S −→ T

⊢G M : S −→ T ⊢G R ↪→ S ⊢G T ↪→ U

⊢G M : R −→ U
compIncl

⊢G M : R −→ S ⊢G N : S −→ T

⊢G M ;N : R −→ T ⊢G S1 ↪→ S1 ∪ S2 ⊢G S2 ↪→ S1 ∪ S2

⊢G S1
M1
↪→ T ⊢G S2

M2
↪→ T ⊢G M1

mor
= M2 : S1 ∩ S2 −→ T

⊢G S1 ∪ S2
M1∪M2
↪→ T

⊢G M1 : S1 −→ T ⊢G M2 : S2 −→ T ⊢G M1
mor
= M2 : S1 ∩ S2 −→ T

⊢G M1 ∪M2 : S1 ∪ S2 −→ T

Fig. 5. Typing Rules for Theory Graphs

second conclusion makes c an abbreviation for M(c). Thus, defined includes are
always conservative and just add defined constants.

The rules for well-formed morphisms build the category generated by the
named morphisms. If ⊢G S ↪→ T , we do not introduce a name for the induced
embedding of S-expressions into T -expressions; instead, rule compIncl allows
composing morphisms with inclusions. In particular, if ⊢G S ↪→ T , we have
⊢G idS : S −→ T .

The judgment for morphism equality comes in critically in the two rules
in Fig. 5 that involve morphisms out of a union theory. For example, the rule
for the morphism union M1 ∪M2 : S1 ∪ S2 −→ T requires that the Mi agree on
the intersection of their domains. Formally, we define S1 ∩S2 as the union of all
named theories t that are included without definition into both Si, i.e., all t for
which ⊢G t ↪→ S1 and ⊢G t ↪→ S2. Then to say that the Mi agree on S1 ∩ S2

means that ⊢G M1
mor
= M2 : t −→ T for every such t.

Morphism equality is also critical in the well-formedness of include declara-
tions. Include declarations in theories are only well-formed if for any S, T , there

is at most one M such that ⊢G S
M
↪→ T , i.e., theories must not be included via

two different morphisms. Similarly, in a morphism m, include declarations are
only well-formed if no two different morphisms are included for the same theory.
In both cases, the formal condition checked by Mmt is that the declarations
include S1 = M1 and include S2 = M2 may only occur together in the same
primitive theory/morphism if ⊢G M1

mor
= M2 : S1 ∩ S2 −→ T , where T is the

containing theory or, respectively, the codomain of the containing morphism.

Fig. 5 omits the rules for establishing morphism equality. Generally, two
morphisms are equal if they induce the same homomorphic mapping, which
is equivalent to mapping every constant of the domain to equal expressions.
But even if the equality of expressions is decidable (as for LF), this is a far
too expensive criterion in practice — morphism equality must be checked very
frequently, and each time an expression equality check would be needed for
every domain constant. Therefore, Mmt uses an incomplete sufficient criterion
that implements diagram chase–reasoning without ever inspecting the bodies of
primitive morphisms. We defer the presentation to Sect. 4, where we change the
rules anyway.

3 Propositional Equality of LF-Expressions

Example 3 (Failure of Morphism Equality). To prove

⊢G DGtoG; GtoDG
mor
= idDivGroup : DivGroup −→ DivGroup

we must show that both morphisms map each constant to equal expressions, e.g.,

we need the equality of GtoDG(DGtoG(/)) = GtoDG(λx, y.x◦y−1) = λx, y.x/y−1−1

and idDivGroup(/) = / (where we have silently applied the necessary β-reductions).
But these terms are only provably equal in the FOL-theory DivGroup. LF, which
only uses αβη-equality, does not consider them equal.

Ex. 3 shows that morphism equality cannot easily be defined generically
at the Mmt- or LF-level because it may depend on logic-specific equalities. For
example, FOL-constants can be type, function, predicate symbols, or axioms, and
FOL does not support equality for any of them out of the box. Consider functions
f, g of type tmU → tmU . The natural choice for equality is the formula ∀x :

tmU.f x
FOL
= g x. For predicates p, q : tmU → o, it would be ∀x : tmU.p x ⇔ q x.

For types, FOL does not provide any equality, and we have to fall back to LF-
equality. For axioms, the simplest choice is a proof irrelevance rule, where any
expressions P,Q : pfF are considered equal.

Our key idea is to define LFQ by adding a propositional equality predicate to
LF that logic developers can use to spell out these equalities, so that Mmt can
consider them when checking the equality of two morphisms.

The idea of adding propositional equality to LF is not new. One approach is
to add rewriting as in Dedukti [CD07]. Another option is to add identity types
as in Martin-Löf type theory [ML74]. Our formulation below is essentially the
same as the one worked out in [Har21].

We add a kind E
LF
=A E′ for the equality of terms E and E′ of type A.

We could make this a type, but that would amount to using identity types
and be much more expressive than needed for our purposes. Because LF can

quantify over types but not over kinds, E
LF
=A E′ can only occur as the output

of LF-constants but not as input. Thus, users can declare new propositional
equalities but can never do anything with them— it remains the discretion of the

system how to use them. That is important because user-declared propositional
equalities make typing in LFQ undecidable, and implementations will only be
able to handle them to a limited degree.

The LFQ grammar extends the one of LF with

E ::= E
LF
=A E | refl | funExtE

Note that we now distinguish the kind E
LF
=A E for equality of typed terms and

the judgment ⊢ E
expr
= E′ for the equality of expressions. LFQ adds the following

rules to LF
Γ ⊢G

T A : type Γ ⊢G
T E : A Γ ⊢G

T E′ : A

Γ ⊢G
T (E

LF
=A E′) : kind

Γ ⊢G
T P : Πx1 : A1, . . . , xn : An.(E x1 . . . xn

LF
=B E′ x1 . . . xn)

Γ ⊢G
T funExtP : (E

LF
=Πx1:A1,...,xn:An.B E′)

Γ ⊢G
T P : (E

LF
=A E′)

Γ ⊢G
T E

expr
= E′

Γ ⊢G
T A : type Γ ⊢G

T E : A

Γ ⊢G
T refl : (E

LF
=A E)

The first rule enables users to declare new propositional equalities. The second
allows using funExt to show the equality of two functions by functional exten-

sionality. The other two rules map back and forth between the judgment
expr
=

and the kind
LF
= .

From now on, we work in the instantiation of Mmt with LFQ. Because Mmt
allows the modular definition of logical frameworks, and LFQ only adds construc-
tors and rules to LF, any LF-theory graph is also an LFQ theory graph.

Example 4 (FOL-Specific Equality). We extend FOL from Ex. 1 to the logic FOLQ
in LFQ by adding propositional equalities that quotient FOL-expressions:

theory FOLQ =

include FOL

eqT : ΠA : tp. Πx, y : tmA.(pfx
FOL
= y) → x

LF
= tmA y

eqF : Πf, g : o.(pff ⇔ g) → f
LF
= o g

eqP : Πf : o.Πp, q : pf f. p
LF
= pf f q

eqT makes terms LF-equal if they are provably equal in FOL. Using functional
extensionality, this implies, e.g., for two unary functions f, g : tmU → tmU

⊢ f
LF
= tmU→tmU g iff x : tmU ⊢ P : pf(f x

FOL
= g x)

The constant eqF does the same for formulas and, e.g., for unary predicates
p, q : tmA → o. The constant eqP adds proof irrelevance.

FOLQ injects its undecidable equality into LFQ, thus rendering ⊢ E
expr
= E′

undecidable. But the deep research problems associated with that go way beyond
the purpose of this paper. Instead, our plan is to use FOLQ only as the codomain
of morphism equality judgments, in which case the undecidability is manageable:

Example 5 (Morphism Equality via a Stronger Codomain). Consider the theory
graph below that summarizes our running example

FOLQ

FOL

Group DivGroupGroup ∪ FOLQ DivGroup ∪ FOLQ
GtoDG

DGtoG

The judgment ⊢G DGtoG; GtoDG
mor
= idDivGroup : DivGroup −→ DivGroup ∪

FOLQ holds. Here the same morphisms as in Ex. 3 are compared relative to
a bigger codomain in which additional propositional equalities are declared.
Thus, the resulting proof obligations (which are equalities of expressions over
the codomain) are checked relative to a stronger theory.

Indeed, we have a FOL-proof

x : tmU, y : tmU ⊢DivGroup∪FOLQ I : pf
(
x/(y−1−1

)
FOL
= x/y

)
which we can use to show ⊢DivGroup∪FOLQ λx, y.x/y

−1−1 expr
= /. The corresponding

cases for the other constants of DivGroup as well as for the dual equality of
GtoDG; DGtoG and idGroup can be shown accordingly.

Thus, Group and DivGroup are not isomorphic in the category of theories
that include FOL, but Group ∪ FOLQ and DivGroup ∪ FOLQ are isomorphic in the
category of theories that include FOLQ.

Ex. 5 shows that we can model different equality relations on morphisms
by using different codomains. This is extremely valuable because it keeps the
formalism simple by retaining a single equality judgment and uses the modularity
of the theory graph to capture different levels of equality.

4 Propositional Equality of MMT-Morphisms

It remains to extend the Mmt language in a way that can utilize the proposi-
tional expression equality introduced in Sect. 3 to prove morphism equalities. We
extend the grammar as below and explain all new productions in the remainder:

G ::= . . . | G,morpheq k : M
mor
= N : S −→ T = {κ}

| G,morpheq k : M
mor
= N : S −→ T = K

κ ::= d∗ d ::= c[: A] = E | include S = K

K ::= k | reflM | (other proof terms)

Amorphism equality declaration is a theorem named k stating the equal-
ity of two morphisms M and N , both from S to T . In the primitive case, k is
proved by giving a body κ. Just like the body σ of a primitive theory t gives the
constructors of t-expressions, and the body µ of a primitive morphism m with
domain t gives the cases of a compositional mapping of t-expressions, the body κ
of a primitive morphism equality gives the cases of the inductive equality proof
for two such morphisms.

A primitive morphism equality morpheq k : M
mor
= N : s −→ T = {κ},

where s is a primitive theory with body σ, is well-formed if:
– For every constant c : A in σ, κ contains exactly one c[: A′] = E where

⊢G
T E : (M(c)

LF
=M(A) N(c)). (The expression A′ is redundant. If given, it

must be equal to the type of E.)
– For every include R in σ, κ contains exactly one include R = K where K

is a proof term for ⊢G R
mor
= T : M −→ N .

If the domain of k is a union theory S1 ∪ S2, κ must provide cases for the
declarations of each Si. If it is a defined named theory, we expand the definiens
first and apply the definition above.

Example 6. We show one of the two isomorphism properties of our example:

morpheq k : DGtoG; GtoDG
mor
= idDivGroup : DivGroup −→ DivGroup ∪ FOLQ =

include Carrier = refl idCarrier

e : e
LF
= tmU e = refl

/ : λx, y.x/(y−1−1
)
LF
= tmU→tmU→tmU / =

funExtλx, y. eqTU (x/(y−1−1
)) (x/y) I

Both morphisms restrict to idCarrier on the theory Carrier. Consequently,
we use a reflexivity proof for ⊢G idCarrier

mor
= idCarrier : Carrier −→ DivGroup∪

FOLQ. In the declaration for e, we have (DGtoG; GtoDG)(e) = e = idDivGroup(e) so
that the reflexivity proof for LF expressions suffices. In practical implementations,
those two cases could be omitted and filled in by the system as defaults. Finally,
the declaration for / discharges the proof obligation that failed in Ex. 3 using
the proof I from Ex. 5.

If we had not omitted the axiom declarations from DivGroup, we would also
have to show the equality of the proofs assigned to the axioms. That would be
trivial due to the use of proof irrelevance in FOLQ.

In the defined case morpheq k : M
mor
= N : s −→ T = K, we require that

K is a proof term for the morphism equality judgment ⊢G M
mor
= N : S −→ T .

Originally, we wanted to support only the primitive case. However, our case
studies showed that, apart from making the syntax of theories, morphisms, and
equalities analogous, the defined case is critically important in practice. Because
propositional equality is undecidable but must be called frequently, practical
implementations must employ cheap incomplete heuristics instead of running a

theorem prover to discharge a morphism equality. But incompleteness threatens
scalability — it is imperative that users are able to workaround situations where
the system runs into a proof obligation ⊢G M

mor
= N : S −→ T that it cannot

prove. We found defined morphism equalities to be the right compromise here:
if a morphism equality is implied by the given primitive morphism equalities
but the system cannot find the proof, the user can give a defined morphism
equality to show the proof to the system. Because K is a diagram chase-style
proof term, that is orders of magnitude easier than proving a new primitive
morphism equality. We give an example in Sect. 5.

For brevity, our grammar omits the productions for morphism equality
proof terms K. They arise as the straightforward proof term assignment to
the inference system for the judgment ⊢G M

mor
= N : S −→ T , whose rules we

give now. The key rules are

morpheq k : M
mor
= N : S −→ T = in G

⊢G M
mor
= N : S −→ T

base

morph m : S −→ T = M in G

⊢G m
mor
= M : S −→ T

def

morph m : S −→ T = {µ} in G include R = L in µ

⊢G m
mor
= L : R −→ T

morphIncl

⊢G M : S −→ T ⊢G R ↪→ S ⊢G M
mor
= N : R −→ T

⊢G M
mor
= M ∪N : S −→ T

unionIncl

The first two rules are straightforward: base gives the base case of equalities ex-
plicitly proved by the user, and def expands the definition of defined morphisms.
morphIncl gives the semantics of include R = L in a primitive morphism m:
L is the restriction of m to R. unionIncl is a subsumption rule that allows
removing redundant parts in a union of morphisms.

The remaining rules are routine, and we only sketch them for brevity:

– equivalence (reflexivity, symmetry, transitivity) and congruence (substitu-
tion of equals by equals) of morphism equality

– category axioms (associativity of composition, neutrality of identity)
– semilattice properties of union (idempotence, commutativity, associativity)

Finally, we can obtain the main theorem that captures the soundness of the
morphism equality calculus: equal morphism induce equal expression mappings,
i.e., the following rule is admissible

⊢G M
mor
= N : S −→ T Γ ⊢G

S t : A

M(Γ) ⊢G
T M(t)

expr
= N(t)

It is proved by induction on the derivations of ⊢G M
mor
= N : S −→ T .

5 Case Studies

With morphism equality in place, we can now finish the two case studies that we
had to leave incomplete in [RW22].2 Both are essentially the same as in [RW22].
But we are now able to state and prove the various morphism equalities.

Topological Spaces There are many isomorphic definitions of topological space.
Even more interestingly, many of them extend closure systems, for which there
are also multiple isomorphic definitions. Concretely, our formalization consists
of three isomorphic theories for closure systems and six isomorphic theories for
topological spaces as shown in the theory graph below. Here the inner triangle
and the outer rectangle are isomorphism cycles.

OpenTop ClosedTop

ClosenessTop

ClosureTopInteriorTop

NeighborhoodTop

ClosureSystem

Closeness

ClosureOperator

Carrier

OpCd

CdCn

Cn
Cl

ClIn

InNb

Nb
Op

CsCn

CnCo

CoCs

The bodies of these theories and morphisms are inessential for our purposes here.
For example, ClosureSystem uses an intersection-closed set of subsets of the car-
rier set whereas ClosureOperator uses an idempotent mapping on subsets.

Crucially, the whole theory graph commutes. In particular, to show the iso-
morphisms, we have proved three primitive morphism equalities to show that
the inner triangle commutes and six to show that the outer hexagon commutes.
For example, we prove morpheq isoClosureSystem : CsCn;CnCo;CoCs

mor
=

idClosureSystem : ClosureSystem −→ ClosureSystem = {. . .}. While we have not
fully implemented morphism equality in Mmt yet, all proofs in the bodies of
these morphism equalities were done in and checked by Mmt.

The commutativity of the rectangles connecting the inner with the outer ring
hold definitionally: for example, include ClosureSystem = CsCn is contained in
the body of CdCn, at which point the rule morphIncl yields ⊢G CdCn

mor
= CsCn :

ClosureSystem −→ ClosenessTop. Similarly, all edges of the inner triangle
include idCarrier, which makes the triangles involving Carrier commute.

The only rectangle whose commutativity requires a non-trivial proof term
is ⊢G ClIn;InNb;NbOp;OpCd

mor
= CoCs : ClosureOperator −→ ClosedTop (∗).

This equality follows from the other morphism equalities mentioned above by
diagram chase, i.e., by applying the rules given in Sect. 4, mostly tedious uses

2 Both (as well as our running example) are available at https://gl.mathhub.info/
MMT/LATIN2/-/tree/devel/source/casestudies/2023-morpheq.

https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/casestudies/2023-morpheq
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/casestudies/2023-morpheq

of associativity and substitution. A concrete implementation of this undecidable
property may or may not manage to discharge (∗) automatically and swiftly.
If it fails, users can state a defined morphism equality to work around this
incompleteness.

To integrate all the isomorphic theories into a single realm in the sense of
[CFK14], we use Mmt’s defined includes as follows:

theory Closure =
include ClosureSystem

include ClosureOperator = CoCs

include Closeness = CnCo

theory Topology =
include Closure

include ClosedTop

include OpenTop = OpCd

include NeighborhoodTop = NbOp

include InteriorTop = InNb

include ClosureTop = ClIn

include ClosenessTop = CnCl

Here Topology can use all operations from any one of the six isomorphic the-
ories because they are all included. Critically, the definitions of the includes
ensure that all six includes refer to the same underlying topology. For example,
include ClosureTop = ClIn also includes the theory ClosureOperator, which
has already been included via Closure. Thus, checking the well-formedness of
Topology generates the proof obligation (∗). Previously, Mmt could not dis-
charge (∗), and users had no way to help it along.

Lattices We give two isomorphic formalizations of lattices in the theory graph
below: Firstly, LatticeAlgebra is based on two copies of Semilattice (with
operation ◦) given by the two morphisms meet (mapping ◦ to ⊓) and join

(mapping ◦ to ⊔). Secondly, LatticeOrder is based on an order ≤ and arises
as the union of Infimum and Supremum. Even just giving the morphism OrdAlg

(without even trying to prove it to be an isomorphism) was previously impossible
in Mmt.

The issue is subtle. The isomorphism absorb defines an infimum relation for

every semilattice by mapping ≤ = λx, y.x ◦ y
FOL
= x. By composing it with

meet, we obtain the infimum operation in algebraic lattices. Correspondingly,
we obtain the supremum by composing it with join and OpSup (which maps
≤ = λx, y.y ≤ x).

Thus, OrdAlg can be defined elegantly using include Infimum = absorb;meet

and include Supremum = OpSup;absorb;join. These two morphisms now have
to agree on Infimum ∩ Supremum = Order, i.e., we have the morphism equal-
ity proof obligation ⊢G (absorb;meet)

mor
= (OpSup;absorb;join) : Order −→

LatticeAlgebra. That in turn generates the expression equality proof obliga-

tion ⊢LatticeAlgebra (x ⊓ y
FOL
= x)

expr
= (y ⊔ x

FOL
= y) (∗). But this holds in

LatticeAlgebra only up to ⇔.
We can remedy this by proving a morphism equalitymorpheq ordersAgree :

(absorb;meet)
mor
= (OpSup;absorb;join) : Order −→ LatticeAlgebra∪FOLQ =

{≤ = funExtλx, y. eqF(. . .)}, where we use eqF to discharge (∗). With this

equality in place, OrdAlg becomes well-formed as a morphism LatticeOrder −→
LatticeAlgebra ∪ FOLQ.

Order

SupremumInfimum

LatticeOrder

Semilattice

MeetSemilattice JoinSemilattice

LatticeAlgebra

OpSupabsorb

me
et

join

OrdAlg

6 Conclusion and Future Work

We showed how to extend theory graph formalisms with proofs of equality of
morphisms. Besides theories and morphisms, morphism equality is the third con-
stitutive component of categorical diagrams, but it had received little attention
in prior work on theory graphs. We showed that even elementary examples of
theory graphs, such as the definitions of lattices and topological spaces, require
a systematic treatment of morphism equality that had not been done before,
and we have shown how our design enables this treatment. We used the Mmt
language for theory graphs instantiated with the logical framework LF to present
our design in a concrete and logic-independent setting, and our ideas carry over
easily to other theory graph formalisms. Moreover, by combining our design
with defined includes, we have demonstrated a promising formalization pattern
for realms, a theory graph formalism feature that had previously been called for
[CFK14] but not realized by any practical system.

We are currently implementing our design by extending the Mmt tool for
theory graphs. To ensure the feasibility of this, we have taken care to evaluate our
approach in multiple case studies. These are already available in the anticipated
Mmt syntax, and all proofs in them have already been developed in and verified
by Mmt.

References

AHMS99. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolution-
ary Formal Software-Development Using CASL. In D. Bert, C. Choppy,
and P. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

CD07. D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-
pi-calculus modulo. In S. Ronchi Della Rocca, editor, Typed Lambda Calculi
and Applications, pages 102–117. Springer, 2007.

CFK14. J. Carette, W. Farmer, and M. Kohlhase. Realms: A Structure for Consoli-
dating Knowledge about Mathematical Theories. In S. Watt, J. Davenport,
A. Sexton, P. Sojka, and J. Urban, editors, Intelligent Computer Mathemat-
ics, pages 252–266. Springer, 2014.

FGT92. W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur,
editor, Conference on Automated Deduction, pages 467–581, 1992.

FGT93. W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathemat-
ical Proof System. Journal of Automated Reasoning, 11(2):213–248, 1993.

Har21. R. Harper. An equational logical framework for type theories, 2021.
https://arxiv.org/abs/2106.01484.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

KWP99. F. Kammüller, M. Wenzel, and L. Paulson. Locales – a Sectioning Con-
cept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics, pages 149–166.
Springer, 1999.

ML74. P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In
Proceedings of the ’73 Logic Colloquium, pages 73–118. North-Holland, 1974.

MML07. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set.
In O. Grumberg and M. Huth, editor, Tools and Algorithms for the Con-
struction and Analysis of Systems 2007, volume 4424 of Lecture Notes in
Computer Science, pages 519–522, 2007.

ORS92. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In D. Kapur, editor, 11th International Conference on Automated Deduction
(CADE), pages 748–752. Springer, 1992.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

RS09. F. Rabe and C. Schürmann. A Practical Module System for LF. In J. Ch-
eney and A. Felty, editors, Proceedings of the Workshop on Logical Frame-
works: Meta-Theory and Practice (LFMTP), pages 40–48. ACM Press, 2009.

RW22. F. Rabe and F. Weber. Three Case Studies on Realms. In K. Buzzard and
T. Kutsia, editors, Intelligent Computer Mathematics, Informal Proceedings,
pages 46–51. Research Institute for Symbolic Computation, 2022.

SJ95. Y. Srinivas and R. Jüllig. Specware: Formal Support for Composing Soft-
ware. In B. Möller, editor, Mathematics of Program Construction. Springer,
1995.

SW83. D. Sannella and M. Wirsing. A Kernel Language for Algebraic Specification
and Implementation. In M. Karpinski, editor, Fundamentals of Computation
Theory, pages 413–427. Springer, 1983.

	Morphism Equality in Theory Graphs
	1 Introduction and Related Work
	2 Preliminaries
	2.1 LF-Expressions
	2.2 Theory Graphs in MMT

	3 Propositional Equality of LF-Expressions
	4 Propositional Equality of MMT-Morphisms
	5 Case Studies
	6 Conclusion and Future Work

