
Translating a Dependently-Typed Logic to
First-Order Logic

Kristina Sojakova, Florian Rabe

Jacobs University Bremen

Abstract. DFOL is a logic that extends first-order logic with depen-
dent types. We give a translation from DFOL to FOL formalized as an
institution comorphism and show that it admits the model expansion
property. This property together with the borrowing theorem implies
the soundness of borrowing — a result that enables us to reason about
entailment in DFOL by using automated tools for FOL. In addition, the
translation permits us to deduce properties of DFOL such as complete-
ness, compactness, and existence of free models from the corresponding
properties of FOL, and to regard DFOL as a fragment of FOL. We give
an example that shows how problems about DFOL can be solved by us-
ing the automated FOL prover Vampire. Future work will focus on the
integration of the translation into the specification and translation tool
HeTS.

1 Introduction and Related Work

Dependent type theory, DTT, ([ML75]) provides a very elegant language for
many applications ([HHP93,NPS90]). However, its definition is much more in-
volved than that of simple type theory because all well-formed terms, types, and
their equalities must be defined in a single joint induction. Several quite com-
plex model classes, mainly related to locally cartesian closed categories, have
been studied to provide a model theory for DTT (see [Pit00] for an overview).

Many of the complications disappear if dependently-typed extensions of first-
order logic are considered, i.e., systems that have dependent types, but no (sim-
ple or dependent) function types. Such systems were investigated in [Mak97],
[Rab06], and [Bel08]. They provide very elegant axiomatizations of many impor-
tant mathematical theories such as those of categories or linear algebra while
retaining completeness with respect to straightforward set-theoretic models.

However, these systems are of relatively little practical use because no au-
tomated reasoning tools, let alone efficient ones, are available. Therefore, our
motivation is to translate one of these systems into first-order logic, FOL. Such
a translation would translate a proof obligation to FOL and discharge it by
calling existing FOL provers. This is called borrowing ([CM93]).

In principle, there are two ways how to establish the soundness of borrowing:
proof-theoretically by translating the obtained proof back to the original logic,
or model-theoretically by exhibiting a model-translation between the two log-
ics. Proof-theoretical translations of languages with dependent types have been

used in [JM93] to translate parts of DTT to simple type theory, in [Urb03] to
translate Mizar ([TB85]) into FOL, and in Scunak [Bro06] to translate parts
of DTT into FOL. The Scunak translation is only partial as for example the
translation of lambda expressions is omitted. Similar partial translations, but in
the simply-typed case, are used in Omega ([BCF+97]), Leo-II ([BPTF07]) and
in the sledgehammer tactic of Isabelle ([Pau94]). If the FOL prover succeeds,
the reconstruction of the FOL proof term is possible in practice but somewhat
tricky: For example, sledgehammer uses the output of a strong prover to guide a
second, weaker prover, from whose output the proof term is reconstructed. In the
cases of Mizar and Scunak, it is not done at all. Furthermore, the more complex
the translation of proof goals is, the more difficult it becomes to translate the
FOL proof term back into the original logic.

Here we take the model-theoretic approach and formulate a translation from
the system introduced in [Rab06] to FOL within the framework of institutions
([GB92]). Mathematically, our main results can be summarized as follows. We use
the institution DFOL as given in [Rab06] and give an institution comorphism
from DFOL into FOL. Every DFOL-signature is translated to a FOL-theory
whose axioms are used to express the typing properties of the translated symbols.
The signature translation uses an n+1-ary FOL-predicate Ps for every dependent
type constructor s with n arguments. Then the formulas quantifying over x
of type s(t1, . . . , tn) can be translated by relativizing (see [Obe62]) using the
predicate Ps(t1, . . . , tn, x). Finally, we show that this comorphism admits model
expansion. Using the borrowing theorem ([CM93]), this yields the soundness of
the translation.

Thus, we provide a simple way to write problems in the conveniently expres-
sive DFOL syntax and solve them by calling FOL theorem provers. It is also pos-
sible to extend FOL theorem provers with dependently typed input languages,
or to integrate DFOL seamlessly into existing implementations of institution-
based algebraic specification languages such as OBJ ([GWM+93]) and CASL
([ABK+02]). Finally, our result provides easier proofs of the free model and
completeness theorems given in [Rab06].

2 Definitions

We now present some definitions necessary for our work. We assume that the
reader is familiar with the basic concepts of category theory and logic. For in-
troduction to category theory, see [Lan98].
Using categories and functors we can define an institution, which is a formaliza-
tion of a logical system abstracting from notions such as formulas, models, and
satisfaction. Institutions structure the variety of different logics and allow us to
formulate institution-independent theorems for the general theory of logic. For
more on institutions, see [GB92].

Definition 1 (Institution). An institution is a 4-tuple (Sig, Sen,Mod, |=)
where

2

– Sig is a category,
– Sen : Sig → Set is a functor,
– Mod : Sig → Catop is a functor,
– |= is a family of relations |=Σ for Σ ∈ |Sig|, |=Σ ⊆ Sen(Σ)× |Mod(Σ)|

such that for each morphism σ : Σ → Σ′, sentence F ∈ Sen(Σ), and model
M ′ ∈ |Mod(Σ′)| we have

Mod(σ)(M ′) |=Σ F iff M ′ |=Σ′ Sen(σ)(F)

The category Sig is called the category of signatures. The morphisms in Sig
are called signature morphisms and represent notation changes. The functor
Sen assigns to each signature Σ a set of sentences over Σ and to each morphism
σ : Σ → Σ′ the induced sentence translation along σ. Similarly, the functor Mod
assigns to each signature Σ a category of models for Σ and to each morphism
σ : Σ → Σ′ the induced model reduction along σ. For a signature Σ, the relation
|=Σ is called a satisfaction relation.
We now define what entailment and theory are in the context of institutions.

Definition 2 (Entailment). Let (Sig, Sen,Mod, |=) be an institution. For a
fixed Σ, let T ⊆ Sen(Σ) and F ∈ Sen(Σ). Then we say that T entails F ,
denoted T |=Σ F , if for any model M ∈ |Mod(Σ)| we have that

if M |=Σ G for all G ∈ T then M |=Σ F

Definition 3 (Category of theories). Let I = (Sig, Sen,Mod, |=) be an in-
stitution. We define the category of theories of I to be the category ThI where

– The objects are pairs (Σ,T), with Σ ∈ |Sig|, T ⊆ Sen(Σ)
– σ is a morphism from (Σ,T) to (Σ′, T ′) iff σ is a signature morphism from
Σ to Σ′ in I and for each F ∈ T we have that T ′ |=Σ Sen(σ)(F)

The objects in ThI are called theories of I, and for each theory Th = (Σ,T),
the set T is called the set of axioms of Th. The morphisms in ThI are called
theory morphisms. For a theory (Σ,T) and a sentence F over Σ, we say (Σ,T) |=
F in place of T |=Σ F .
For a given institution I, we sometimes need to construct another institution
ITh, whose signatures are the theories of I. We have the following lemma.

Lemma 1 (Institution of theories). Let I = (Sig, Sen,Mod, |=) be an insti-
tution. Denote by ITh the tuple (ThI , SenTh,ModTh, |=Th) where

– SenTh(Σ,T) = Sen(Σ) and SenTh(σ) = Sen(σ) for σ : (Σ,T)→ (Σ′, T ′).
– ModTh(Σ,T) is the full subcategory of Mod(Σ) whose objects are those mod-

els M in |Mod(Σ)| for which we have M |=Σ G whenever G ∈ T . For a the-
ory morphism σ : (Σ,T)→ (Σ′, T ′), ModTh(σ) is the restriction of Mod(σ)
to ModTh(Σ′, T ′).

– |=Th
(Σ,T) is the restriction of |=Σ to |ModTh(Σ,T)| × SenTh(Σ,T).

Then ITh is an institution, called the institution of theories of I.

3

We are now ready to define a certain kind of translation between two insti-
tutions.

Definition 4 (Institution comorphism). Let I = (SigI , SenI ,ModI , |=I),
J = (SigJ , SenJ ,ModJ , |=J) be two institutions. An institution comorphism
from I to J is a triple (Φ, α, β) where

– Φ : SigI → SigJ is a functor,
– α : SenI → Φ;SenJ is a natural transformation,
– β : ModI ← Φ;ModJ is a natural transformation

such that for each Σ ∈ |SigI |, F ∈ SenI(Σ), and M ′ ∈ |ModJ(Φ(Σ))| we have

βΣ(M ′) |=I
Σ F iff M ′ |=J

Φ(Σ) αΣ(F)

where βΣ is regarded as a morphism from ModJ(Φ(Σ)) to ModI(Σ) in the
category Cat.

Institution comorphisms are particularly useful if they have the following
property.

Definition 5 (Model expansion property). Let (Φ, α, β) be an institution
comorphism from I to J . We say that the comorphism has the model expansion
property if each functor βΣ for Σ ∈ SigI is surjective on objects.

The following lemma is then applicable.

Lemma 2 (Borrowing). Let (Φ, α, β) be an institution comorphism from ITh

to JTh having the model expansion property. Then for any theory (Σ,T) in I
and a sentence F over Σ, we have that

(Σ,T) |=I F iff Φ(Σ,T) |=J αΣ(F)

In other words, we can use the institution J to reason about theories in I.
For more on borrowing, see [CM93].

3 DFOL and FOL as Institutions

The formal definition of a dependent type theory is typically very complex and
long because both for the syntax and for the semantics a joint induction over sig-
natures, contexts, terms, and types must be used. Therefore, in [Rab06], the syn-
tax of DFOL is defined within the Edinburgh logical framework (LF, [HHP93]),
thus saving one induction. In [Rab08], a model theory for LF is given so that
both inductions can be done once and for all in the logical framework, thus
permitting a very elegant and compact definition of DFOL.

Here, to be self-contained, we give the syntax directly, but omit the precise
definition of well-formed expressions. Then the semantics is given by a partial
interpretation function defined only for well-formed expressions. This has the
advantage of making the main concepts intuitively clear while being short and
precise.

4

3.1 Signatures

In DFOL, we have three base types, defined as follows:

S : type Univ : S→ type o : type

Here S is the type of sorts (semantically: names of universes). The type Univ is
an operator assigning to each sort the type of its terms (semantically: its universe
of individuals). The type o is the type of formulas (semantically: the values true
and false).
A DFOL signature consists of a finite sequence of declarations of the form

c : Πx1 : Univ(S1), . . . ,Πxn : Univ(Sn). T

meaning that c is a function taking n arguments of types S1, . . . , Sn respectively,
and returning an argument of type T , where T is one of the three base types.
Here Πxi : Univ(Si) denotes the domain of a dependent function type, i.e., xi
may occur in Si+1, . . . , Sn, T .
When the return type of c is o, we say that c is a predicate symbol. Likewise, if
the return type is S or Univ(S), we say that c is a sort symbol or a function
symbol respectively. We abbreviate Πx : Univ(S) as Πx : S and Πx : A. B as
A→ B if the variable x does not occur in B.
We define DFOL signatures Σ inductively on the number of declarations. Let Σk
be a DFOL signature consisting of k declarations, k ≥ 0. We define a function
over Σk as follows:

– Any variable symbol is a function over Σk
– If f in Σk is a function symbol of arity n and µ1, . . . , µn are functions over
Σk, then f(µ1, . . . , µn) is a function over Σk

If s in Σk is a sort symbol of arity n and µ1, . . . , µn are functions over Σk, then
s(µ1, . . . , µn) is a sort over Σk. Similarly, if p in Σk is a predicate symbol of
arity n and µ1, . . . , µn are functions over Σk, then p(µ1, . . . , µn) is a predicate
over Σk. The word term refers to either a function, a sort, or a predicate.
Clearly, not all terms are well-formed in DFOL. A context Γ for a signature Σ
in DFOL has the form Γ = x1 : S1, . . . , xn : Sn, where S1, . . . , Sn are sorts and
Si contains no variables except possibly x1, . . . , xi−1. Given a valid context Γ ,
a DFOL term is well-formed with respect to Γ only if it is well-typed in the LF
type theory. For details we refer the reader to [Rab06].
Now the k + 1-th declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
where S1, . . . , Sn are sorts over Σk and Si contains no variables except pos-
sibly x1, . . . , xi−1. We say that s is a sort symbol.

– f : Πx1 : S1, . . . , Πxn : Sn. Sn+1

where S1, . . . , Sn+1 are sorts over Σk and Si contains no variables except
possibly x1, . . . , xi−1.

5

– p : Πx1 : S1, . . . , Πxn : Sn. o
where S1, . . . , Sn are sorts over Σk and Si contains no variables except pos-
sibly x1, . . . , xi−1. We say that p is a predicate symbol.

As with terms, the declaration must be a well-typed according to the rules of
LF.

Running example The theory of categories has the following DFOL signature
Ob : S
Mor : Ob → Ob → S
id : ΠA : Ob. Mor(A,A)
◦ : ΠA,B,C : Ob. Mor(A,B) → Mor(B,C) → Mor(A,C)
term : Ob → o
isom : Ob → Ob → o For simplicity, we declare the signature model mor-
phisms in DFOL to just be the identity morphisms.

3.2 Sentences

The set of DFOL formulas over a signature Σ can be described as follows:

– If P is a predicate over Σ, then P is a Σ-formula
– If µ1, µ2 are functions over Σ, then µ1

.= µ2 is a Σ-formula
– If F is a Σ-formula, then ¬F is a Σ-formula
– If F,G are Σ-formulas, then F ∧G, F ∨G, and F ⇒ G are Σ-formulas
– If F is a Σ-formula and S is a sort term over Σ, then ∀x : S. F is a Σ-formula
– If F is a Σ-formula and S is a sort term over Σ, then ∃x : S. F is a Σ-formula

Closed and atomic formulas are defined in the obvious way analogous to first-
order logic. As with terms, DFOL formulas are well-formed only if they are
well-typed in the LF type theory. For a precise definition, see [Rab06].

Running example We have the following axioms for the theory of categories,
with equivalence defined as usual
I1 : ∀A,B : Ob. ∀f : Mor(A,B). id(A) ◦ f .= f
I2 : ∀A,B : Ob. ∀f : Mor(B,A). f ◦ id(A) .= f
A1 : ∀A,B,C,D : Ob. ∀f : Mor(A,B). ∀g : Mor(B,C). ∀h : Mor(C,D).
f ◦ (g ◦ h) .= (f ◦ g) ◦ h
D1 : ∀A : Ob. (term(A) ⇐⇒ ∀B : Ob. ∃f : Mor(B,A). ∀g : Mor(B,A). f .= g)
D2 : ∀A,B : Ob. (isom(A,B) ⇐⇒ ∃f : Mor(A,B). ∃g : Mor(B,A).
(f ◦ g .= id(A) ∧ g ◦ f .= id(B)))

3.3 Models

A model of a DFOL signatureΣ is an interpretation function I. Since the declara-
tion of a symbol may depend on symbols declared before, we define I inductively
on the number of declarations.
Suppose I is defined for the first k declarations, k ≥ 0. An assignment function

6

ϕ for I is a function mapping each variable to an element of any set defined by
I as an interpretation of a sort symbol.
Let µ be a term over Σ. We define the interpretation of µ induced by ϕ to be
Iϕ(µ), where Iϕ is given by:

– Iϕ(x) = ϕ(x) for any variable x
– Iϕ(d(µ1, . . . , µk)) = dI(Iϕ(µ1), . . . , Iϕ(µk)) for a sort, predicate, or function

symbol d if
• each of the interpretations Iϕ(µ1), . . . , Iϕ(µn) exists and
• dI is defined for the tuple (Iϕ(µ1), . . . , Iϕ(µn))

Otherwise we say Iϕ(d(µ1, . . . , µk)) does not exist.

Given a valid context Γ = x1 : S1, . . . , xn : Sn and an assignment function ϕ,
we say that ϕ is an assignment function for Γ if for each i we have that Iϕ(Si)
exists and ϕ(xi) ∈ Iϕ(Si). From now on, we will only talk about assignment
functions for a context; the general definition was introduced only to avoid some
technical difficulties.
Now the k + 1-st declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

sI(ϕ(x1), . . . , ϕ(xn)) is a (possibly empty) set

disjoint from any other set defined by I as an interpretation of a sort symbol.
– f : Πx1 : S1, . . . , Πxn : Sn. S

Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

f I(ϕ(x1), . . . , ϕ(xn)) ∈ Iϕ(S)

– p is a predicate symbol, p : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
Then

pI(ϕ(x1), . . . , ϕ(xn)) ∈ {true, false}

Running example An example model I for the signature of categories is given
by any small category C. Then we have ObI = |C|, MorI(A,B) = C(A,B), and
the obvious interpretations for composition and identity. Furthermore, we can
put termI(A) = true iff A is a terminal element and isomI(A,B) = true iff A
and B are isomorphic.

3.4 Satisfaction relation

To define the satisfaction relation, we first define the interpretation of formulas.
Let Σ be a DFOL signature, I be a DFOL model for Σ, and Γ be a valid context
over Σ. Furthermore, let ϕ be an assignment function for Γ and F be a well-
formed DFOL formula for Γ . Then we define Iϕ(F) recursively on the structure
of F :

7

– F is a predicate. Then Iϕ(F) is true if and only if pI(Iϕ(µ1), . . . , Iϕ(µn)) =
true.

– F is of the form µ1
.= µ2. Then Iϕ(F) is true if and only if Iϕ(µ1) = Iϕ(µ2).

– F is of the form ¬G. Then Iϕ(F) is true if and only if Iϕ(G) is false.
– F is of the form F1 ∧ F2. Then Iϕ(F) is true if and only if both Iϕ(F1) and
Iϕ(F2) are true.

– F is of the form F1 ∨ F2. Then Iϕ(F) is true if and only if Iϕ(F1) is true or
Iϕ(F2) is true.

– F is of the form F1 =⇒ F2. Then Iϕ(F) is true if and only if Iϕ(F1) is false
or Iϕ(F2) is true.

– F is of the form ∃x : S. G. Then Iϕ(F) is true if and only if Iϕ[x/a](G) is
true for some a ∈ Iϕ(S).

– F is of the form ∀x : S. G. Then Iϕ(F) is true if and only if Iϕ[x/a](G) is
true for any a ∈ Iϕ(S).

Now if F is in fact a closed formula, its interpretation is independent of ϕ. Hence,
we define that I satisfies F if and only if Iϕ(F) is true for some ϕ.

Running example It is easy to see that the example model for the signature of
categories satisfies the axioms given in section 3.2.

Putting our previous definitions together, we have the following lemma.

Lemma 3. DFOL = (Sig, Sen,Mod, |=) is an institution.

The FOL institution is then obtained from DFOL by restricting the signa-
tures to contain a unique sort symbol, having arity 0. Any other symbols are
either function or predicate symbols. (Technically, this does not yield FOL be-
cause DFOL permits empty universes. But our FOL signatures will always have
a nullary function symbol so that this does not constitute a problem). A FOL
model is then denoted as (U, I), where I is the interpretation function and U is
the universe corresponding to the unique sort symbol.

4 Translation of DFOL to FOL

The main idea of the translation is to associate with each n-ary sort symbol in
DFOL an n+1-ary predicate in FOL and relativize the universal and existential
quantifiers (the technique of relativization was first introduced by Oberschelp in
[Obe62]).
Formally, the translation will be given as an institution comorphism from DFOL
to FOLTh. We specify a functor Φ, mapping DFOL signatures to FOL theories
and DFOL signature morphisms to FOL theory morphisms. For each DFOL
signature Σ, we give a function αΣ mapping DFOL sentences over Σ to FOL
sentences over the translated signature Φ(Σ), and show that the family of func-
tions αΣ defines a natural transformation. Similarly, for each DFOL signature
Σ we give a functor βΣ mapping FOL models for the translated signature Φ(Σ)
to DFOL models for Σ, and show that the family of functors βΣ defines a natu-
ral transformation. Finally, we prove the satisfaction condition for (Φ, α, β) and
show that the comorphism has the model expansion property.

8

Definition 6 (Signature translation). Let Σ be a DFOL signature. We de-
fine Φ(Σ) to be the FOL theory (Σ′, T ′), where Σ′ and T ′ are specified as follows.
Σ′ contains:

– an n-ary function symbol f for each n-ary function symbol f in Σ,
– an n-ary predicate symbol p for each n-ary predicate symbol p in Σ,
– an n+ 1-ary predicate symbol s for each n-ary sort symbol s in Σ,
– a special constant symbol ⊥, different from any of the above symbols,
– no other symbols besides the above

T ′ contains:

S1. Axioms ensuring that no element can belong to the universe of more than
one sort. For any two sort symbols s1, s2 with s1 different from s2, we have
the axiom

∀x1, . . . , xn, y1, . . . , ym, z.
(
s1(x1, . . . , xn, z) =⇒ ¬s2(y1, . . . , ym, z)

)
and for each sort symbol s1 we have the axiom

∀x1, . . . , xn, y1, . . . , yn, z.
(
s1(x1, . . . , xn, z) ∧ s1(y1, . . . , yn, z)

=⇒ x1
.= y1 ∧ . . . ∧ xn

.= yn
)

S2. An axiom ensuring that each element different from ⊥ belongs to the universe
of at least one sort. If s1, . . . , sk are the sort symbols, then we have the axiom

∀y.
(
¬y .= ⊥ =⇒ ∃x1, . . . , xn1 . s1(x1, . . . , xn1 , y) ∨ . . . ∨

∃x1, . . . , xnk
. sk(x1, . . . , xnk

, y)
)

S3. Axioms ensuring that the special symbol ⊥ is not contained in the universe
of any sort. For each sort symbol s, we have the axiom

∀x1, . . . , xn. ¬s(x1, . . . , xn,⊥)

S4. Axioms ensuring that if the arguments to a sort constructor are not of the
correct types, the resulting sort has an empty universe. For each sort symbol
s : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). S, we have the axiom

∀x1, . . . , xn.
(
¬s1(µ1

1, . . . , µ
1
k1 , x1) ∨ . . . ∨ ¬sn(µn1 , . . . , µ

n
kn
, xn)

=⇒ ∀y. ¬s(x1, . . . , xn, y)
)

F1. Axioms ensuring that if the arguments to a function are of the correct types,
the function returns a value of the correct type. For each function symbol
f : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). s(µ1, . . . , µk), we
have the axiom

∀x1, . . . , xn.
(
s1(µ1

1, . . . , µ
1
k1 , x1) ∧ . . . ∧ sn(µn1 , . . . , µ

n
kn
, xn) =⇒

s(µ1, . . . , µk, f(x1, . . . , xn))
)

9

F2. Axioms ensuring that if the arguments to a function are not of the correct
types, the function returns the special symbol ⊥. For each function symbol
f : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). s(µ1, . . . , µk), we
have the axiom

∀x1, . . . , xn.
(
¬s1(µ1

1, . . . , µ
1
k1 , x1) ∨ . . . ∨ ¬sn(µn1 , . . . , µ

n
kn
, xn)

=⇒ f(x1, . . . , xn) .= ⊥
)

P1. Axioms ensuring that if the arguments to a predicate are not of the correct
types, the predicate is false. For each predicate symbol
p : Πx1 : s1(µ1

1, . . . , µ
1
k1

), . . . , Πxn : sn(µn1 , . . . , µ
n
kn

). o, we have the axiom

∀x1, . . . , xn.
(
¬s1(µ1

1, . . . , µ
1
k1 , x1) ∨ . . . ∨ ¬sn(µn1 , . . . , µ

n
kn
, xn)

=⇒ ¬p(x1, . . . , xn)
)

N. No other axioms besides the above

Defining Φ on signature morphisms is trivial since by our definition the only
signature morphisms in DFOL are the identity morphisms. From this it follows
immediately that Φ is a functor.

Running example Denote the translated signature of categories by the theory
(Σ′, T ′). Then Σ′ contains the following symbols:

– Function symbols:
• id of arity 1
• ◦ of arity 5
• ⊥ of arity 0

– Predicate symbols:
• ob of arity 1
• mor of arity 3
• term of arity 1
• isom of arity 2

The theory T ′ consists of the axioms S1.1 up to P1.2 in Fig.1.

Definition 7 (Sentence translation). Let Σ be a DFOL signature. We define
the function αΣ on the set of all DFOL formulas over Σ. We do this recursively
on the structure of the formula F :

– If F is of the form p(µ1, . . . , µn), we set αΣ(F) = F
– If F is of the form µ1

.= µ2, we set αΣ(F) = F
– If F is of the form ¬G, we set αΣ(F) = ¬αΣ(G)
– If F is of the form F1 ∧ F2, we set αΣ(F) = αΣ(F1) ∧ αΣ(F2)
– If F is of the form F1 ∨ F2, we set αΣ(F) = αΣ(F1) ∨ αΣ(F2)
– If F is of the form F1 =⇒ F2, we set αΣ(F) to be the formula

αΣ(F1) =⇒ αΣ(F2)

10

– If F is of the form ∀x : s(µ1, . . . , µn). G, we set αΣ(F) to be the formula

∀x. s(µ1, . . . , µn, x) =⇒ αΣ(G)

– If F is of the form ∃x : s(µ1, . . . , µn). G, we set αΣ(F) to be the formula

∃x. s(µ1, . . . , µn, x) ∧ αΣ(G)

It is easy to see that αΣ maps closed formulas to closed formulas. Hence, we can
restrict αΣ to the set of DFOL sentences over Σ to obtain our desired trans-
lation map. The naturality of αΣ follows immediately since the only signature
morphisms in DFOL are the identity morphisms.

Running example The translated axioms of the theory of categories are the
axioms I1 up to D2 in Fig.1.

S1.1 : ∀A1, B1, f. (mor(A1, B1, f) =⇒ ∀A2, B2. (mor(A2, B2, f)
=⇒ A2

.
= A1 ∧ B2

.
= B1))

S1.2 : ∀y,B,C. (ob(y) =⇒ ¬mor(B,C, y))
S2 : ∀y. (¬y .

= ⊥ =⇒ ob(y) ∨ ∃A,B. mor(A,B, y))
S3.1 : ¬ob(⊥)
S3.2 : ∀A,B. ¬mor(A,B,⊥)
S4 : ∀A,B. ((¬ob(A) ∨ ¬ob(B)) =⇒ ∀f. ¬mor(A,B, f))
F1.1 : ∀A. (ob(A) =⇒ mor(A,A, id(A)))
F1.2 : ∀A,B,C, f, g. (ob(A) ∧ ob(B) ∧ ob(C) ∧ mor(A,B, f) ∧ mor(B,C, g) =⇒
mor(A,C, f ; g))
F2.1 : ∀A. (¬ob(A) =⇒ id(A)

.
= ⊥)

F2.2 : ∀A,B,C, f, g. (¬ob(A) ∨ ¬ob(B) ∨ ¬ob(C) ∨ ¬mor(A,B, f) ∨
¬mor(B,C, g) =⇒ f ; g

.
= ⊥)

P1.1 : ∀A. (¬ob(A) =⇒ ¬term(A))
P1.2 : ∀A,B. (¬ob(A) ∨ ¬ob(B) =⇒ ¬isom(A,B))

I1 : ∀A,B, f. (ob(A) ∧ ob(B) ∧ mor(A,B, f) =⇒ id(A); f
.
= f)

I2 : ∀A,B, f. (ob(A) ∧ ob(B) ∧ mor(B,A, f) =⇒ f ; id(A)
.
= f)

A1 : ∀A,B,C,D, f, g, h. (ob(A) ∧ ob(B) ∧ ob(C) ∧ ob(D) ∧ mor(A,B, f) ∧
mor(B,C, g) ∧ mor(C,D, h) =⇒ f ; (g;h)

.
= (f ; g);h)

D1 : ∀A. (ob(A) =⇒ (term(A) ⇐⇒ ∀B. (ob(B) =⇒ ∃f. (mor(B,A, f) ∧
∀g. (mor(B,A, g) =⇒ f

.
= g)))))

D2 : ∀A,B. (ob(A) ∧ obj(B) =⇒ (isom(A,B) ⇐⇒ ∃f, g. (mor(A,B, f) ∧
mor(B,A, g) ∧ f ; g

.
= id(A) ∧ g; f

.
= id(B))))

Conjecture : ∀A,B. (ob(A) ∧ obj(B) ∧ term(A) ∧ term(B) =⇒ isom(A,B))

Fig. 1. Translation of the running example

Definition 8 (Model reduction). Let Σ be a DFOL signature and M = (U, I)
be a FOL model for Φ(Σ). We define the translated DFOL model βΣ(M) for Σ

11

to be the interpretation function J , defined inductively on the number of decla-
rations in Σ.
Suppose J is defined for the first k symbols in Σ, k ≥ 0. Then the (k + 1)-st
declaration has one of the following forms:

– s : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

sJ(ϕ(x1), . . . , ϕ(xn)) = {u ∈ U | sI(ϕ(x1), . . . , ϕ(xn), u)}

– f : Πx1 : S1, . . . , Πxn : Sn. S
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

fJ(ϕ(x1), . . . , ϕ(xn)) = f I(ϕ(x1), . . . , ϕ(xn))

– p is a predicate symbol, c : Πx1 : S1, . . . , Πxn : Sn. o
Let ϕ be any assignment function for the context Γ = x1 : S1, . . . , xn : Sn.
We set

pJ(ϕ(x1), . . . , ϕ(xn)) iff pI(ϕ(x1), . . . , ϕ(xn))

We note here how the axioms introduced earlier are needed to ensure that J
is indeed a DFOL model for Σ. We now turn to the proof of the satisfaction
condition.

Theorem 1 (Satisfaction condition). (Φ, α, β) is an institution comorphism.

Proof. We have already shown that Φ is a functor and α, β are natural transfor-
mations. It remains to show that the satisfaction condition holds.
Let Σ be a DFOL signature, Γ be a valid context for Σ, ϕ be an assignment
function for Γ , and F be a well-formed DFOL sentence for Γ . Furthermore, let
M = (U, I) be a FOL model for the translated signature Φ(Σ), and J be the
translated model βΣ(M). We first observe the following two facts:

– ϕ is also an assignment function for M
– if µ is a well-formed function term for Γ , then Jϕ(µ) = Iϕ(µ)

Both of these facts follow directly from the construction of J . We now show that
we have

Jϕ(F) iff Iϕ(αΣ(F))

To prove the claim, we proceed recursively on the structure of F :

– F is of the form p(µ1, . . . , µn). Then Jϕ(F) is true if and only if
pJ(Jϕ(µ1), . . . , Jϕ(µn)). By the construction of J , we have

pJ(Jϕ(µ1), . . . , Jϕ(µn)) iff pI(Jϕ(µ1), . . . , Jϕ(µn))

As noted above, Jϕ(µi) = Iϕ(µi) for each i, hence

12

pJ(Jϕ(µ1), . . . , Jϕ(µn)) iff pI(Iϕ(µ1), . . . , Iϕ(µn))

Thus we have Jϕ(F) if and only if Iϕ(F). Since F = αΣ(F), this proves the
claim.

– F is of the form µ1
.= µ2. Then Jϕ(F) is true if and only if Jϕ(µ1) = Jϕ(µ2).

As noted above, Jϕ(µ1) = Iϕ(µ1) and Jϕ(µ2) = Iϕ(µ2), hence

Jϕ(µ1) = Jϕ(µ2) iff Iϕ(µ1) = Iϕ(µ2)

Thus we have Jϕ(F) if and only if Iϕ(F). Since F = αΣ(F), this proves the
claim.

– F is of the form ¬G. Then Jϕ(F) is true if and only if Jϕ(G) is false. By
the induction hypothesis, we have Jϕ(G) iff Iϕ(αΣ(G)). Thus Jϕ(F) is true
if and only if Iϕ(αΣ(G)) is false, or equivalently

Jϕ(F) iff Iϕ(¬αΣ(G))

Since ¬αΣ(G) = αΣ(F), this proves the claim.
– F is of the form F1 ∧ F2. Then Jϕ(F) is true if and only if both Jϕ(F1) and
Jϕ(F2) are true. By the induction hypothesis, we have Jϕ(F1) iff Iϕ(αΣ(F1))
and Jϕ(F2) iff Iϕ(αΣ(F2)). Hence, Jϕ(F) is true if and only if both
Iϕ(αΣ(F1)) and Iϕ(αΣ(F2)) are true. Equivalently,

Jϕ(F) iff Iϕ(αΣ(F1) ∧ αΣ(F2))

Since αΣ(F1) ∧ αΣ(F2) = αΣ(F), this proves the claim.
– F is of the form F1 ∨F2. Since F is equivalent to the formula ¬(¬F1 ∧¬F2),

the claim follows from the previous steps.
– F is of the form F1 =⇒ F2. Since F is equivalent to the formula ¬F1 ∨ F2,

the claim follows from the previous steps.
– F is of the form ∃x : s(µ1, . . . , µn). G. By definition, Jϕ(F) is true if and

only if there exists an a ∈ Jϕ(s(µ1, . . . , µn)) such that Jϕ[x/a](G) is true.
Again by definition,

Jϕ(s(µ1, . . . , µn)) = sJ(Jϕ(µ1), . . . , Jϕ(µn))

Since Jϕ(µi) = Iϕ(µi) for each i, we have

sJ(Jϕ(µ1), . . . , Jϕ(µn)) = sJ(Iϕ(µ1), . . . , Iϕ(µn))

By the construction of J , we have that a belongs to sJ(Iϕ(µ1), . . . , Iϕ(µn))
if and only if a belongs to U and sI(Iϕ(µ1), . . . , Iϕ(µn), a) = true. Now since
µi does not contain x for any i, we have that

sI(Iϕ(µ1), . . . , Iϕ(µn), a) = Iϕ[x/a](s(µ1, . . . , µn, x))

Also, by the induction hypothesis we have that

Jϕ[x/a](G) iff Iϕ[x/a](αΣ(G))

Combining this, we get precisely that

13

Jϕ(F) iff Iϕ(∃x. s(µ1, . . . , µn, x) ∧ αΣ(G))

Since ∃x. s(µ1, . . . , µn, x) ∧ αΣ(G) = αΣ(F), this proves the claim.
– F is of the form ∀x : s(µ1, . . . , µn). G. Since F is equivalent to the formula
¬∃x : s(µ1, . . . , µn). ¬G, the claim follows from the previous steps.

At last, we prove the model expansion property.

Theorem 2 (Model expansion property). The institution comorphism
(Φ, α, β) has the model expansion property.

Proof. Let Σ be a DFOL signature and J be a DFOL model for Σ. We construct
a FOL model M = (U, I) for the translated signature Φ(Σ) such that J =
βΣ(M).
To define U , let s1, . . . , sk be the sort symbols of Σ. For si of arity ni, set

Ui =
⋃

(x1,...,xni
)

si(x1, . . . , xni
)

where (x1, . . . , xni
) ranges through all ni-tuples for which si is defined. Set

U = {⊥} ∪ U1 ∪ . . . ∪ Un

We now define I as follows.

– Let p be a predicate symbol in Σ, p : Πx1 : S1, . . . , Πxn : Sn. o. Let ϕ
be an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

pI(ϕ(x1), . . . , ϕ(xn)) iff pJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set pI(ϕ(x1), . . . , ϕ(xn)) to be false.
– Let f be a function symbol in Σ, f : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be

an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

f I(ϕ(x1), . . . , ϕ(xn)) = fJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set f I(ϕ(x1), . . . , ϕ(xn)) = ⊥.
– Let s be a sort symbol in Σ, s : Πx1 : S1, . . . , Πxn : Sn. S. Let ϕ be

an assignment function for M . If ϕ is also an assignment function for the
context Γ = x1 : S1, . . . , xn : Sn, we set

sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) iff ϕ(y) ∈ sJ(ϕ(x1), . . . , ϕ(xn))

otherwise we set sI(ϕ(x1), . . . , ϕ(xn), ϕ(y)) = false.

It is easy to see thatM = (U, I) satisfies all the axioms in the translated signature
Φ(Σ) and that we have J = βΣ(M).

Hence, the institution comorphism (Φ, α, β) permits borrowing and we have
that a DFOL theory entails a sentence if and only if the translated FOL theory
entails the translated sentence.

14

5 Conclusion and Future Work

We have given an institution comorphism from a dependently-typed logic to FOL
and have shown that it admits model expansion. Together with the borrowing
theorem [CM93] this implies the soundness of borrowing.

This result is important for several reasons. The need for dependent types
arises in several areas of mathematics such as linear algebra and category theory.
DFOL provides a more natural way of formulating mathematical problems while
staying close to FOL formally and intuitively. On the other hand, for FOL we
have machine support in the form of automated theorem-provers and model-
finders. The translation enables us to formulate a DFOL problem, translate it
to FOL, and then use the known automated methods for FOL (e.g., theorem-
provers such as Vampire [RV02] or SPASS [WAB+99], and model finders such
as Paradox [CS03]) to find a solution.

First experiments with the translation have proved successful: For example,
Vampire was able to prove instantaneously that the translation of our running
example is a FOL theorem. It remains to be seen how much the encoding of type
information in predicates and the addition of axioms in the translation affects
the performance of FOL provers on larger theories. In the future we will integrate
our translation into HeTS ([MML07]), a CASL-based application that provides
a framework for the implementation of institutions and institution translations.
That will provide the infrastructure to create and translate big, structured DFOL
theories, and thus to apply our translation on a larger scale.

Since DFOL is defined within LF, we will also treat it as a running example
for an implementation of the framework introduced in [Rab08]. That will per-
mit to define arbitrary institutions and institution translations in LF and then
incorporate these definitions into HeTS.

On the theoretical side, the translation shows that DFOL can be regarded
as a fragment of FOL, which generalizes the well-known results for many-sorted
first-order logic. In particular, we are able to derive properties of DFOL such as
completeness, compactness, and the existence of free models immediately from
the corresponding properties of FOL.

References

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses,
D. Sannella, and A. Tarlecki. CASL: The Common Algebraic Specifica-
tion Language. Theoretical Computer Science, 2002.

[BCF+97] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Ker-
ber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt,
J. Siekmann, and V. Sorge. ΩMEGA: Towards a mathematical assistant.
In W. McCune, editor, Proceedings of the 14th Conference on Automated
Deduction, pages 252–255. Springer, 1997.

[Bel08] J. Belo. Dependently Sorted Logic. In M. Miculan, I. Scagnetto, and
F. Honsell, editors, TYPES 2008, pages 33–50. Springer, 2008.

[BPTF07] C. Benzmller, L. Paulson, F. Theiss, and A. Fietzke. The LEO-II Project.
In Automated Reasoning Workshop, 2007.

15

[Bro06] C. Brown. Combining Type Theory and Untyped Set Theory. In
N. Shankar and U. Furbach, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning, pages 205–219. Springer, 2006.

[CM93] M. Cerioli and J. Meseguer. May I Borrow Your Logic? In A. Borzyszkowski
and S. Sokolowski, editors, Mathematical Foundations of Computer Sci-
ence, pages 342–351. Springer, 1993.

[CS03] K. Claessen and N. Sorensson. New techniques that improve MACE-style
finite model finding. In 19th International Conference on Automated De-
duction (CADE-19) Workshop on Model Computation - Principles, Algo-
rithms, Applications, 2003.

[GB92] J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Ma-
chinery, 39(1):95–146, 1992.

[GWM+93] J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouan-
naud. Introducing OBJ. In Joseph Goguen, editor, Applications of Alge-
braic Specification using OBJ. Cambridge, 1993.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

[JM93] B. Jacobs and T. Melham. Translating dependent type theory into higher
order logic. In M. Bezem and J. Groote, editors, Typed Lambda Calculi
and Applications, pages 209–29, 1993.

[Lan98] S. Mac Lane. Categories for the Working Mathematician. Springer, 1998.
[Mak97] M. Makkai. First order logic with dependent sorts (FOLDS), 1997. Un-

published.
[ML75] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In

Proceedings of the Logic Colloquium 1973, pages 73–118, 1975.
[MML07] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set.

In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519–522, 2007.

[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s
Type Theory: An Introduction. Oxford University Press, 1990.

[Obe62] A. Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Math-
ematische Annalen, 145:297–333, 1962.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer, 1994.

[Pit00] A. Pitts. Categorical Logic. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, Volume 5. Algebraic and
Logical Structures, chapter 2, pages 39–128. Oxford University Press, 2000.

[Rab06] F. Rabe. First-Order Logic with Dependent Types. In N. Shankar and
U. Furbach, editors, Proceedings of the 3rd International Joint Conference
on Automated Reasoning, volume 4130 of Lecture Notes in Computer Sci-
ence, pages 377–391. Springer, 2006.

[Rab08] F. Rabe. Representing Logics and Logic Translations. PhD thesis, Jacobs
University Bremen, 2008.

[RV02] A. Riazanov and A. Voronkov. The design and implementation of Vampire.
AI Communications, 15:91–110, 2002.

[TB85] A. Trybulec and H. Blair. Computer assisted reasoning with Mizar. In
Proceedings of the 9th International Joint Conference on Artificial Intelli-
gence, pages 26–28, Los Angeles, CA, 1985.

[Urb03] J. Urban. Translating Mizar for first-order theorem provers. In MKM,
pages 203–215, 2003.

16

[WAB+99] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen,
C. Theobalt, and D. Topić. System description: SPASS version 1.0.0. In
Harald Ganzinger, editor, Proceedings of the 16th International Conference
on Automated Deduction (CADE-16), volume 1632 of Lecture Notes in
Artificial Intelligence, pages 314–318, Trento, Italy, 1999. Springer.

17

