
The MMT Perspective on Conservativity∗

Florian Rabe1

1 Jacobs University Bremen, Germany
f.rabe@jacobs-university.de

Abstract
Conservative extensions are one of the most important concepts in formal logic, capturing the
intuition when an extension does not substantially change the extended theory. Two conceptually
different definitions have emerged in proof and model theory, respectively. Unfortunately these
are conceptually very different and not equivalent.

We develop both notions in the MMT framework, which allows for an elegant uniform treat-
ment of proof and model theory. In MMT, the difference between the two definitions becomes
less fundamental. Moreover, we see that the existence of two different notions of conservativity is
neither a coincidence nor a defect: it becomes a special case of the well-known difference between
admissible and derivable reasoning principles.

Moreover, we are able to relate conservativity to the completeness of a logic, thus adding
another connection between proof and model theory.

1998 ACM Subject Classification F.4.1

Keywords and phrases conservative extension, logical framework, admissible, derivable, com-
pleteness

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Motivation

Conservativity is at the heart of mathematics and logics. Most abstractly, it means to extend
a formal system in a way that effectively does not change it. Because this is what happens
when adding definitions and theorems, it has received substantial attention in the area of
formal logic.

Not surprisingly, different concrete definitions of the abstract intuition have been studied.
Two notions have been used most widely, one based on proof theory and one based on
model theory.1 Due to the different philosophical backgrounds, it is not surprising that
these notions are conceptually very different. This is not unusual: for example, the notion
of theorem also has two very different definitions in proof and model theory. However,
contrary to theorems, the two definitions of conservativity are not equivalent even in the
presence of a sound and complete calculus. (The model theoretical one implies the proof
theoretical one.) Consequently, this may lead to confusion and possibly even contention
among researchers.2

∗ This work was supported by DFG under grant RA-18723-1.
1 The author has traced the model-theoretical definition back to [7] but could not locate the first use of
the (older) proof theoretical definition.

2 In fact, this paper was motivated by the author’s impression that this seems to be the case.

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Contribution

This paper contributes to the discussion by developing both definitions in the context of the
author’s MMT framework [13, 12]. MMT uses logical frameworks [10] as formal meta-logics
in which to represent logics. In doing so, it integrates frameworks with a proof theoretical
background such as LF [6] with model theoretical frameworks such as institutions [4]. This
lets MMT elegantly represent both proof and model theoretical concepts uniformly [8, 1, 12].
Moreover, MMT is systematically designed to be logic-independent. Thus we can use it to
give rigorous definitions of logical concepts (such as proofs and models or logic translations)
in full generality. These properties make MMT well-suited to study the two notions of
conservativity.

Our most important result is that we are able to relate the two notions of conservativ-
ity to the concepts of admissible and derivable rules. At the MMT-level, proof and model
theoretical conservativity end up being special cases of admissibility and derivability, respec-
tively. This provides an elegant understanding of both the similarities and the differences
of the two competing definitions.

MMT also lets us elegantly capture the subtlety that the model theoretic definition
actually constitutes a family of different definitions—one each for every model theory that
is used. We naturally encounter a certain syntactic model theory that induces the strictest
reasonable notion of conservativity, with every refinement of the model theory leading to a
more lenient notion. Taking these refinements to the extreme, we find the proof theoretic
definition as the most lenient reasonable notion.

Furthermore, we are able to cast completeness of a logic as a special case of admissibility
as well, thus creating an appealing connection between conservativity and completeness.

Overview

Sect. 2 recalls the existing definitions of proof and model theoretical conservativity, and
we summarize the necessary preliminaries about MMT in Sect. 3. Sect. 4 develops our
definitions and establishes their properties.

2 Existing Definitions of Conservativity

Conservativity can be defined for an arbitrary logic. To state the definitions in full generality,
we can use a framework like institutions [4]. However, the precise abstract definition is not
essential for our purposes. Therefore, we only assume a very lightweight definition to make
the paper more accessible. A logic consists of

a category of theories,
a set of sentences Sen(Σ) for each theory Σ and a sentence translation v(−) : Sen(Σ)→
Sen(Σ′) for every theory morphism v : Σ→ Σ′,
a provability predicate giving the provable subset of Sen(Σ),
a class of models Mod(Σ) for each theory Σ and a model reduction function Mod(Σ′)→
Mod(Σ) for every theory morphism v : Σ→ Σ′,
a satisfaction relation between models in Mod(Σ) and sentences in Sen(Σ),

with some coherence conditions between them. Detailed definitions based on institutions
are given in, e.g., in [3, 11].

Relative to such a logic, soundness and completeness can be defined in the usual way by
relating the provable sentences to those that are satisfied by all models. Moreover, we can
state the usual definitions of conservativity:

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


I Definition 1 (Proof-Theoretically Conservative). A morphism v : Σ→ Σ′ is conservative if
every Σ-sentence F is provable iff the Σ′-sentence v(F ) is provable.

For the special case of an extension v : Σ ↪→ Σ′, this says that the larger theory does not
prove any Σ-sentences that were not already provable in Σ.

I Definition 2 (Model-Theoretically Conservative). A morphism v : Σ → Σ′ is conservative
if for every Σ-model m there is a Σ′-model m′ that reduces to m via v.

For the special case of an extension, this says that every model of the smaller theory can
be extended to a model of the larger theory.

As indicated before, these definitions are not equivalent:

I Theorem 3. If v is conservative in the model-theoretical sense and the logic is sound and
complete, then v is conservative in the proof-theoretical sense.

The converse is not true in general.

3 Logics in the MMT-Framework

This section is a summary of the basic definitions of logics in MMT as given in [12]. [12]
uses an arbitrary logical framework that is itself defined in MMT. All our results in this
paper generalize easily to this general case. However, to make this paper more accessible
(and shorter), we use a single, fixed logical framework. Concretely, we use LF.

3.1 Logical Framework
The Logical Framework LF

LF [6] is a dependent type theory using the following concepts and notations:
a universe type of types
dependent function types Πx:AB, which are written A → B if x does not occur free in
B

dependent function abstraction λx:A t,
function application f a,
β-reduction and η-conversion.

We omit the well-known typing rules.

Theories

LF-theories Σ are sets of declarations, which are one of the following
type declarations c : Πx1:A1 . . .Πxn:An

type
term declarations c : A for some type A
Relative to a theory Σ, we have the set of all types A and the set of all terms t. These

are subject to the typing judgment t : A and the equality judgments t ≡ t′ and A ≡ A′.
(The latter equality judgment is needed because terms may appear in types.) Typing and
equality of terms and types are decidable. We say that a type A is inhabited if there is a
term t : A.

I Example 4 (Syntax of First-Order Logic). We define first-order logic FOL as the following
LF theory FOL:

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


o : type
i : type
thm : o → type
¬ : o → o

∧ : o → o → o

⇒ : o → o → o

.= : i → i → o

∀ : (i → o) → o

∃ : (i → o) → o

mp : ΠF :o ΠG:o thm (F ⇒ G) → thm F → thm G
...

FOL-terms and sentences are represented as LF-terms over the theory FOL of type i and
o, respectively. We use currying to represent functions with multiple arguments as unary
functions. We will use the usual infix notations where applicable, e.g. the term (∧F )G
represents the sentence F ∧G. Binders are represented using higher-order abstract syntax:
the term ∀(λx : i.F (x)) represents the sentence ∀x.F (x). In future examples, we will use
the usual notations instead of the ones technically prescribed by our encoding in LF.

The type constructor thm serves as the truth judgment. Proof-theoretically, we use a
Curry-Howard representation of proofs as terms, i.e., the terms p : thm F are the proofs of
F ; model-theoretically, we will below treat F as true if the type thm F is inhabited.

We only give a single proof rule as an example: The modus ponens rule mp takes two
formulas F and G, a proof of F ⇒ G and a proof of F and returns a proof of G. All natural
deduction rules of first-order logic can be written as LF declarations in this style.

Theory Morphisms

LF-theory morphisms σ : Σ→ Σ′ are sets of assignments, one for each declaration in Σ:
for every Σ-type declaration c : Πx1:A1 . . .Πxn:An

type, a type assignment

a 7→ λx1:σ(A1) . . . λxn:σ(An)B

for some Σ′-type B with free variables x1, . . . , xn.
for every Σ-term declaration c : A, a term assignment c 7→ t for a Σ′-term t : σ(A)

where σ(−) is the homomorphic extension of σ defined below.
Every theory morphism σ extends to a homomorphic translation σ(−), which maps Σ-

terms and types to Σ′-terms and types. σ(−) preserves typing and equality, e.g., if t : A
holds over Σ, then σ(t) : σ(A) holds over Σ′. If particular, if A is inhabited over Σ, then
σ(A) is inhabited over Σ′.

I Example 5 (Semantics of First-Order Logic). We sketch a morphism FOLZF from FOL a
theory ZF for axiomatic set theory. The intuition behind FOLZF is that it is the interpre-
tation function that maps FOL-terms and FOL-formulas to their denotations.

ZF is an extension of FOL that declares the binary predicate ∈: i→ i→ o and adds the
axioms of set theory. Besides the usual set theoretical operations, ZF defines in particular
the 2-element set bool : i of Booleans containing the elements 0 : i and 1 : i. Moreover,
we add a type constructor Elem : i → type such that terms of type ElemA represent the
elements of the set A : i. The complete definition of ZF can be found in [9].

We extend ZF with a theory ∆ that axiomatizes a basic FOL-model: ∆ contains the
declarations univ : i and nonempty : thm (∃x.x ∈ univ) which describe a non-empty set.

Then we define the semantics as the morphism FOLZF : FOL → ZF ,∆, which maps in
particular

FOLZF(i) = Elem univ, i.e., univ is an arbitrary non-empty set representing the universe
of the model and terms are interpreted as elements of univ,
FOLZF(o) = Elem bool, i.e., every formula is interpreted as a boolean truth value,

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


FOLZF(thm) = λx : Elem bool.thm(x .= 1), i.e., FOLZF(thm F ) is inhabited iff FOLZF(F )
is provably equal to the truth value 1.

All connectives can now be mapped in the usual way. For example, FOLZF(∧) is the binary
conjunction of Booleans. All proof rules can be mapped as well—each assignment of a proof
rule represents a case in the soundness proof.

Ultimately, the typing preservation of LF-morphism guarantees soundness: every FOL-
proof P : thm F gives rise to a ZF -proof FOLZF(P ) : thm (FOLZF(F ) .= 1), i.e., the usual
soundness theorem.

Pushouts

LF theories and theory morphisms form a category. Moreover, this category has pushouts
along inclusions, which we write as

Syn

Syn,Σ

Sem

Sem, sem(Σ)

sem

semΣ

sem(Σ) can be seen as the homomorphic translation of Σ: It contains the declaration
c : semΣ(A) for every declaration c : A in Σ. Here semΣ maps Syn-constants like sem, and
it maps each c : A in Σ to the corresponding c in sem(Σ).

For a morphism v : Syn,Σ → Syn,Σ′ that is the identity on Syn, we write sem(v) :
Sem, sem(Σ) → Sem, sem(Σ′) for the unique factorization through the pushout. Thus,
sem(−) is a functor from extensions of Syn to extensions of Sem.

Technically, there are some subtleties here because the above construction of the pushout
is not always well-defined—there is a problem if the same name is declared in both Sem and
Σ. This is discussed in [12] and not essential for the results in this paper.

3.2 Logics
In MMT, we can define logics easily by abstracting from the intuitions presented in Ex. 4
and 5:

I Definition 6 (Logical Theories). A logical theory Syn is an LF-theory with distinguished
declarations o : type and thm : o→ type.

Consider two logical theories Syn (with o and thm) and Syn′ (with o′ and thm′). A
logical morphism is an LF-morphism l : Syn → Syn′ such that l(thm x) = thm′(k x) for
some expression k : l(o)→ o′. (k is uniquely determined if it exists.)

I Definition 7 (Logic). A logic is a 4-tuple forming a logical morphism sem : Syn→ Sem,∆.

I Example 8 (First-Order Logic). FOL from Ex. 4 is a logical theory where o and thm are
the distinguished declarations.

FOLZF : FOL → ZF ,∆ from Ex. 5 is a logical morphism with k x = x
.= 1.

Every logic in the sense of Def. 7 induces a logic in the sense of Sect. 2. Here the intuitions
behind Syn, Sem, ∆, and sem are as follows:

The logical theory Syn represents the syntax and proof theory: sentences are the terms
of type o, and proofs are the terms of type thm F .

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


The logical theory Sem represents the semantic foundation, e.g., an ambient set theory
like ZF .
∆ extends Sem with the axiomatization of a basic model. For FOL, ∆ is very simple—
the theory of a non-empty set. But ∆ can be arbitrarily complex, e.g., the theory of a
category for categorical models or the theory of a Kripke frame for Kripke models.
The logical morphism sem describes the interpretation of the syntax and proofs in an
arbitrary model.

In the remainder of this section, we make these intuitions precise for a fixed logic sem :
Syn→ Sem,∆.

I Definition 9 (Abstract Negation). For a type A in a logical theory, we abbreviate A :=
A→ ΠF :oF .

A logical theory is classical if it has a term of type classical : ΠF :othm F → thm F .

The type A represents a negation of A in the sense that if A is inhabited, the theory is
inconsistent because every formula is provable. Thus, classical logics are the one that have
double-negation elimination.

I Definition 10 (Syntax and Proofs). A Syn-theory is an extension Syn ↪→ Syn,Σ of Syn.
A Syn-theory morphism is a morphism σ : Syn,Σ→ Syn,Σ′ satisfying σ|Syn = idSyn.
Consider a Syn-theory Σ:
A Σ-sentence is a Σ-term F : o.
A Σ-proof of F is a Σ-term p : thm F .
A Σ-disproof of F is a Σ-term of type thm F .
F is (dis)provable if there is a (dis)proof of F .
A Syn-theory morphism σ : Σ → Σ′ translates sentences and proofs over Σ to Σ′ by

applying the homomorphic extension σ(−).

I Definition 11 (Semantics and Models). Consider a Syn-theory Σ, and a Σ-sentence F .
Then:
1. A Σ-model via sem is a Sem-theory morphism m : Sem,∆, sem(Σ) → Sem,M such

that m|Sem = idSem.
2. F is true resp. false in such a modelm if the typem(semΣ(thm F )) resp. m(semΣ(thm F ))

is inhabited in the theory in Sem,M .
A Syn-theory morphism σ : Σ→ Σ′ reduces a model m of Σ′ to the model m ◦ sem(σ) of Σ.

Syn

Syn,Σ

SemSem,∆

Sem,MSem,∆, sem(Σ)

sem

semΣ m

Note that a model m must be the identity on Sem and interpret the declarations in ∆
and in sem(Σ) as values in Sem. That is the reason why we need two different theories for
Sem and ∆ when defining a logic.

I Definition 12 (Consistency). An Syn-theory Σ is consistent if there is no Σ-sentence
that is both provable and disprovable.

A logical morphism sem : Syn → Sem preserves consistency if sem(Σ) is consistent
whenever Σ has at least one sentence and is consistent.

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


One of the main theorems of [12] is the following:

I Theorem 13 (Soundness/Completeness). Every logic sem : Syn→ Sem,∆ is sound in the
sense that provable Σ-sentences are true in all Σ-models via sem.

Moreover, if Syn is classical and sem preserves consistency, the logic is also complete in
the dual sense.

4 Conservative Morphisms

We will now develop definitions of conservativity for arbitrary logics defined in the MMT
framework. A key insight is to define general notions of derivability and admissibility first.

4.1 Derivable and Admissible Rules
Derivable and admissible are well-known concepts in the study of inference systems. Both
mean that a rule can be added to an inference system without changing its essence. In
MMT, we can give a very general precise definition:

I Definition 14 (Admissible, Derivable). Consider a theory Syn.
For a set J of Syn-types, a type R is called J-admissible if every type in J is inhabited

over Syn iff it is inhabited over Syn, r : R.
A type R is called derivable if it is admissible for the set of all Syn-types.

For J-admissibility, the left-to-right implication always holds: If there is a Syn-term
t : A, then t is also a Syn, r : R-term. Only the right-to-left implication is special.

I Theorem 15. A Syn-type R is derivable iff there is a Syn-term P : R.
In particular, we have a morphism idSyn, r 7→ P from Syn, r : R to Syn.

Proof. Assume there is a term P : R. We can always replace r with P in any term over
Syn, r : R, thus proving J-admissibility.

Assume admissibility for every type T . We obtain P by instantiating with T = R. J

Thus, if a rule (represented by the type R) is derivable, we have a derivation for it
(represented by the term P ), and adding it to the inference system (the declaration r : R)
just adds an abbreviation (the name r) for a derivation that already existed. For example,
let Syn = FOL and R = ΠF,G,H thm (F ⇒ G ⇒ H) → thm F → thmG → thmH. R is a
derivable rule: We can derive it applying modus ponens twice, and the term P : R is given
by λF,G,H λp,q,r mpGH (mpF (G⇒ H) p q) r.

A J-admissible rule may create substantively new derivations as long as it does not create
new J-terms. The most important special case arises when Syn is a logical theory and J is
the set of all types of the form thm F : then J-admissibility of a rule R means that no new
formula F becomes provable if R is added to Syn.

Derivable rules are admissible but not vice versa. Admissible-but-not-derivable rules are
of great importance in the meta-theory of logics. Examples are the deduction theorem in
Hilbert calculi and the cut rule in sequent calculi.

Proofs of derivability are usually straightforward: we just have to exhibit the derivation
P . Proofs of admissibility, however, are usually very involved, often requiring an induction
over all Syn-terms. Moreover, derivability is the more robust notion: Extending Syn in
any way can never break the derivability of R (because P : R remains a well-formed term),
but it can break admissibility (because it adds a new case that has to be considered in the
inductive proof).

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


In the sequel, we often need to talk about admissibility where the set J a certain form.
Therefore, we define:

I Definition 16. For a logical theory and a type constructor thm : o → type, we say
thm-admissible if we mean admissible for the set of all types of the form thm F .

4.2 Derivable and Admissible Morphisms
The previous section formalized the existing concepts of derivable and admissible in MMT.
Now we use the MMT formalism to generalize the definitions to arbitrary theory extensions.

I Definition 17 (Admissible/Derivable Extensions). Consider a theory extension Syn ↪→
Syn′.

It is called J-admissible if every type in J is inhabited over Syn iff it is inhabited over
Syn′.

It is called derivable if it is admissible for the set of all Syn-types.

I Theorem 18. An extension Syn ↪→ Syn′ is derivable iff it has a retraction, i.e., if there
is a morphism P : Syn′ → Syn such that P |Syn = idSyn.

Proof. Let Syn′ = Syn,Σ.
Assume there is a morphism P . We can always replace any Σ-symbol c with P (c) in any

Syn′-term, thus proving J-admissibility.
Assume admissibility for every type T . We build the morphism P by induction on Σ.

Assume we have P : Syn,Σ0 → Syn. For the next Σ-declaration c : A, we instantiate
admissibility with T = P (A) to obtain a Syn-term p. Then P, c 7→ p is a morphism
Syn,Σ0, c : A→ Syn. J

Theory extensions are the most important special case when studying conservativity. But
it is easy to generalize the concepts to arbitrary morphisms. This has practical importance
because it allows considering, e.g., renamings or isomorphisms in addition to extensions:

I Definition 19 (Admissible/Derivable Morphisms). Consider a theory morphism v : Syn→
Syn′.

v is called J-admissible if every type A in J is inhabited over Syn iff v(A) is inhabited
over Syn′.

v is called derivable if it has a retraction, i.e., if there is a morphism P : Syn′ → Syn

such that P ◦ v = idSyn.

I Theorem 20. If v : Syn→ Syn′ is derivable, then it is admissible for all Syn-types.

Proof. Applying the retraction of v yields a Syn-term for every Syn′-term. J

For arbitrary morphisms, admissibility for all Syn-types is not the same anymore as
having a retraction. The problem is that quantifying over all Syn-types A is not strong
enough to quantify over all Syn′-types because not every Syn′-type is of the form v(A).
Therefore, we have to choose one of the two notions as the appropriate generalization of
derivability. In Def. 19, we choose the retraction property because it better captures the
intuition that all Syn′-declarations can be derived in Syn.

Finally we establish some basic closure properties.

I Theorem 21 (Closure Properties). Derivable and admissible morphisms have the following
closure properties:

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Identity
The identity morphism is derivable.
The identity morphism is J-admissible for any J .

Composition
If v and w are derivable, then so is w ◦ v.
If v is J-admissible and w is v(J)-admissible, then w ◦ v is J-admissible.

Decomposition
If w ◦ v is derivable, then so is v.
If w ◦ v is J-admissible, then so is v.

Additionally, derivable morphisms have the following closure properties:
Union: The union Σ,Σ0,Σ1 of derivable extensions Σ,Σ0 and Σ,Σ1 is derivable.
Pushout: The pushout of a derivable morphism is derivable.

Proof. All proofs are straightforward. J

The closure under pushouts formally captures the robustness of derivability: It is pre-
served under translations of the domain theory. Admissibility of morphisms, however, is
brittle: It can be broken by relatively minor changes to the domain theory.

4.3 Conservative Morphisms
In this section, we fix a logic sem : Syn→ Sem,∆. We want to study the conservativity of
a Syn morphism v : Σ→ Σ′. The following diagram describes our basic situation.

Syn

Syn,Σ

Syn,Σ′

Sem,∆

Sem,∆, sem(Σ)

Sem,∆, sem(Σ′)

v sem(v)

sem

semΣ

semΣ′

I Definition 22 (Proof-Theoretically Conservative). A Syn-morphism v : Σ → Σ′ is called
proof-conservative via sem if sem(v) is semΣ(thm)-admissible.

v is simply called proof-conservative if it is proof-conservative via idSyn.

Intuitively, v is proof-conservative via sem if semantic proofs (i.e. proofs carried out in
the ambient foundation Sem that talk about truth in an arbitrary model) exhibit the typical
conservativity property when moving along v.

For every logical theory Syn, we have the trivial semantics idSyn. The special case
of being proof-conservative via idSyn immediately yields the usual proof-theoretical notion
from Def. 1:

I Theorem 23. v : Σ → Σ′ is proof-conservative iff the following holds: every Σ-sentence
F is Σ-provable iff v(F ) is Σ′-provable.

In particular, an extension Σ ↪→ Σ′ is proof-conservative if every Σ-sentence is Σ-
provable iff it is Σ′-provable.

Proof. This follows easily because if sem = idSyn, then sem(−) is the identity, and in
particular sem(v) = v. J

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


I Definition 24 (Model-Theoretically Conservative). A Syn-morphism v : Σ→ Σ′ is model-
conservative via sem if sem(v) is derivable, i.e., if there is a retraction r as in the commu-
tative diagram below.

Syn,Σ

Syn,Σ′

Sem,∆, sem(Σ)

Sem,∆, sem(Σ)
id

Sem,∆, sem(Σ′)

v sem(v)
semΣ

semΣ′
r

v is simply called model-conservative if it is model-conservative via idSyn, i.e., if v
has a retraction.

The question whether our notion of model-conservativity is equivalent to the usual one
from Def. 2, is tricky. We establish one direction first:

I Theorem 25. If v : Σ → Σ′ is model-conservative via sem, then every Σ-model m via
sem can be expanded to a Σ′-model m′ via sem that reduces to m.

Proof. We put m′ = m ◦ r. The reduct of m′ via v is m′ ◦ sem(v), which is equal to m
because r ◦ sem(v) = id .

Syn,Σ

Syn,Σ′

Sem,∆, sem(Σ)

Sem,∆, sem(Σ)
id

Sem,∆, sem(Σ′)

v sem(v)
semΣ

semΣ′
r

Sem,M

m

J

The other direction of the equivalence depends on subtle properties of the theory Sem.
For example, consider the case where sem and Sem formalize the usual set-theoretical se-
mantics in some ambient set theory. If we formalize Def. 2, we obtain something like the
Sem-sentence U given by

∀m ∈Mod(Σ).∃m′ ∈Mod(Σ′). reduct(v,m′) = m

Our definition, on the other hand, is equivalent to exhibiting a function f such that

∀m ∈Mod(Σ). f(m) ∈Mod(Σ′) ∧ reduct(v, f(m)) = m

This is subtly stronger because it requires actually giving f , which in particular requires f
to be definable as a Sem-expression.

For example, consider the most direct formalization of set theory using a FOL-theory
ZF with a single predicate symbol ∈. This FOL-theory has no function symbols at all
and therefore cannot give any function f even if it can prove U and has the axiom of
choice. However, assume a variant of ZF that has a choice operator ε : ΠF :i→prop →
(thm ∃x.F (x)) → i, which chooses some element that satisfies F provided that such an
element exists. Then we can define f as the LF-expression

λm . ε
(
λm′ m′ ∈Mod(Σ′) ∧ reduct(v,m′) = m

) (
∀E P m

)
© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


where ∀E is the elimination rule that instantiates P : thm U with m to show the existence
of the needed m′.

Note that the axiom of choice would not be sufficient here. It would only allow proving
the existence of f but not choose a term for it.

Such choice operators are relatively strong features of axiomatic set theories. However,
in practical foundations of mathematics that are used in proof assistants, they are very
common. Examples include higher-order logic [5] and the set theory underlying Mizar [15].
For constructive foundations such as the calculus of constructions underlying Coq [2], the
choice operator is trivial because the only way to prove U in the first place is to exhibit f .

We summarize the above analysis in the following theorem:

I Theorem 26. Assume that Sem adequately formalizes the ambient foundation of mathe-
matics that is implicitly used in Def. 2.

Moreover, assume that whenever Sem can prove a statement of the form “for all m exists
m′ such that F (m,m′)”, it can also define an LF-function f such that F (m, f(m)).

Then v : Σ→ Σ′ is model-conservative via sem iff it is conservative in sense of Def. 2.

Proof. The left-to-right direction is proved by Thm. 25. For the right-to-left direction,
assume that for every Σ-model m there is a Σ′-model m′ that reduces to m. Using the
assumptions about Sem, that yields a function f that maps Σ-models to Σ′-models.

We construct the needed retraction r of v as follows. First we package the declarations
in ∆, sem(Σ) into a Sem-term m. The details of this packaging depend on how Sem defines
models. For example, if Sem defines models using record types, the packaging just constructs
a record.

Second, r maps every symbol c of sem(Σ′) to the term that selects the component c
from f(m). Again the details of this selection depend on Sem. For example, if Sem defines
models using record types, the selection is just the projection of the field c. J

4.4 Relating the Notions of Conservativity
For a logic sem : Syn→ Sem,∆, Def. 22 and 24 yield four different notions of conservativity.
We fix a Syn-morphism v : Σ→ Σ′ and abbreviate as follows:

(PS) v is proof-conservative via sem.
(P) v is proof-conservative.
(MS) v is model-conservative via sem.
(M) v model-conservative.

By instantiating Thm. 21, we immediately obtain several closure properties for all four
notions.

Recall that (M) means that v has a retraction, and that (P) and (MS) correspond to the
notions of conservativity from Def. 1 and 2

The following theorem shows how the four properties relate to each other:

I Theorem 27. Let C be the assumption that Syn is classical and that sem preserves
consistency. Then we have the following graph of implications where A L→ B means that L
and A imply B:

P

M

PS

MS

C

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Proof. (MS) implies (PS): This is a special case of Thm. 18.
(M) implies (P): This is the special case of (MS) implies (PS) for sem = idSyn.
(M) implies (MS): (M) yields a retraction r : Σ′ → Σ. We obtain the retraction r+ that

establishes (MS) as sem(r).

Syn,Σ

Syn,Σ
id

Syn,Σ′

Sem,∆, sem(Σ)

Sem,∆, sem(Σ)
id

Sem,∆, sem(Σ′)

v sem(v)
semΣ

semΣ′
r r+

(PS) implies (P) if (C): Consider a Σ-sentence F such that there is a Σ′-proof P ′ :
v(thm F ). We need to exhibit a Σ-proof P : thm F .

First, applying (PS) to the term semΣ′(P ′), whose type is

semΣ′
(v(thm F )) = sem(v)(semΣ(thm F )),

yields a sem(Σ)-term Q of type semΣ(thm F ).
The remainder of the proof uses (C) to obtain P from Q. If Σ is inconsistent, P exists

trivially. So assume it is consistent. Consider Σ∗ = Σ, a : thm F . If Σ∗ is inconsistent, we
obtain a Σ-term of type thm F and classicality of Syn yields the needed term P .

We conclude the proof by showing that Σ∗ is indeed inconsistent. Because sem preserves
consistency, it suffices to show that Sem,∆, sem(Σ∗) is inconsistent. That follows from the
terms a : semΣ(thm F ) and Q.

(P) implies (PS) if (C): Consider a Σ-sentence F such that there is a sem(Σ′)-proof
Q′ : sem(v)(semΣ(thm F )). We need to exhibit a sem(Σ)-proof Q : semΣ(thm F ).

If Σ is inconsistent, this is trivial. So assume it is consistent. Then (P) implies that Σ′
is consistent, too. Now as in the case (PS) implies (P), we use the consistency of Σ′ and
(C) to obtain from Q′ a Σ′-term P ′ : v(thm F ). Then (P) yields a Σ-term P : thm F , and
we can put Q = semΣ(P ). J

(M) captures the situation where the syntax of the logic itself can express the proof
of conservativity: as a theory morphism that retracts v. Therefore, if v satisfies (M), v
satisfies any other reasonable definition of conservativity, i.e., (M) is the minimal/strongest
reasonable definition. In particular, the retraction of v yields both a proof transformation
from Σ′ to Σ, which shows that (M) implies (P), and a model reduction from Σ to Σ′, which
helps showing that (M) implies (MS).3

One might think that (M) is too strong in practice. But it is actually very common as
we see in Ex. 28 below.

(P) can be seen as a dual to (M)—not satisfying (P) captures the situation where the
syntax of the logic itself can express a counter-example to conservativity: as a Σ-sentence
that is a Σ′-theorem but not a Σ-theorem. Therefore, if v satisfies any reasonable definition
of conservativity, it should satisfy (P), i.e., (P) is the maximal/weakest reasonable choice.

(MS) sits in between (M) and (P). It captures the situation where the semantics (but
not necessarily the syntax) of the logic can express the proof of conservativity: as a model
transformation that expands Σ-models to Σ′-models. Because the semantics is usually more
expressive than the syntax, it is not surprising that (MS) is weaker than (M). Moreover,

3 The corresponding observation for the framework of institutions was previously made in [14].

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


because there may be multiple different ways to give the semantics of a logic, it is not
surprising that (MS) is less canonical than (M) or (P), i.e., that (MS) depends on the choice
of the model theory.

I Example 28. (M) subsumes a wide variety of important morphisms including:
Isomorphisms.
Extension with a definable constant. If we add a constant c : A as an abbreviation for
some Σ-term t : A, then Σ, c : A is derivable using the morphism that maps c to t.
Extension with a provable theorem. Adding an axiom a : thm F if F has a proof P is
just a special case of the previous case.
Extension with a new type. Let Syn have a declaration tp : type such that terms A : tp
represent types of the logic. Adding a new type c : tp is almost always derivable because
we just have to map c to some existing Σ-type. The only exception is when Σ is the
empty theory of a logic without any built-in types. In that case, (P) and (MS) hold but
not (M).
Extension with a new predicate symbol p : A1 → . . . → An → o. This is essentially
always derivable because we can map p to λx1,...,xn

F for some formula F . The only
exception is contrived, namely when Σ has no sentences, in which case (P) and (MS)
hold but not (M).
Extension with a new function symbol f : A1 → . . . → An → A. This is derivable
whenever Σ has a term of type A in context x1 : A1, . . . , xn : An, which is often the
case. If there is no such term, (M) fails; (P) and (MS) still hold unless Syn allows empty
types.
Compositions, unions, and pushouts of morphisms that satisfy (M).

[12] describes how logic translations and semantics become formally the same thing in
MMT. For example, we can have logical morphisms Syn t→ Syn′

s→ Sem r→ Sem′ repre-
senting a logic translation t, a semantics s, and a refinement r of the semantic foundation.
Note that if r ◦ s ◦ t preserves consistency, so do s ◦ t and t. Let us write (M), (Mt), (Mts),
(Mtsr) for model-conservativity via idSyn, t, s ◦ t, and r ◦ s ◦ t, respectively. Then we have
(M) implies (Mt) implies (Mts) implies (Mtsr) implies (P).

Thus, the more we refine Syn, the weaker model-conservativity becomes. Eventually,
if we refine further and further, model-conservative and proof-conservative may eventually
coincide.4 Thus, we can think of (P) as an extreme case of (MS).

4.5 Conservativity and Completeness
Via admissibility, we can unify the concepts of conservative morphism and complete seman-
tics:

I Theorem 29. The logic sem : Syn→ Sem,∆ is complete iff all semΣ are thm-admissible.

Proof. [12] already proves that a sentence F holds in all Σ-models iff Sem,∆, sem(Σ) has a
term of type semΣ(thm F ). Due to admissibility, such a term exists iff Σ has a term of type
thm F . J

Of course, a logic is also complete if the morphisms are derivable. However, because Sem is
usually stronger than Syn, they are virtually never derivable in practice.

4 This happens, e.g., if we use maximal consistent sets of sentences as the models.

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


One might hope for a stronger theorem where completeness already holds whenever sem
is admissible. For that, we have to ask if the admissibility of sem implies the admissibility
of semΣ. This is not always the case, and we develop a sufficient criterion now:

I Definition 30. We say that Syn can abstract over the declaration c : A if for every for
Σ, c : A-sentence F , there is a Σ-sentence ∀c:AF such that ∀c:AF is Σ-provable iff F is
Σ, c : A-provable.

We write ∀ΓF when we iterate this construction for all declarations in Γ that occur in a
Σ,Γ-sentence F .

We speak of abstracting over theories when we can abstract over every declaration that
is allowed in a theory.

The intuition behind ∀ΓF is to universally quantify over the declarations in Γ. Thus,
abstracting over theories means that Syn has universal quantification over all concepts that
may be declared in theories. Note that most logics can quantify over axioms by using
implication, e.g., in FOL we can put ∀a:thmGF := G⇒ F .

I Example 31. FOL-theories may declare function and predicate symbols. But FOL can
only universally quantify over variables. Therefore, it cannot abstract over theories.

Higher-order logic (HOL) with a single base type can declare typed constants. Because
HOL can quantify over variables of all types, it can abstract over theories. However, the
variant of HOL that allows theories to introduce additional base types cannot abstract over
theories because HOL cannot quantify over type variables. For the same reason typed FOL
cannot abstract over theories.

Type theories with universe hierarchies (such as the calculus of constructions) can usually
quantify over all types. Therefore, they can abstract over theories.

First-order set theory allows its theories to declare sets and elements of sets. It can
quantify over both and thus over theories.

Languages that allow axiom schemata, e.g., polymorphic axioms in HOL, usually cannot
abstract over them.

I Theorem 32. Assume a logic where sem is thm-admissible.
If Syn can abstract over Σ, then semΣ is thm-admissible. In particular, the logic is

complete if Syn can abstract over all theories.

Proof. The proofs are straightforward. J

The requirement that Syn can abstract over theories is needed because admissibility of
sem is a very weak notion: it talks only about sentences over the empty Syn-theory. Ab-
stracting over theories makes sure that every relevant statement can be coded as a sentence
over the empty theory. As a counter-example, consider FOL without equality and without
constants for truth and falsity: then the empty theory happens to have no sentences at all
so that any morphism out of Syn is already proof-conservative.

5 Conclusion

We investigated the various notions of conservativity in the MMT framework. We were
able to recover the existing notions of model-theoretical (MC) and proof-theoretical (PC)
conservativity as special cases of admissibility and derivability.

We saw that these two notions should always be discussed together with a third one, the
retractability of an extension (R). Using MMT, it naturally emerged that (R) and (PC) are

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


the strongest and weakest extremes, whereas (MC) sits anywhere in between depending on
how far the model theory refines the syntax. Moreover, (R) arises as the special case where
the initial model theory is used (where the models are theory morphisms), and (P) arises
as the special cases where a maximally refined model theory is used (e.g., where the models
are maximal consistent sets of sentences). This harmonically resolves the tension between
the two competing notions of conservativity.

In a second result, we showed how the conservativity of a model theory (seen as a
translation of the syntax) corresponds to the completeness of the logic.

References
1 M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, F. Rabe, and K. Sojakova. Towards

Logical Frameworks in the Heterogeneous Tool Set Hets. In T. Mossakowski and H. Kre-
owski, editors, Recent Trends in Algebraic Development Techniques 2010, pages 139–159.
Springer, 2012.

2 Coq Development Team. The Coq Proof Assistant: Reference Manual. Technical report,
INRIA, 2015.

3 R. Diaconescu. Proof systems for institutional logic. Journal of Logic and Computation,
16(3):339–357, 2006.

4 J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and
programming. Journal of the Association for Computing Machinery, 39(1):95–146, 1992.

5 M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment for
Higher-Order Logic. Cambridge University Press, 1993.

6 R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143–184, 1993.

7 W. Hodges. Model Theory. Cambridge University Press, 1993.
8 F. Horozal and F. Rabe. Representing Model Theory in a Type-Theoretical Logical Frame-

work. Theoretical Computer Science, 412(37):4919–4945, 2011.
9 M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Mathematical Structures

in Computer Science, 21(4):883–911, 2011.
10 F. Pfenning. Logical frameworks. In J. Robinson and A. Voronkov, editors, Handbook of

automated reasoning, pages 1063–1147. Elsevier, 2001.
11 F. Rabe. A Logical Framework Combining Model and Proof Theory. Mathematical Struc-

tures in Computer Science, 23(5):945–1001, 2013.
12 F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic and Compu-

tation, 2014. doi:10.1093/logcom/exu079.
13 F. Rabe and M. Kohlhase. A Scalable Module System. Information and Computation,

230(1):1–54, 2013.
14 L. Schröder, T. Mossakowski, and C. Lüth. Type Class Polymorphism in an Institutional

Framework. In J. Fiadeiro, P. Mosses, and F. Orejas, editors, Recent Trends in Algebraic
Development Techniques, pages 234–251. Springer, 2004.

15 A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In A. Joshi, editor,
Proceedings of the 9th International Joint Conference on Artificial Intelligence, pages 26–
28. Morgan Kaufmann, 1985.

© Florian Rabe;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Existing Definitions of Conservativity
	Logics in the MMT-Framework
	Logical Framework
	Logics

	Conservative Morphisms
	Derivable and Admissible Rules
	Derivable and Admissible Morphisms
	Conservative Morphisms
	Relating the Notions of Conservativity
	Conservativity and Completeness

	Conclusion

