
A Language with Type-Dependent Equality

Florian Rabe[https://orcid.org/0000−0003−3040−3655]

Computer Science, FAU Erlangen-Nuremberg

Abstract. In soft type systems terms and types exist independently and
typing is a binary relation between them. That allows the same term to
have multiple types, which is in particular the case in the presence of
subtyping. Thus, a soft type system may define equality in such a way
that two terms can be equal at one type but unequal at another type.

We explore the design of soft type systems with such a type-dependent
equality. The most promising application is that it yields a more natural
treatment of quotient types: if two terms can be different at the base type
but equal at the quotient type, we can use the same representation in
both types without incurring the cost of using equivalence classes. That
can help formalize mathematics, where the official definition of quotients
uses equivalence classes but practical notations usually do not. The main
drawback of such a system is that the substitution of equals by equals
becomes more complex as it now depends on the type with which the
equal terms are used.

We analyze the general problem, show examples from major soft-typed
proof assistants, and then present a simple language that allows studying
type-dependent equality in a simple rigorous setting.

1 Introduction

To work with mathematical content in computer systems, it is necessary to
represent it in formal languages. So far combining the flexibility of informal
mathematical language with strong tool support has proved challenging. All
major proof assistants are at least partially motivated by this but must make
different trade-offs to obtain tool support. And despite massive progress, no
current system is even close to mimicking the flexibility of mathematical lan-
guage [Wie07,KR20]. Arguably that is part of the reason why adoption of proof
assistants by mathematicians is much slower than hoped.

A fundamental issue is the decidability of typing and equality, which is not
a priority (arguable even a negative priority) in mathematics but often essential
in proof assistants. Therefore, features like subtyping via predicate types {x :
A|p(x)} and equating objects via quotient types A/r are very difficult to design
in formal systems.

In hard-typed systems, every term has a unique type (possibly up to some
equality on types). Examples used in proof assistants are dependent type theories
such as the one in Coq [Coq15] and the higher-order logic family [Gor88]. Hard
typing often yields better computational properties (in particular type inference,

decidable equality) but requires formalization artifacts when mathematical op-
erations on sets cannot be mapped direct to corresponding operations on types.
For examples, quotients must usually be modeled via Setoids {A : type, r : A→
A→ bool} and subtypes via dependent products Σx : A.P (x). Lean [dKA+15]
uses an interesting compromise: it adds kernel-level proof automation for those
artifacts even though they are library-level definitions and not part of the un-
derlying logic.

Our focus here is on soft-typed systems, where terms exist independently
of types and typing is giving by a binary predicate between terms and types.
In particular, every term can have many different types, and types can be seen
as unary predicates on terms. Proof assistants using soft typing include Nuprl
[CAB+86,ABC+06] and Mizar [TB85]. These can accommodate predicate types
(both) and quotient types (Nuprl) naturally at the cost of making typing and
equality undecidable. A compromise solution is employed in PVS [ORS92]: it
uses a hard type system with a lattice of soft predicate subtypes for each hard
type.

In this paper we look at one particular feature in the design of soft type
systems: type-dependent equality (TDE). With TDE, the equality operator is
defined in such a way that the derivability of the formula s =A t depends on
the type A — the same two terms might be equal at one type but unequal at a
different type. Note that TDE is not a design option in hard type systems at all
because there terms do not have multiple different types to begin with.

This paper is motivated by the observation that TDE, while used in some
systems, has received disproportionately little systematic attention relative to its
potential benefits and fundamental nature. In fact, the author coined the name
“type-dependent equality” for the occasion of this paper. Even in proof assistants
featuring (some variant of) TDE, it is not prominently advertised. This is all
the more important as some of the TDE-related language design trade-offs in
these systems are very subtle and little-known even to experts in the area of
formalized mathematics.

We take a broad approach focusing on general ideas and presenting only a
simple formal language with TDE. This is warranted because typing and equality
are cross-cutting issues that affect virtually every other language feature and
thus cannot be studied in isolation. Sect. 2 extensively discusses the benefits
and dangers of TDE and how it interrelates with other language features. It
also describes some of the subtleties of how TDE is or is not realized in current
proof assistants. Then Sect. 3 introduces the syntax and semantics of a formal
language with TDE. It serves as an example to better understand TDE and as a
starting point to develop more advanced languages with TDE. Sect. 4 concludes.

2 Motivating Considerations and Related Work

2.1 Type-Dependent Equality

Benefits Equality is usually seen as a binary relation on objects. Even in typed
languages, which often use a ternary equality relation s =A t, equality is often

2

absolute in the sense that the derivability of s =A t does not depend on A. The
only effect of A in =A is to restrict s and t to be of type A — if s and t have
both type A and B, then either both s =A t and s =B t hold or neither.

A type-dependent equality (TDE) relation is rare, and it is instructive to
ponder why. In hard-typed languages such as HOL [Gor88] or the calculus of
constructions underlying Coq [Coq15], all types are disjoint. Equality is ternary
because it is a polymorphic family of binary relations, one for each type. The
question of TDE does not come up because terms s and t never have two different
types A and B.

Set theoretic languages are usually based on an axiomatization of set theory
in first-order logic as in Mizar [TB85] or higher-order logic as in Isabelle/ZF
[PC93]. In both cases, it is common to use a fixed base type U for the universe
of sets, and binary equality on U is a primitive notion. In these languages, soft
typing is an emergent feature: we can add the concept of types as unary pred-
icates on U . But the binary equality on U both historically and foundationally
precedes the introduction of soft types. Thus, TDE is usually not considered.

The only major system with systematic TDE that the author could find is
Nuprl [CAB+86]. It uses TDE to handle quotients naturally by changing the
equality at the quotient type. For example, it allows having both 0 6=Z 2 and
0 =Z/mod2 2 without inconsistency. The key idea is to use a different equality
relation at the quotient type than at the base type. This trick has the benefit
that no fiddling with equivalence classes is needed: the term 2 : Z can also
be used as an element of 2 : Z/mod2. Thus, the canonical projection into the
quotient is a no-op, which is far superior computationally and notationally to
the standard approach of using equivalence classes.

Mizar [TB85] uses a light variant of TDE for record types, which we discuss
in more detail in Sect. 2.4.

Arguably, TDE is how quotients are handled in practical mathematics as well.
Even though mathematics officially defines the quotient as the set of equivalence
classes, mathematical notation almost always reuses the terms of the original
types as elements of the quotient — with the implicit understanding that related
terms are equal when seen as elements of the quotient. However, this is considered
a notational simplification, and the foundations of mathematics do not include
a rigorous treatment of TDE.

Analogy to Typing There is an elegant way to fit TDE into a general framework
of formal systems if we think of typing as type-dependent definedness (TDD).
Instead of thinking of a : A as a binary predicate, we can think of it as a type-
dependent unary predicate :A applied to a.

That yields a language with a unary and a binary type-dependent predicate:
TDD :A and TDE =A. TDD regulates which values are acceptable values at
type A, and TDE regulates which of those are equal. The semantics of types can
then be given by partial equivalence relations on objects [All87]: the denotational
semantics of A is the universe U restricted to objects satisfying :A quotiented
by =A.

3

It is well-known that partial equivalence relations enjoy nice closure proper-
ties. In particular, TDE makes it easy to introduce

– predicate types A|p for a unary predicate p on A: a copy of A with definedness
restricted to p

– quotient types A/r for an equivalence relation r on A: a copy of A with
equality broadened to r.

Dangers Tweaking the equality relation at a type corresponds to changing the
introduction rule of equality to make more things equal. Consequently, the elim-
ination rule is applicable more often so that a naive version of TDE can easily
be inconsistent. The elimination rule of equality varies between languages but is
usually a substitution rule like

x : A ` F (x) : bool ` s =A s
′ ` F (s)

` F (s′)
Sub

This shows us how TDE can cause trouble: Assume in addition to the premises
of Sub, we also have x : B ` F (x) and ` s : B and ` s′ : B — a common
situation in languages with subtyping. Then TDE+Sub is inconsistent if the
plausible situation arises where ` ¬s =B s′ and ` F (s) and ` ¬F (s′). Intuitively,
whenever terms can have multiple types, the equality relations at those types
must be consistent with each other. At least if A is a subtype of B, then s =A s

′

should imply s =B s′, i.e., the rule

` s =A s
′ ` A <: B

` s =B s′

should be present. Otherwise, we would no longer have a canonical embedding
of A into B, which would be an unreasonably high price to pay.

But the details subtly depend on the specific language. To understand how
Nuprl, which uses Sub, avoids inconsistency, the author had to resort to direct
communication with the developers after exhausting the documentation and
failing at reverse engineering: Nuprl prevents the above situation because x :
A ` F (x) : bool would not hold, thus making Sub not applicable. In fact and
maybe surprisingly, it is possible in Nuprl to have ` F (g) : bool for every closed
term g : A but still x : A 6` F (x) : bool. That is because the Nuprl proof
system (of which well-formedness of propositions is a special case) privileges
closed terms — there is even a type Base of all closed terms. This unusual
behavior is motivated also by other design considerations but is critical for the
soundness of TDE+Sub in Nuprl.

2.2 Abstract Definitions and Quotient Types

Standard mathematics defines quotients via equivalence classes. It is instructive
to ask whether there are alternative definitions.

4

Abstract vs. Concrete Definitions We speak of an abstract definition of a lan-
guage feature if the operations that form sets and their elements are axiomatized
through their characteristic properties. We speak of a concrete definition if the
operations are given as abbreviations of existing expressions.

A paradigmatic abstract definition is the Cartesian product, which is usually
specified to have formation operator × , introduction form (,), elimination
forms 1 and 2, computation properties (a, b)1 = a and (a, b)2 = b (intuitively:
elimination of introduction is identity), representation property p = (p1, p2)
(intuitively: introduction of elimination is identity; or introduction is surjective),
and extensionality property p = q iff pi = qi for i = 1, 2 (intuitively: elimination
is injective). To show the consistency, at least one concrete definition must be
given, e.g., via Wiener pairs or Kuratowski pairs.

A paradigmatic concrete definition is the set of functions, which is usually
defined by formation operator A→ B = {f ⊆ A×B|∀x : A.∃1y : B.(x, y) ∈ f},
introduction form λx : A.t(x) = {(a, t(a)) : a ∈ A}, elimination form f a =
the b : B.(a, b) ∈ f . For concrete constructions, the characteristic properties are
the corresponding ones but must be proved instead of being axioms: computation
(λx : A.t(x)) a = t(a), representation f = λx : A.f x, extensionality f = g iff
f a = g a for a : A.

Abstract definitions allow for more scalable reasoning, can usually be done in
simpler languages, allow defining language features orthogonally, and are more
portable across systems. Thus, mathematics and computer science often prefer
them, e.g., λ calculus is the abstract definition of function types obtained by
abstracting from the concrete one used in mathematics.

Abstract Quotient Types It is maybe surprising that quotient types are usually
defined concretely by using equivalence classes:

A/r = {[a]r : a ∈ A}, [a]r = {a′ : A|r a a′} (∗)

Maybe this is because there is no natural competing concrete definition. Contrary
to function sets, there is no commonly used abstract specification of quotient sets
either. But we can systematically obtain an abstract specification by analogy to
the ones above:
– formation operator A/r for a binary equivalence relation r on A
– introduction form [a]r for a : A

– elimination form t(ρq) : B for q : A/r and t(x) : A
r→ B, where we write

ρq for picking an arbitrary representative of class q and t(x) : A
r→ B as a

shorthand for x : A ` t(x) : B and r a a′ implies t(a) = t(a′),
– computation property t(ρ[a]r) = t(a)

– representation property []r : A
r→ B and q = [ρq]r whenever q : A/r

– extensionality property p = q iff t(ρp) = t(ρq) whenever t(x) : A
r→ B

Nuprl uses this abstract definition of quotient types that is a primitive part of
the logic. An alternative definition of quotients equivalent to the one in Nuprl is
given in [Nog02]. Introduction form []r and elimination form ρ are no-ops, which
is critical for performance and convenience. Mizar defines quotients concretely

5

using (∗). Coq and Lean define quotients concretely via setoids, but that does
not satisfy the above specification as equality is not redefined. However, Lean
provides kernel-level support to eliminate that artifact.

2.3 Predicate and Quotient Types

Predicate Types If p is a unary predicate on A, we write A|p for the predicate
subtype of A given by p. An abstract specification can be given by
– formation operator A|p
– introduction form a|p : A|p if a : A and p a
– elimination form ιs : A for s : A|p, and p (ιs)
– computation property ι (a|p) = a
– representation property s = (ιs)|p whenever s : A|p
– extensionality property s = t iff ιs = ιt for s, t : A|p

Mizar uses a concrete definition to introduce predicate types. Nuprl and PVS
use abstract ones that are primitive parts of the logics. In all three systems, in-
troduction form a|p and elimination form ι are no-ops (i.e., the introduction
form incurs a proof obligation that the system must try to discharge automat-
ically). Hard-typed languages such as HOL or dependent type theory usually
define setA = A → bool as the power type of A. Then p itself can be used
instead of A|p. But this does not satisfy the above specification as p is a value
and not a type. The HOL proof assistant family employ the conservative exten-
sion principle to turn the value p into a fresh type [Gor88]: essentially given p,
it adds a fresh type S, a partial function A →? S and the function ι : S → A
such that S becomes bijective to A|p. PVS uses HOL plus primitive operations
corresponding to the above specification. Because it supports both p : setA and
the type A|p, conversions between the two are commonly used.

Duality The abstract definitions of predicate and quotient types are dual in the
following sense:

property predicate type A|p quotient type A/r
formation uses unary predicate p binary predicate r
introduction requires satisfaction of p canonical projection []r
elimination canonical injection ι requires preservation of r
minimal predicate A|λx.false ∼= void (initial) A/λxy.false ∼= A
total predicate A|λx.true ∼= A A/λxy.true ∼= unit (terminal)

Here, to enhance the duality, we do not require r to be an equivalence. Instead,
we allow any binary relation and assume the semantics uses the generated equiv-
alence relation. Nuprl and the setoid encoding require an equivalence relation.

The duality is weaker when using standard concrete definitions. Here concrete
predicate types make it easy to use no-ops for introduction. But for concrete
quotient types, the projection []r is expensive. A guiding motivation for our
work is to retain the duality and use no-ops in both cases.

This becomes particularly practical when chaining: Using no-ops, in A|p|q,
we can use a predicate q on A as opposed to A|p. And we simply have A|p|q =

6

A|q|p = A|(λx.p x ∧ q x). For quotient types, we desire the corresponding chain
rule A/r/s = A/s/r = A/(λxy.r x y ∨ s x y as opposed to awkwardly defining s
on equivalence classes.

2.4 Records and Predicate/Quotient Types

Lax vs. Strict Records For simplicity, we do not give formal rules for record types
and instead consider them by example. We use record types like R := {x : A, y :
B} with introduction form r := [x = a, y = b] : R and elimination forms r.x : A
and r.y : B. Specifically, we discuss the relation between R and S := {x : A}
as well as the forgetful functor F : R → S. Using this example, we introduce a
distinction between lax and strict records that is critical in the presence of soft
typing and TDE.

If ` r : S, we speak of lax records. Intuitively, the elements of a lax record
type are all records that have at least the fields prescribed by the type. Thus,
larger record types have fewer record values. To check r : S, we only check r.x : A
and ignore the additional field r.y. Therefore, R is a subtype of S, and F is the
subtype embedding and a no-op, and the empty record type {} is the type of all
records.

This is the case in most languages with primitive record types. In this situ-
ation, TDE (possibly only for record types) is a natural feature: for s, t : R, we
can put s =R t if s.x =A t.x and s.y =B t.y, but s =S t already if s.x =A t.x.
Thus, the subtype R has the stronger equality, and more terms may be equal at
the supertype S. In particular, we might have s =S t but s 6=R t.

This is how PVS records work. Mizar structures work almost the same way:
However, the type argument of the equality relation is not explicit in Mizar.
Instead, it is inferred to be the most specific type of the argument records,
i.e. if s, t : R, then s = t denotes s =R t. In addition to R being a subtype
of S, Mizar introduces explicit syntax for F to drop the additional fields, and
then the equality s =S t can be stated as F (s) = F (t). Nuprl does not have
primitive records but derives lax record types as functions from some index set
(representing the field labels) to types.

If 6` r : S, we speak of strict records. Intuitively, the elements of a strict
record type are all records that have exactly the fields prescribed by the type.
F (r) explicitly removes the field y from r, and the empty record {} is a unit type.
This is common in languages that use derived record types (e.g., by generating
an axiomatic specification, via product types A × B, or via single-constructor
inductive types R = inductiveR(A,B)). Examples are Coq and Isabelle. Here
F can be an expensive operation, especially if many record fields must be copied
or if the value of the field y must be re-inferred later on. TDE is not an option
because no two records have both type R and type S.

There is no subtyping between strict record types R and S, and the relation
between them can be better understood as a quotient. λrr′ : R. r.x =A r′.x
is an equivalence relation on R, and F is the canonical projection. Contrary to

7

general quotients, the equivalence relation always has canonical representatives:
we can use the elements of S because S is isomorphic to the quotient.

Record Subtypes vs. Record Quotients We can apply the quotient intuition also
to lax records. As for strict records, we have the same equivalence relation on
R, and F is also the canonical projection. However, the quotient type cannot be
expressed: F is not surjective, and S is not isomorphic to the quotient — S is
much bigger than the quotient (a supertype of R even). For that reason, Mizar
introduces an additional operator that maps every record type S (which are lax
by default) to the corresponding strict record type Sstrict and provides syntax
for the functor F that now maps R→ Sstrict.

Conversely, we can apply the subtype intuition to strict records. But F is not
a no-op and thus not a proper subtype embedding. But languages that support
implicit coercions can insert F automatically, thus creating the look and feel of
subtyping for the user.

Thus, languages have substantial freedom in how to combine record types
with subtyping and quotient typing as well as TDE.

Mathematical Records In standard mathematics, records are not used explicitly.
But effectively, they occur frequently, e.g., when using algebraic structures such
as when S is Magma (tuple of a set and an operation) and R is Monoid (Magma
with an additional unit). We can think of them as strict records derived via
Cartesian products.

The cost of the explicit forgetful functor F is harmless here because the
representation change from r to F (r) is not done on paper and left to an implicit
coercion in the reader’s mind, i.e., we simply write r instead of F (r). Therefore,
mathematical language can flexibly switch between the subtype intuition (every
monoid is a magma) and the quotient intuition (monoids can be projected to
their magma).

3 Formal Language Definition

We develop a minimal formal language with systematic TDE.

3.1 Syntax and Inference System

Grammar The grammar is given below. Types A are user-declared base types
a, type variables k, built-in base type bool, predicate types A|p, quotient types
A/r, and function types A → B. Simple functions are needed to give the lan-
guage practical expressivity and to form the unary/binary predicates p and r.
Dependent functions types or polymorphic type operators can be added easily
but are not essential in the sequel. We add record types in Sect. 3.3.

Terms are user-declared constants c, bound variables x, the usual logical
connectives and quantifiers on the type bool, and the usual λ-abstraction and
application forms for A→ B. A|p and A/r do not have associated term formation

8

rules because they are populated by the same terms as A with introduction and
elimination being no-ops. The distinction between A on the one hand and A|p
and A/r on the other hand is relegated to the judgments t : A (TDD) and
s =A t (TDE). In keeping with logical practice, the equality judgment is part of
the term syntax as a bool-valued predicate. But the typing judgment must be
a meta-level judgment because it defines which syntax is well-formed to begin
with and because of subtle soundness issues discussed below.

A,B ::= a | k | bool | A|p | A/r | A→ B
s, t, p, r ::= c | x | true | false | if(s)t else t′ | (logical operators)

| λx : A.t | t t | s =A t
Γ ::= (x : type | x : A | t)∗

User-declared theories Θ (omitted in the grammar) introduce global knowl-
edge: base types a : type, constants c : A for A : type, and axioms t for t : bool.
Everything below should be understood as relative to a fixed theory, which we
do not make explicit in the notation. Correspondingly, contexts Γ collect local
(α-renamable) knowledge: type variables k : type, typed variables x : A for
A : type, and local assumptions t for t : bool.

Judgments The judgments are given below. As usual for soft type theories, the
rules for the typing and provability judgments are mutually recursive. A sub-
typing judgment is defined below as an abbreviation. Because types can contain
terms, we also need a judgment for equality of types and a rule for substitution
of equal types for each other, but we omit those here.

Γ ` Γ is a well-formed context
Γ ` A : type A is a well-formed type
Γ ` t : A t is well-formed at type A
Γ ` t boolean t is provable

Γ, x : A ` t(x) : B

Γ ` λx : A.t(x) : A→ B

Γ ` s : bool Γ, s ` t : A Γ,¬s ` t′ : A

Γ ` if(s)t else t′ : A

Γ ` s : A Γ ` t : A

Γ ` s =A t : bool

Γ ` s : bool Γ, s ` t : bool

Γ ` s ∧ t : bool

Γ ` s Γ, s ` t
Γ ` s ∧ t

Γ, x : A ` t(x) : bool

Γ ` (∀x : A.t(x)) : bool

Γ ` ∀x : A.t(x) Γ ` s : A

Γ ` t(s)

Fig. 1. Selected Rules for Standard Operators

9

Rules for Standard Operators We omit most of the rules for context formation,
logical operators, and functions and only give some selected rules in Fig. 1. We
write t(x) for a term with a distinguished free variable x and accordingly t(s)
for the substitution of s for x.

The rule for λ-abstraction is as usual. Because no constraints are put on
t(x), we later on incur the proof obligation that every term t(x) respects =A.
The formation rule for equality shows that s =A t is only well-formed if s and
t already have type A. The rule for if-then-else is interesting because a local
assumption for the truth/falsity of the condition s is available to show the well-
formedness of the expression t and t′ in the then/else branch. Similarly, the rules
for the quantifiers (here shown: ∀) and binary logical operators (here shown:
∧) may use the truth of their first part to show the well-formedness of the
second part; for the binary operators, that corresponds to lazy evaluation. That
is important because the typing rules for predicate and quotient types are able
to use those assumptions.

The proof rules for the binary operators (here shown: the introduction rule for
∧) are similarly sequential. Contrary to both standard hard-typed higher-order
logic and soft-typed Mizar, we allow empty types, which is the natural choice
when working with predicate types. Therefore, some quantifier rules (here shown:
the elimination rule of the universal) only allow terms whose free variables are
from the current context; consequently, e.g., ∀x : A.t(x)⇒ ∃x : A.t(x) is only a
theorem if A is known to be non-empty.

Type formation:

Γ ` A : type Γ ` p : A→ bool

Γ ` A|p : type

Γ ` A : type Γ ` r : A→ A→ bool

Γ ` A/r : type

Introduction (TDD):

Γ ` t : A Γ ` p t
Γ ` t : A|p

Γ ` t : A

Γ ` t : A/r

Elimination:
Γ ` t : A|p
Γ ` t : A

Γ ` t : A|p
Γ ` p t

Γ ` s : A/r Γ, x : A ` t(x) : B Γ, x : A, y : A, r x y ` t(x) =B t(y)

Γ ` t(s) : B

Equality (TDE):

Γ ` s : A|p Γ ` t : A|p Γ ` s =A t

Γ ` s =A|p t

Γ ` s : A Γ ` t : A Γ ` r s t
Γ ` s =A/r t

Fig. 2. Rules for Predicate and Quotient Types

10

Rules for Predicate and Quotient Types Fig. 2 gives all rules for predicate and
quotient types. Together with the proof rules below, it is straightforward to show
that these satisfy the abstract specifications described in Sect. 2: introduction
and elimination forms are no-ops, and computation, representation, and exten-
sionality are trivial.

Note that the equality rule for quotient types does not have to construct the
equivalence closure of r. We only make all terms equal that satisfy r s t, at which
point the usual rules for equality already induce the equivalence closure.

Equality introduction and elimination:

Γ ` t : A

Γ ` t =A t

Γ ` s =A s′ Γ, x : A ` t(x) : bool Γ ` t(s)
Γ ` t(s′) Sub

Fig. 3. Rules for Equality

Rules for Equality Fig. 3 gives the rules for equality. Reflexivity is the introduc-
tion rule. As usual, symmetry and transitivity can be derived.

The elimination rule Sub is the usual substitution rule. It is deceptively
simple: its soundness is very sensitive to subtle variations in the language. The
problem is that the type A may affect the derivability of the premise s =A s′

but does not explicitly occur in the conclusion of the rule. Thus, whenever t(s)
and ¬t(s′), we can try to force an inconsistency by choosing some A at which s
and s′ are equal, e.g., a suitable quotient of a sufficiently large type. The type
system must prevent that by allowing t(x) to use the variable x : A only in ways
that cannot distinguish A-equal terms.

For example, it may be unexpected that our syntax does not include bool-
values terms t ∈ A. We could include that, say with a formation rule

Γ ` t : B Γ ` A : type

Γ ` t ∈ A : bool

Here the first premise is necessary to ensure that only well-typed terms t may
be used. But there is a deep problem: it would allow constructing terms that do
not preserve equality. For example, assume a theory that declares the usual type
N and constants for the natural numbers, and let modm be equivalence modulo
m and Prime be the prime number property. Then for a variable x : N/mod2,
the boolean x ∈ N|Prime would be well-formed and equivalent to Prime(x). But
that boolean would break the soundness of Sub as we have 2 =N/mod2 4 but
2 ∈ N|Prime and 4 6∈ N|Prime.

Remark 1. The author had originally included t ∈ A : bool in the syntax but
failed to obtain soundness even after trying multiple variants of the syntax and
formation rule of t ∈ A.

11

However, without a bool-valued predicate ∈, not much expressivity is lost: we
can still express x ∈ N|p by simply putting p x. And we can easily add syntactic
sugar to recover ∈-based notations for that. Despite the similar expressivity,
the inconsistency problem does not arise in that case: if x : N/mod2, the boolean
Primex is ill-formed because Prime : N→ bool cannot be applied to x : N/mod2.

As a general language design principle, we must be careful what the syntax
lets us do with terms of quotient types. In particular, given a variable x : A/r, it
must not be allowed to inspect x via arbitrary predicates on A. The elimination
rule of the quotient type already guarantees that only equality-preserving oper-
ations can be applied. But we must also check the interaction of quotient types
with every other primitive operation in the language. This is formally established
in the soundness theorem below.

Subtyping In soft-typed systems, subtyping A <: B is usually defined via

x : A implies x : B for all x (a)

In the presence of TDE, the following stronger condition is more practical:

x : A, y : A, x =A y implies x =B y for all x, y (b)

Note that (b) implies (a). (b) is only relevant in the presence of TDE: without
TDE, it trivially follows from (a). Therefore, we use (b) to define the subtyping
judgment ` A <: B.

We can now derive the usual contra/co-variance rules for A → B as well as
A|p <: A and A <: A/r. Maybe surprisingly, the quotient type becomes a super-
type of the base type even though its semantics is a set with lower cardinality.
For every type A, we have the following subtype hierarchy from the void type
to the unit type:

A|λx.false <: A|p <: A|λx.true = A = A/λxy.false <: A/r ⊆ A/λxy.true

On the left hand side, these capture the no-op canonical embeddings of predicate
types via increasingly inclusive predicates, on the right hand side the no-op
canonical projections of the quotient types via increasingly inclusive predicates.

3.2 Semantics

Partial Equivalence Relations We recall the basic properties of partial equiva-
lence relations (PERs). A PER S on set U is a symmetric and transitive binary
relation on U . We write domS = {u ∈ U |(u, u) ∈ S} = {u ∈ U |∃v ∈ U.(u, v) ∈
S} for the set of elements touched by S, and S|V = S ∩ V 2 for the restriction of
S to V ⊆ U , and PER(R) for the PER generated by the binary relation R on
U . Then S|domS is an equivalence relation on domS, and we write S/ for the
corresponding quotient (in the usual set-theoretical sense).

12

Overview We assume a set-theoretical universe U and interpret syntax according
to the table below:

Syntax Semantics Intended meaning

type A JAK ⊆ U × U PER(JAK)/
terms t elements JtK ∈ U
typing ` t : A JtK ∈ dom JAK equivalence class of JtK in PER(JAK)/
equality ` s =A t (JsK, JtK) ∈ PER(JAK)
subtyping ` A <: B JAK ⊆ JBK

Note that even though equality depends on the type, the interpretation of terms
does not. Every term has an absolute meaning defined by induction on the
language of terms, not by induction on typing derivations. The intended meaning
of a type is a quotient of a subset of U . Terms can have multiple types, and the
intended meaning of term t seen as an element of type A is the equivalence class
of JtK in the intended meaning of A.

Interpretation of Identifiers A model maps every part of the theory to its inter-
pretation:
– a base type a to a PER JaK ⊆ U × U
– a constant c : A to an element JcK ∈ dom JAK
– an axiom t to a proof that t holds.

An assignment maps every part of a context to its interpretation accordingly.
We write α, x 7→ u for the extension of α with a case for x. The function J−K is
actually relative to a model of the theory (which we omit from the notation) and
an assignment α for the context. Note that the interpretation of types depends
on the assignment even in the absence of type variables because terms can occur
in types.

Interpretation Function Given a fixed model (which we omit from the notation),
we define the interpretation function J−Kα for all types and terms in context Γ
under an assignment α to Γ .

Constants a and c are interpreted according to the model, variables k and x
according to the assignment. The remaining cases are:

JboolKα = {(0, 0), (1, 1)} i.e., dom JboolKα = {0, 1}

JtrueKα = 1 JfalseKα = 0 Jif(s)t else t′Kα =

{
JtKα if JsKα = 1

Jt′Kα otherwise

Js =A tKα =

{
1 if (JsKα, JtKα) ∈ PER(JAK)
0 otherwise

JA→ BKα ={
(f, g) ∈ (dom JAKα → dom JBKα)2 | (u, v) ∈ JAKα implies (f(u), g(v)) ∈ JBKα

}
Jλx : A.t(x)Kα =

{
(u, Jt(x)Kα,x7→u) : u ∈ dom JAKα

}
13

Jf aKα = JfKα(JaKα)

JA|pKα = JAKα ∩
{
u ∈ dom JAKα | JpKα(u) = 1

}2
JA/rKα = JAKα ∪

{
(u, v) ∈ dom JAKα2 | JrKα(u)(v) = 1

}
where we abbreviate V 2 = V × V as usual.

Soundness The soundness theorem consists of multiple statements:
– the main theorem that provable booleans hold (3)
– the well-definedness of the interpretation function (1+2)
– the usual substitution lemma that interpretation commutes with substitution

(4a)
– a lemma specific to the PER semantics that ensures that every term with

free variables preserves equality (4b)

Theorem 1. For any theory and model, we have
1. if Γ ` A : type, then JAKα ⊆ U × U
2. if Γ ` t : A, then JtKα ∈ dom JAKα for all α
3. if Γ ` b, then JbKα = 1 for all α
4. for any Γ, x : A ` t(x) : B

(a) if Γ ` s : A, then Jt(s)Kα = Jt(x)Kα,x7→JsK for all α
(b) if (u, v) ∈ JAKα, then (Jt(x)Kα,x7→u, Jt(x)Kα,x 7→v) ∈ JBKα for all α

Proof. All statements are proved in a joint induction on derivations. We only
mention a few critical cases. (4b) is needed to prove (2) for the case of λ-
abstraction. (4a) and (4b) are needed to prove (3) for the case of Sub.

We have so far not investigated any completeness properties. It is reasonable
to expect those are related to the completeness of HOL for Henkin models. But
it is non-obvious how to combine Henkin and PER semantics.

3.3 Lax Record Types

There are several ways to extend the language with record types. Lax records
are particularly attractive with TDE, and we sketch one way to add them.

Syntax and Semantics We use contexts as record types and substitutions γ as
record values. That yields relatively powerful record types, which may contain
type fields, value fields, and axioms:

A ::= {Γ} | t.k
t ::= [γ] | t.x
γ ::= (k = A | x = t | P)∗

P ::= (proof terms omitted)

A substitution γ for context Γ maps every type/term/assumption declaration in
Γ to an appropriate type/term/proof. The last case of that requires extending
the syntax with a term language for proofs, which we omit.

14

We omit the typing and equality rules, which are complex but routine. For
example, the equality rule for an example record type is

Γ ` r.k = s.k : type Γ ` r.x =r.k s.x

Γ ` r ={k:type,x:k} s

where r.k = s.k : type is an instance of the type equality judgment we omitted
above. The semantics is straightforward except for the usual problem of needing
some kind of universe hierarchy because record types containing type fields are
too big to be interpreted as a set in the universe. We gloss over that issue.

Mizar’s strictness operator is not needed because lax records with TDE allows
expressing equalities at different record types. Like with predicate and quotient
typing, applying a forgetful functor is a no-op.

Subtyping and TDE With the addition of lax records, we can form subtypes via
record subtyping in addition to predicate subtyping. The main effect this has
on the language design is that the argument of Rem. 1 becomes less compelling:
While a membership test t ∈ A|p can be replaced with p t, a similar workaround
does not exist for record subtyping.

Assume we added a bool-valued predicate r ∈ S : bool for r : R and record
types S <: R. For example, this would allow inspecting an input x : R to see
if it provides more fields than guaranteed by R. A typical application would be
to employ a more efficient semigroup algorithm if the input is a monoid. This
can also be used if the additional fields are not uniquely determined, e.g., to
check if a vector space comes with a distinguished base. Membership tests like
this are routine in soft-typed computer algebra systems such as Gap [Lin07] or
SageMath [S+13].

But attempts to add such tests to the syntax run into soundness issues. For
example, assume record types Monoid <: Semigroup, a record M : Semigroup
that happens to satisfy the monoid axioms, and M ′ : Monoid arising from M
by adding the additional fields. Then M =Semigroup M

′ and M 6∈ Monoid and
M ′ ∈Monoid, which makes Sub unsound if a naive membership test is added.

The author currently does not have a satisfactory solution for soundly testing
record membership in the presence of TDE.

4 Conclusion

We coined the term “type-dependent equality” (TDE) for an existing but not
widely known feature in soft-typed languages. We provided an overview of the
advantages and pitfalls of designing formal systems with TDE and described
their realizations in major proof assistants. We have used that to design a sim-
ple language with TDE that allows for an elegant treatment of predicate and
quotient types. Importantly, many critical operations are no-ops, which is ad-
vantageous notationally and computationally.

Many aspects of the work are folklore such as the PER semantics for soft type
systems or have been implemented before such as Nuprl’s TDE and quotient

15

types. The main contribution is to collect and analyze all these aspects in a
simple formal language that exhibits the main characteristics while allowing a
rigorous and clear presentation. Critically, the soundness theorem clarifies the
consistency issues that must be taken care of when designing TDE-languages.
And the syntax and semantics are simple enough to make the formal verification
of the soundness theorem feasible.

Thus, the work provides an ideal starting point for designing more advanced
TDE-languages that could allow for better formalizations of mathematical prac-
tices than supported by current proof assistants.

References

ABC+06. S. Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz, L. Lorigo, and
E. Moran. Innovations in computational type theory using nuprl. Journal
of Applied Logic, 4(4):428–469, 2006.

All87. S. Allen. A Non-type-theoretic Semantics for Type-theoretic Language. PhD
thesis, Cornell University, 1987.

CAB+86. R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986.

Coq15. Coq Development Team. The Coq Proof Assistant: Reference Manual. Tech-
nical report, INRIA, 2015.

dKA+15. L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The
Lean Theorem Prover (System Description). In A. Felty and A. Middeldorp,
editors, Automated Deduction, pages 378–388. Springer, 2015.

Gor88. M. Gordon. HOL: A Proof Generating System for Higher-Order Logic. In
G. Birtwistle and P. Subrahmanyam, editors, VLSI Specification, Verifica-
tion and Synthesis, pages 73–128. Kluwer-Academic Publishers, 1988.

KR20. C. Kaliszyk and F. Rabe. A Survey of Languages for Formalizing Mathe-
matics. In C. Benzmüller and B. Miller, editors, Intelligent Computer Math-
ematics, pages 138–156. Springer, 2020.

Lin07. S. Linton. GAP: groups, algorithms, programming. ACM Communications
in Computer Algebra, 41(3):108–109, 2007.

Nog02. A. Nogin. Quotient Types: A Modular Approach. In V. Carreño, C. Muñoz,
and S. Tahar, editors, Theorem Proving in Higher Order Logics, pages 263–
280. Springer, 2002.

ORS92. S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In D. Kapur, editor, 11th International Conference on Automated Deduction
(CADE), pages 748–752. Springer, 1992.

PC93. L. Paulson and M. Coen. Zermelo-Fraenkel Set Theory, 1993. Isabelle
distribution, ZF/ZF.thy.

S+13. W. Stein et al. Sage Mathematics Software. The Sage Development Team,
2013. http://www.sagemath.org.

TB85. A. Trybulec and H. Blair. Computer Assisted Reasoning with MIZAR. In
A. Joshi, editor, Proceedings of the 9th International Joint Conference on
Artificial Intelligence, pages 26–28. Morgan Kaufmann, 1985.

Wie07. F. Wiedijk. The QED Manifesto Revisited. In From Insight to Proof,
Festschrift in Honour of Andrzej Trybulec, pages 121–133, 2007.

16

http://www.sagemath.org

	A Language with Type-Dependent Equality
	1 Introduction
	2 Motivating Considerations and Related Work
	2.1 Type-Dependent Equality
	2.2 Abstract Definitions and Quotient Types
	2.3 Predicate and Quotient Types
	2.4 Records and Predicate/Quotient Types

	3 Formal Language Definition
	3.1 Syntax and Inference System
	3.2 Semantics
	3.3 Lax Record Types

	4 Conclusion

