How to calculate with nondeterministic functions

Richard Bird and Florian Rabe

Computer Science, Oxford University resp. University Erlangen-Nürnberg

MPC 2019

Background

Calculate Functional Programs

- Bird-Meertens formalism (Squiggol)
- derive functional programs from specifications
- use equational reasoning to calculate correct programs
- optimize along the way

Example:

$$
h(f o l d r f e x s)=\text { foldr } F(h e) x s
$$

try to solve for F to get more efficient algorithm

- Richard's textbooks on functional programming
- Introduction to Functional Programming, 1988
- Introduction to Functional Programming using Haskell, 1998
- Thinking Functionally with Haskell, 2014

History

My background

- Not algorithms or functional programming
- Formal systems (logics, type theories, foundations, DSLs, etc.)
- Design, analysis, implementation of formal systems
- Applications to all STEM disciplines

This work

- Richard encountered problem with elementary examples
- He built bottom-up solution using non-deterministic functions
- I got involved in working out the formal details
i.e., my contribution is arguably the less interesting part of this work :)

Overview

Summary

Our Approach

- Specifications tend to have non-deterministic flavor
even when specifying deterministic functions
- Program calculation with deterministic λ-calculus can be limiting
- Our idea:
- extend to λ-calculus with non-deterministic functions
- in a way that preserves existing notations and theorems
- mostly following the papers by Morris and Bunkenburg

Warning

- We calculate and execute only deterministic functions.
- We use non-deterministic functions only for specifications and intermediate values. calculus allows more but not explored here

Non-Determinism

Kinds of function

- Function $A \rightarrow B$ is relation on A and B that is
- total (at least one output per input)
- deterministic (at most one output per input)
- Partial functions = drop totality
- very common in math and elementary CS
- can be modeled as option-valued total functions

$$
A \rightarrow \text { Option } B
$$

- Non-deterministic functions = drop determinism
- somewhat dual to partial functions, but much less commonly used
- can be modeled as nonempty-set-valued deterministic functions

$$
A \rightarrow \mathbb{P}^{\neq \varnothing} B
$$

Motivation

A Common Optimization Problem

Two-step optimization process

1. generate list of candidate solutions (from some input)

$$
\text { genCand : Input } \rightarrow \text { List Cand }
$$

2. choose cheapest candidate from that list

$$
\begin{gathered}
\text { minCost }: \text { List Cand } \rightarrow \text { Cand } \\
\text { optimum input }=\text { minCost (genCand input })
\end{gathered}
$$

minCost is where non-determinism will come in

- minCost cs $=$ some c with minimal cost among cs non-deterministic
- for now: minCost $c s=$ first such c deterministic

A More Specific Setting

```
genCand: Input }->\mathrm{ List Cand
minCost: List Cand }->\mathrm{ Cand
```

- input is some recursive data structure
- candidates for bigger input are built from candidates for smaller input
- our case: input is a list, and genCand is a fold over input

$$
\text { extCand } x: \text { Cand } \rightarrow \text { List Cand }
$$

extends candidate for x s to candidate list for $x:: x s$
$\operatorname{genCand}(x:: x s)=\operatorname{extCand} x(\operatorname{genCand} x s)$

Idea to Derive Efficient Algorithm

```
optimum input = minCost (genCand input)
genCand (x :: xs) = extCand x(genCand xs)
    genCand: Input }->\mathrm{ List Cand
    minCost : List Cand }->\mathrm{ Cand
    extCand x : Cand }->\mathrm{ List Cand
```

- Fuse minCost and genCand into a single fold
- Greedy algorithm
- don't: build all candidates, apply minCost once at the end
- do: apply minCost early on, extend only optimal candidates
- Not necessarily correct
non-optimal candidates for small input
might extend to optimal candidates for large input

Solution through Program Calculation

Obtain a greedy algorithm from the specification

1. Assume

$$
\text { optimum input }=\mathrm{foldr} F c_{0} \text { input }
$$

(c_{0} is base solution for empty input)
and try to solve for folding function F

Solution through Program Calculation

Obtain a greedy algorithm from the specification

1. Assume

$$
\text { optimum input }=\text { foldr } F c_{0} \text { input }
$$

(c_{0} is base solution for empty input)
and try to solve for folding function F
2. Routine equational reasoning yields

- solution:

$$
F \times c=\operatorname{minCost}(\operatorname{extCand} x c)
$$

- correctness condition:

$$
\operatorname{optimum}(x:: x s)=F x(\text { optimum } x s)
$$

Intuition: solution $F x c$ for input $x:: x s$ is cheapest extension of solution c for input $x s$

A Subtle Problem

Correctness condition (from previous slide):

$$
\begin{gathered}
F \times c=\operatorname{minCost}(\operatorname{extCand} \times c) \\
\operatorname{optimum}(x:: x s)=F \times(\operatorname{optimum} x s)
\end{gathered}
$$

optimal candidate for $x:: x s$ must be
optimal extension of optimal candidate for $x s$
Correctness condition is intuitive and common but subtly stronger than needed:

- optimum and F defined in terms of minCost
- Actually states: first optimal candidate for $x:: x s$ is first optimal extension of first optimal candidate for xs rarely holds in practice

What went wrong?

What happens:

- Specification of minCost naturally non-deterministic
- Using standard λ-calculus forces artificial once-and-for-all choice to make minCost deterministic
- Program calculation uses only equality
artificial choices must be preserved
What should happen:
- Use λ-calculus with non-deterministic functions
- minCost returns some candidate with minimal cost
- Program calculation uses equality and refinement gradual transition towards deterministic solution

Formal System: Syntax

Key Intuitions (Don't skip this slide)

Changes to standard λ-calculus

- $A \rightarrow B$ is type of non-deterministic functions
- Every term represents a nonempty set of possible values

Key Intuitions (Don't skip this slide)

Changes to standard λ-calculus

- $A \rightarrow B$ is type of non-deterministic functions
- Every term represents a nonempty set of possible values
- Pure terms roughly represent a single value

Key Intuitions (Don't skip this slide)

Changes to standard λ-calculus

- $A \rightarrow B$ is type of non-deterministic functions
- Every term represents a nonempty set of possible values
- Pure terms roughly represent a single value
- Refinement relation between terms of the same type:
$s \stackrel{\text { ref }}{\leftarrow} t \quad$ iff s-values are also t-values

Key Intuitions (Don't skip this slide)

Changes to standard λ-calculus

- $A \rightarrow B$ is type of non-deterministic functions
- Every term represents a nonempty set of possible values
- Pure terms roughly represent a single value
- Refinement relation between terms of the same type:
$s \stackrel{\text { ref }}{\leftarrow} t \quad$ iff $\quad s$-values are also t-values
- Refinement is an order at every type, in particular

$$
s \stackrel{\text { ref }}{\leftarrow} t \wedge \quad \wedge \stackrel{\text { ref }}{\leftarrow} s \Rightarrow s \doteq t
$$

Key Intuitions (Don't skip this slide)

Changes to standard λ-calculus

- $A \rightarrow B$ is type of non-deterministic functions
- Every term represents a nonempty set of possible values
- Pure terms roughly represent a single value
- Refinement relation between terms of the same type:
$s \stackrel{\text { ref }}{\leftarrow} t \quad$ iff s-values are also t-values
- Refinement is an order at every type, in particular

$$
\begin{aligned}
s \stackrel{\text { ref }}{\leftarrow} t & \wedge t \stackrel{\text { ref }}{\leftarrow} s \Rightarrow s \doteq t \\
& \doteq \text { is the usual equality between terms }
\end{aligned}
$$

- Refinement for functions
- point-wise: $f \stackrel{\text { ref }}{\leftarrow} g$ iff $f(x) \stackrel{\text { ref }}{\leftarrow} g(x)$ for all pure x
- deterministic functions are minimal wrt refinement

Syntax: Type Theory

$A, B::=a$	base types (integers, lists, etc.)
$\mid A \rightarrow B$	non-det. functions
$s, t::=c$	base constants (addition, folding, etc.)
\| x	variables
\| λx : A.t	function formation
$s t$	function application
$s \sqcap t$	non-deterministic choice

Typing rules as usual plus

$$
\frac{\vdash s: A \quad \vdash t: A}{\vdash s \sqcap t: A}
$$

Syntax: Logic

Additional base types/constants:

- bool : type
- logical connectives and quantifiers as usual, e.g.,

$$
\frac{\vdash s: A \quad \vdash t: A}{\vdash s \doteq t: \text { bool }}
$$

Syntax: Logic

Additional base types/constants:

- bool : type
- logical connectives and quantifiers as usual, e.g.,

$$
\frac{\vdash s: A \quad \vdash t: A}{\vdash s \doteq t: \mathrm{bool}}
$$

- refinement predicate

$$
\frac{\vdash s: A \quad \vdash t: A}{\vdash s \stackrel{\text { ref }}{\leftarrow} t: \text { bool }}
$$

Syntax: Logic

Additional base types/constants:

- bool : type
- logical connectives and quantifiers as usual, e.g.,

$$
\frac{\vdash s: A \quad \vdash t: A}{\vdash s \doteq t: \mathrm{bool}}
$$

- refinement predicate

$$
\frac{\vdash s: A \quad \vdash t: A}{\vdash s \stackrel{\text { ref }}{\leftarrow} t: \text { bool }}
$$

- purity predicate

$$
\frac{\vdash t: A}{\vdash \text { pure }(t): \text { bool }}
$$

Formal System: Semantics

Semantics: Overview

Syntax	Semantics
type A	set $\llbracket A \rrbracket$
context declaring $x: A$	environment mapping $\rho: x \mapsto \llbracket A \rrbracket$
term $t: A$	nonempty subset $\llbracket t \rrbracket_{\rho} \in \mathbb{P}^{\neq \varnothing} \llbracket A \rrbracket$
refinement $s \stackrel{\text { ref }}{\leftarrow} t$	subset $\llbracket s \rrbracket_{\rho} \subseteq \llbracket t \rrbracket_{\rho}$
purity pure (t) for $t: A$	$\llbracket t \rrbracket_{\rho}$ is closure of a single $v \in \llbracket A \rrbracket$
choice $s \sqcap t$	union $\llbracket s \rrbracket_{\rho} \cup \llbracket t \rrbracket_{\rho}$

Examples:

$$
\begin{gathered}
\llbracket \mathbb{Z} \rrbracket=\text { usual integers } \\
\llbracket 1 \sqcap 2 \rrbracket_{\rho}=\{1,2\} \\
\llbracket(\lambda x: \mathbb{Z} \cdot x \sqcap 3 x) 1 \rrbracket_{\rho}=\{1,3\} \\
\llbracket(\lambda x: \mathbb{Z} \cdot x \sqcap 3 x)(1 \sqcap 2) \rrbracket_{\rho}=\{1,2,3,6\}
\end{gathered}
$$

Semantics: Functions

Functions are interpreted as set-valued semantic functions:

$$
\begin{gathered}
\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \Rightarrow \mathbb{P}^{\neq \varnothing} \llbracket B \rrbracket \\
\text { using } \Rightarrow \text { for the usual set-theoretical function space }
\end{gathered}
$$

Function application is monotonous wrt refinement:

$$
\llbracket f t \rrbracket_{\rho}=\bigcup_{\varphi \in \llbracket f \rrbracket_{\rho}, \tau \in \llbracket t \rrbracket_{\rho}} \varphi(\tau)
$$

Semantics: Functions

Functions are interpreted as set-valued semantic functions:

$$
\begin{gathered}
\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \Rightarrow \mathbb{P}^{\neq \varnothing} \llbracket B \rrbracket \\
\text { using } \Rightarrow \text { for the usual set-theoretical function space }
\end{gathered}
$$

Function application is monotonous wrt refinement:

$$
\llbracket f t \rrbracket_{\rho}=\bigcup_{\varphi \in \llbracket f \rrbracket_{\rho}, \tau \in \llbracket t \rrbracket_{\rho}} \varphi(\tau)
$$

The interpretation of a λ-abstractions is closed under refinements:

$$
\llbracket \lambda x: A \cdot t \rrbracket_{\rho}=\left\{\varphi \mid \text { for all } \xi \in \llbracket A \rrbracket: \varphi(\xi) \subseteq \llbracket t \rrbracket_{\rho, x \mapsto \xi}\right\}
$$

contains all deterministic functions that return refinements of t

Semantics: Purity and Base Cases

For every type A, also define embedding $\llbracket A \rrbracket \ni \xi \mapsto \xi \leftarrow \subseteq \llbracket A \rrbracket$

- for base types: $\xi^{\leftarrow}=\{\xi\}$
- for function types: closure under refinement

Pure terms are interpreted as embeddings of singletons:

$$
\llbracket p u r e(t) \rrbracket_{\rho}=1 \quad \text { iff } \quad \llbracket t \rrbracket_{\rho}=\tau^{\leftarrow} \text { for some } \tau
$$

- Variables

$$
\begin{aligned}
& \llbracket x \rrbracket_{\rho}=\rho(x)^{\leftarrow} \\
& \quad \text { note: } \rho(x) \in \llbracket A \rrbracket, \text { not } \rho(x) \subseteq \llbracket A \rrbracket
\end{aligned}
$$

- Base types: as usual
- Base constants c with usual semantics C :

$$
\llbracket c \rrbracket_{\rho}=C^{\leftarrow}
$$

Formal System: Proof Theory

Overview

Akin to standard calculi for higher-order logic

- Judgment $\Gamma \vdash F$ for a context Γ and F : bool
- Essentially the usual axioms/rules
modifications needed when variable binding is involved
- Intuitive axioms/rules for choice and refinement
technical difficulty to get purity right
Multiple equivalent axiom systems
- In the sequel, no distinction between primitive and derivable rules
- Can be tricky in practice to intuit derivability of rules
formalization in logical framework helps

Refinement and Choice

- General properties of refinement
- $s \stackrel{\text { ref }}{\leftarrow} t$ is an order (wrt \doteq)
- characteristic property:

$$
s \stackrel{\text { ref }}{\leftarrow} t \quad \text { iff } \quad u \stackrel{\text { ref }}{\leftarrow} s \text { implies } u \stackrel{\text { ref }}{\leftarrow} t \text { for all } u
$$

Refinement and Choice

- General properties of refinement
- $s \stackrel{\text { ref }}{\leftarrow} t$ is an order (wrt \doteq)
- characteristic property:

$$
s \stackrel{\text { ref }}{\leftarrow} t \quad \text { iff } \quad u \stackrel{\text { ref }}{\leftarrow} s \text { implies } u \stackrel{\text { ref }}{\leftarrow} t \text { for all } u
$$

- General properties of choice
- $s \sqcap t$ is associative, commutative, idempotent (wrt \doteq)
- no neutral element

Refinement and Choice

- General properties of refinement
- $s \stackrel{\text { ref }}{\leftarrow} t$ is an order $(w r t \doteq)$
- characteristic property:

$$
s \stackrel{\text { ref }}{\leftarrow} t \quad \text { iff } \quad u \stackrel{\text { ref }}{\leftarrow} s \text { implies } u \stackrel{\text { ref }}{\leftarrow} t \text { for all } u
$$

- General properties of choice
- $s \sqcap t$ is associative, commutative, idempotent (wrt \doteq)
- no neutral element
we do not have an undefined term with $\llbracket \perp \rrbracket_{\rho}=\varnothing$
- Refinement of choice
- $u \stackrel{\text { ref }}{\leftarrow} s \sqcap t$ refines to pure u iff s or t does
- in particular, $t_{i} \stackrel{\text { ref }}{\leftarrow}\left(t_{1} \sqcap t_{2}\right)$

Rules for Purity

- Purity predicate only present for technical reasons
- Pure are
- primitive constants applied to any number of pure arguments
- λ-abstractions

$$
\text { and thus all terms without } \sqcap
$$

- Syntactic vs. semantic approach
- Semantic = use rule

$$
\begin{aligned}
& \frac{\vdash \operatorname{pure}(s) \quad \vdash s \doteq t}{\vdash \text { pure }(t)} \\
& \text { thus } 1 \sqcap 1 \text { and }(\lambda x: \mathbb{Z} \cdot x \sqcap 1) 1 \text { are pure }
\end{aligned}
$$

- literature uses syntactic rules like "variables are pure" easier at first, trickier in the formal details

Rules for Function Application

- Distribution over choice:

$$
\begin{aligned}
& \vdash f(s \sqcap t) \doteq(f s) \sqcap(f t) \\
& \vdash(f \sqcap g) t \doteq(f t) \sqcap(g t)
\end{aligned}
$$

Intuition: resolve non-determinism before applying a function

- Monotonicity wrt refinement:

$$
\frac{\vdash f^{\prime} \stackrel{\text { ref }}{\leftarrow} f \quad t^{\prime} \stackrel{\text { ref }}{\leftarrow} t}{\vdash f^{\prime} t^{\prime} \stackrel{\text { ref }}{\leftarrow} f t}
$$

- Characteristic property wrt refinement:

$$
u \stackrel{\text { ref }}{\leftarrow} f t \quad \text { iff } \quad f^{\prime} \stackrel{\text { ref }}{\leftarrow} f, t^{\prime} \stackrel{\text { ref }}{\leftarrow} t, u \stackrel{\text { ref }}{\leftarrow} f^{\prime} t^{\prime}
$$

Beta-Conversion

Intuition: bound variable is pure, so only substitute with pure terms

$$
\frac{\vdash s: A \quad \vdash \operatorname{pure}(s)}{\vdash(\lambda x: A . t) s \doteq t[x / s]}
$$

Counter-example if we omitted the purity condition

- Wrong:

$$
(\lambda x: \mathbb{Z} \cdot x+x)(1 \sqcap 2) \doteq(1 \sqcap 2)+(1 \sqcap 2) \doteq 2 \sqcap 3 \sqcap 4
$$

- Correct:

$$
(\lambda x: \mathbb{Z} \cdot x+x)(1 \sqcap 2) \doteq((\lambda x: \mathbb{Z} \cdot x+x) 1) \sqcap((\lambda x: \mathbb{Z} \cdot x+x) 2) \doteq 2 \sqcap 4
$$

Computational intuition: no lazy resolution of non-determinism

Xi-Conversion

- Equality conversion under a λ (= congruence rule for binders)
- Usual formulation

$$
\frac{x: A \vdash f(x) \doteq g(x)}{\vdash \lambda x: A . f(x) \doteq \lambda x: A . g(x)}
$$

- Adjusted: bound variable is pure, so add purity assumption when traversing into a binder

$$
\frac{x: A, \operatorname{pure}(x) \vdash f(x) \doteq g(x)}{\vdash \lambda x: A . f(x) \doteq \lambda x: A . g(x)}
$$

needed to discharge purity conditions of the other rules

Computational intuition: functions can assume arguments to be pure

Eta-Conversion

Because λ-abstractions are pure, η can only hold for pure functions

$$
\frac{\vdash f: A \rightarrow B \quad \vdash \operatorname{pure}(f)}{\vdash f \doteq \lambda x: A .(f x)}
$$

Counter-example if we omitted the purity condition:

- Wrong:

$$
\begin{aligned}
& f \sqcap g \doteq \lambda x: \mathbb{Z} .(f \sqcap g) x \\
& \quad \text { even though they are extensionally equal }
\end{aligned}
$$

- Correct:

$$
f \sqcap g \stackrel{\operatorname{ref}}{\leftarrow} \lambda x: \mathbb{Z} .(f \sqcap g) x
$$

but not the other way around

Computational intuition: choices under a λ are resolved fresh each call

Formal System: Meta-Theorems

Overview

Soundness

- If $\vdash F$, then $\llbracket F \rrbracket_{\rho}=1$
- In particular: if $\vdash s \stackrel{\text { ref }}{\leftarrow} t$, then $\llbracket s \rrbracket_{\rho} \subseteq \llbracket t \rrbracket_{\rho}$.

Consistency

- $\vdash F$ does not hold for all F

Completeness

- Not investigated at this point
- Presumably similar to usual higher-order logic

Conclusion

Revisiting the Motivating Example

- Applied to many examples in forthcoming textbook

Algorithm Design using Haskell, Bird and Gibbons

- Two parts on greedy and thinning algorithms
- Based on two non-deterministic functions

$$
\begin{gathered}
\text { MinWith : List } A \rightarrow(A \rightarrow B) \rightarrow(B \rightarrow B \rightarrow \text { bool }) \rightarrow A \\
\text { ThinBy : List } A \rightarrow(A \rightarrow A \rightarrow \text { bool }) \rightarrow \text { List } A
\end{gathered}
$$

- minCost from motivating example defined using MinWith
- Correctness conditions for calculating algorithms can be proved for many practical examples

Summary

- Program calculation can get awkward if non-deterministic specifications are around
- Elegant solution by allowing for non-deterministic functions
- Minimally invasive
- little new syntax
- old syntax/semantics embeddable
- only minor changes to rules
- some subtleties but manageable
formalization in logical framework helps
- Many program calculation principles carry over deserves systematic attention

