
1

How to calculate with nondeterministic functions

Richard Bird and Florian Rabe

Computer Science, Oxford University resp. University Erlangen-Nürnberg

MPC 2019



Background 2

Background



Background 3

Calculate Functional Programs

I Bird–Meertens formalism (Squiggol)
I derive functional programs from specifications
I use equational reasoning to calculate correct programs
I optimize along the way

Example:

h (foldr f e xs) = foldrF (h e) xs

try to solve for F to get more efficient algorithm
I Richard’s textbooks on functional programming

I Introduction to Functional Programming, 1988
I Introduction to Functional Programming using Haskell, 1998
I Thinking Functionally with Haskell, 2014



Background 4

History

My background
I Not algorithms or functional programming

I Formal systems (logics, type theories, foundations, DSLs, etc.)

I Design, analysis, implementation of formal systems

I Applications to all STEM disciplines

This work
I Richard encountered problem with elementary examples

I He built bottom-up solution using non-deterministic functions

I I got involved in working out the formal details

i.e., my contribution is arguably the less interesting part of this work :)



Overview 5

Overview



Overview 6

Summary

Our Approach

I Specifications tend to have non-deterministic flavor
even when specifying deterministic functions

I Program calculation with deterministic λ-calculus can be limiting

I Our idea:
I extend to λ-calculus with non-deterministic functions
I in a way that preserves existing notations and theorems
I mostly following the papers by Morris and Bunkenburg

Warning
I We calculate and execute only deterministic functions.

I We use non-deterministic functions only for specifications and
intermediate values. calculus allows more but not explored here



Overview 7

Non-Determinism

Kinds of function
I Function A→ B is relation on A and B that is

I total (at least one output per input)
I deterministic (at most one output per input)

I Partial functions = drop totality
I very common in math and elementary CS
I can be modeled as option-valued total functions

A→ OptionB

I Non-deterministic functions = drop determinism
I somewhat dual to partial functions, but much less commonly

used
I can be modeled as nonempty-set-valued deterministic functions

A→ P6=∅ B



Motivation 8

Motivation



Motivation 9

A Common Optimization Problem

Two-step optimization process

1. generate list of candidate solutions (from some input)

genCand : Input→ List Cand

2. choose cheapest candidate from that list

minCost : List Cand→ Cand

optimum input = minCost (genCand input)

minCost is where non-determinism will come in

I minCost cs = some c with minimal cost among cs non-deterministic

I for now: minCost cs = first such c deterministic



Motivation 10

A More Specific Setting

genCand : Input→ List Cand

minCost : List Cand→ Cand

I input is some recursive data structure

I candidates for bigger input are built from
candidates for smaller input

I our case: input is a list, and genCand is a fold over input

extCand x : Cand→ List Cand

extends candidate for xs to candidate list for x :: xs

genCand (x :: xs) = extCand x (genCand xs)



Motivation 11

Idea to Derive Efficient Algorithm

optimum input = minCost (genCand input)

genCand (x :: xs) = extCand x (genCand xs)

genCand : Input→ List Cand

minCost : List Cand→ Cand

extCand x : Cand → List Cand

I Fuse minCost and genCand into a single fold
I Greedy algorithm

I don’t: build all candidates, apply minCost once at the end
I do: apply minCost early on, extend only optimal candidates

I Not necessarily correct
non-optimal candidates for small input
might extend to
optimal candidates for large input



Motivation 12

Solution through Program Calculation

Obtain a greedy algorithm from the specification

1. Assume
optimum input = foldrF c0 input

(c0 is base solution for empty input)
and try to solve for folding function F

2. Routine equational reasoning yields
I solution:

F x c = minCost (extCand x c)

I correctness condition:

optimum (x :: xs) = F x (optimum xs)

Intuition: solution F x c for input x :: xs is
cheapest extension of solution c for input xs



Motivation 12

Solution through Program Calculation

Obtain a greedy algorithm from the specification

1. Assume
optimum input = foldrF c0 input

(c0 is base solution for empty input)
and try to solve for folding function F

2. Routine equational reasoning yields
I solution:

F x c = minCost (extCand x c)

I correctness condition:

optimum (x :: xs) = F x (optimum xs)

Intuition: solution F x c for input x :: xs is
cheapest extension of solution c for input xs



Motivation 13

A Subtle Problem

Correctness condition (from previous slide):

F x c = minCost (extCand x c)

optimum (x :: xs) = F x (optimum xs)

optimal candidate for x :: xs must be
optimal extension of optimal candidate for xs

Correctness condition is intuitive and common
but subtly stronger than needed:

I optimum and F defined in terms of minCost

I Actually states:
first optimal candidate for x :: xs is
first optimal extension of first optimal candidate for xs

rarely holds in practice



Motivation 14

What went wrong?

What happens:

I Specification of minCost naturally non-deterministic

I Using standard λ-calculus forces
artificial once-and-for-all choice to make minCost

deterministic

I Program calculation uses only equality

artificial choices must be preserved

What should happen:

I Use λ-calculus with non-deterministic functions

I minCost returns some candidate with minimal cost

I Program calculation uses equality and refinement

gradual transition towards deterministic solution



Formal System: Syntax 15

Formal System: Syntax



Formal System: Syntax 16

Key Intuitions (Don’t skip this slide)

Changes to standard λ-calculus

I A→ B is type of non-deterministic functions

I Every term represents a nonempty set of possible values

I Pure terms roughly represent a single value

I Refinement relation between terms of the same type:

s
ref← t iff s-values are also t-values

I Refinement is an order at every type, in particular

s
ref← t ∧ t

ref← s ⇒ s
.

= t

.
= is the usual equality between terms

I Refinement for functions
I point-wise: f

ref← g iff f (x)
ref← g(x) for all pure x

I deterministic functions are minimal wrt refinement



Formal System: Syntax 16

Key Intuitions (Don’t skip this slide)

Changes to standard λ-calculus

I A→ B is type of non-deterministic functions

I Every term represents a nonempty set of possible values

I Pure terms roughly represent a single value

I Refinement relation between terms of the same type:

s
ref← t iff s-values are also t-values

I Refinement is an order at every type, in particular

s
ref← t ∧ t

ref← s ⇒ s
.

= t

.
= is the usual equality between terms

I Refinement for functions
I point-wise: f

ref← g iff f (x)
ref← g(x) for all pure x

I deterministic functions are minimal wrt refinement



Formal System: Syntax 16

Key Intuitions (Don’t skip this slide)

Changes to standard λ-calculus

I A→ B is type of non-deterministic functions

I Every term represents a nonempty set of possible values

I Pure terms roughly represent a single value

I Refinement relation between terms of the same type:

s
ref← t iff s-values are also t-values

I Refinement is an order at every type, in particular

s
ref← t ∧ t

ref← s ⇒ s
.

= t

.
= is the usual equality between terms

I Refinement for functions
I point-wise: f

ref← g iff f (x)
ref← g(x) for all pure x

I deterministic functions are minimal wrt refinement



Formal System: Syntax 16

Key Intuitions (Don’t skip this slide)

Changes to standard λ-calculus

I A→ B is type of non-deterministic functions

I Every term represents a nonempty set of possible values

I Pure terms roughly represent a single value

I Refinement relation between terms of the same type:

s
ref← t iff s-values are also t-values

I Refinement is an order at every type, in particular

s
ref← t ∧ t

ref← s ⇒ s
.

= t

.
= is the usual equality between terms

I Refinement for functions
I point-wise: f

ref← g iff f (x)
ref← g(x) for all pure x

I deterministic functions are minimal wrt refinement



Formal System: Syntax 16

Key Intuitions (Don’t skip this slide)

Changes to standard λ-calculus

I A→ B is type of non-deterministic functions

I Every term represents a nonempty set of possible values

I Pure terms roughly represent a single value

I Refinement relation between terms of the same type:

s
ref← t iff s-values are also t-values

I Refinement is an order at every type, in particular

s
ref← t ∧ t

ref← s ⇒ s
.

= t

.
= is the usual equality between terms

I Refinement for functions
I point-wise: f

ref← g iff f (x)
ref← g(x) for all pure x

I deterministic functions are minimal wrt refinement



Formal System: Syntax 17

Syntax: Type Theory

A,B ::= a base types (integers, lists, etc.)
| A→ B non-det. functions

s, t ::= c base constants (addition, folding, etc.)
| x variables
| λx : A.t function formation
| s t function application
| s u t non-deterministic choice

Typing rules as usual plus

` s : A ` t : A

` s u t : A



Formal System: Syntax 18

Syntax: Logic

Additional base types/constants:

I bool : type

I logical connectives and quantifiers as usual, e.g.,

` s : A ` t : A

` s .= t : bool

I refinement predicate

` s : A ` t : A

` s ref← t : bool

I purity predicate
` t : A

` pure(t) : bool



Formal System: Syntax 18

Syntax: Logic

Additional base types/constants:

I bool : type

I logical connectives and quantifiers as usual, e.g.,

` s : A ` t : A

` s .= t : bool

I refinement predicate

` s : A ` t : A

` s ref← t : bool

I purity predicate
` t : A

` pure(t) : bool



Formal System: Syntax 18

Syntax: Logic

Additional base types/constants:

I bool : type

I logical connectives and quantifiers as usual, e.g.,

` s : A ` t : A

` s .= t : bool

I refinement predicate

` s : A ` t : A

` s ref← t : bool

I purity predicate
` t : A

` pure(t) : bool



Formal System: Semantics 19

Formal System: Semantics



Formal System: Semantics 20

Semantics: Overview

Syntax Semantics

type A set JAK
context declaring x : A environment mapping ρ : x 7→ JAK
term t : A nonempty subset JtKρ ∈ P6=∅JAK
refinement s

ref← t subset JsKρ ⊆ JtKρ
purity pure(t) for t : A JtKρ is closure of a single v ∈ JAK
choice s u t union JsKρ ∪ JtKρ

Examples:
JZK = usual integers

J1 u 2Kρ = {1, 2}

J(λx : Z.x u 3x) 1Kρ = {1, 3}

J(λx : Z.x u 3x) (1 u 2)Kρ = {1, 2, 3, 6}



Formal System: Semantics 21

Semantics: Functions

Functions are interpreted as set-valued semantic functions:

JA→ BK = JAK⇒ P 6=∅JBK

using ⇒ for the usual set-theoretical function space
Function application is monotonous wrt refinement:

Jf tKρ =
⋃

ϕ∈Jf Kρ, τ∈JtKρ

ϕ(τ)

The interpretation of a λ-abstractions is closed under refinements:

Jλx : A.tKρ =
{
ϕ | for all ξ ∈ JAK : ϕ(ξ) ⊆ JtKρ,x 7→ξ

}
contains all deterministic functions that return refinements of t



Formal System: Semantics 21

Semantics: Functions

Functions are interpreted as set-valued semantic functions:

JA→ BK = JAK⇒ P 6=∅JBK

using ⇒ for the usual set-theoretical function space
Function application is monotonous wrt refinement:

Jf tKρ =
⋃

ϕ∈Jf Kρ, τ∈JtKρ

ϕ(τ)

The interpretation of a λ-abstractions is closed under refinements:

Jλx : A.tKρ =
{
ϕ | for all ξ ∈ JAK : ϕ(ξ) ⊆ JtKρ,x 7→ξ

}
contains all deterministic functions that return refinements of t



Formal System: Semantics 22

Semantics: Purity and Base Cases
For every type A, also define embedding JAK 3 ξ 7→ ξ← ⊆ JAK

I for base types: ξ← = {ξ}
I for function types: closure under refinement

Pure terms are interpreted as embeddings of singletons:

Jpure(t)Kρ = 1 iff JtKρ = τ← for some τ

I Variables
JxKρ = ρ(x)←

note: ρ(x) ∈ JAK, not ρ(x) ⊆ JAK
I Base types: as usual

I Base constants c with usual semantics C :

JcKρ = C←

straightforward if c is first-order



Formal System: Proof Theory 23

Formal System: Proof Theory



Formal System: Proof Theory 24

Overview

Akin to standard calculi for higher-order logic
I Judgment Γ`F for a context Γ and F : bool

I Essentially the usual axioms/rules
modifications needed when variable binding is involved

I Intuitive axioms/rules for choice and refinement
technical difficulty to get purity right

Multiple equivalent axiom systems
I In the sequel, no distinction between primitive and derivable rules

I Can be tricky in practice to intuit derivability of rules
formalization in logical framework helps



Formal System: Proof Theory 25

Refinement and Choice

I General properties of refinement

I s
ref← t is an order (wrt

.
= )

I characteristic property:

s
ref← t iff u

ref← s implies u
ref← t for all u

I General properties of choice
I s u t is associative, commutative, idempotent (wrt

.
= )

I no neutral element
we do not have an undefined term with J⊥Kρ = ∅

I Refinement of choice
I u

ref← s u t refines to pure u iff s or t does

I in particular, ti
ref← (t1 u t2)



Formal System: Proof Theory 25

Refinement and Choice

I General properties of refinement

I s
ref← t is an order (wrt

.
= )

I characteristic property:

s
ref← t iff u

ref← s implies u
ref← t for all u

I General properties of choice
I s u t is associative, commutative, idempotent (wrt

.
= )

I no neutral element
we do not have an undefined term with J⊥Kρ = ∅

I Refinement of choice
I u

ref← s u t refines to pure u iff s or t does

I in particular, ti
ref← (t1 u t2)



Formal System: Proof Theory 25

Refinement and Choice

I General properties of refinement

I s
ref← t is an order (wrt

.
= )

I characteristic property:

s
ref← t iff u

ref← s implies u
ref← t for all u

I General properties of choice
I s u t is associative, commutative, idempotent (wrt

.
= )

I no neutral element
we do not have an undefined term with J⊥Kρ = ∅

I Refinement of choice
I u

ref← s u t refines to pure u iff s or t does

I in particular, ti
ref← (t1 u t2)



Formal System: Proof Theory 26

Rules for Purity

I Purity predicate only present for technical reasons
I Pure are

I primitive constants applied to any number of pure arguments
I λ-abstractions

and thus all terms without u
I Syntactic vs. semantic approach

I Semantic = use rule

` pure(s) ` s .= t

` pure(t)

thus 1 u 1 and (λx : Z.x u 1) 1 are pure
I literature uses syntactic rules like “variables are pure”

easier at first, trickier in the formal details



Formal System: Proof Theory 27

Rules for Function Application

I Distribution over choice:

` f (s u t)
.

= (f s) u (f t)

` (f u g) t
.

= (f t) u (g t)

Intuition: resolve non-determinism before applying a function

I Monotonicity wrt refinement:

` f ′ ref← f t ′
ref← t

` f ′ t ′ ref← f t

I Characteristic property wrt refinement:

u
ref← f t iff f ′

ref← f , t ′
ref← t, u

ref← f ′ t ′



Formal System: Proof Theory 28

Beta-Conversion

Intuition: bound variable is pure, so only substitute with pure terms

` s : A ` pure(s)

` (λx : A.t) s
.

= t[x/s]

Counter-example if we omitted the purity condition

I Wrong:

(λx : Z.x + x) (1 u 2)
.

= (1 u 2) + (1 u 2)
.

= 2 u 3 u 4

I Correct:

(λx : Z.x+x) (1u2)
.

= ((λx : Z.x+x) 1)u((λx : Z.x+x) 2)
.

= 2u4

Computational intuition: no lazy resolution of non-determinism



Formal System: Proof Theory 29

Xi-Conversion

I Equality conversion under a λ (= congruence rule for binders)

I Usual formulation

x : A` f (x)
.

= g(x)

`λx : A.f (x)
.

=λx : A.g(x)

I Adjusted: bound variable is pure, so add purity assumption
when traversing into a binder

x : A, pure(x)` f (x)
.

= g(x)

`λx : A.f (x)
.

=λx : A.g(x)

needed to discharge purity conditions of the other rules

Computational intuition: functions can assume arguments to be pure



Formal System: Proof Theory 30

Eta-Conversion

Because λ-abstractions are pure, η can only hold for pure functions

` f : A→ B ` pure(f )

` f .
=λx : A.(f x)

Counter-example if we omitted the purity condition:

I Wrong:
f u g

.
=λx : Z.(f u g) x

even though they are extensionally equal

I Correct:
f u g

ref← λx : Z.(f u g) x

but not the other way around

Computational intuition: choices under a λ are resolved fresh each call



Formal System: Meta-Theorems 31

Formal System: Meta-Theorems



Formal System: Meta-Theorems 32

Overview

Soundness

I If `F , then JF Kρ = 1

I In particular: if ` s ref← t, then JsKρ ⊆ JtKρ.

Consistency

I `F does not hold for all F

Completeness

I Not investigated at this point

I Presumably similar to usual higher-order logic



Conclusion 33

Conclusion



Conclusion 34

Revisiting the Motivating Example

I Applied to many examples in forthcoming textbook
Algorithm Design using Haskell, Bird and Gibbons

I Two parts on greedy and thinning algorithms

I Based on two non-deterministic functions

MinWith : ListA→ (A→ B)→ (B → B → bool)→ A

ThinBy : ListA→ (A→ A→ bool)→ ListA

I minCost from motivating example defined using MinWith

I Correctness conditions for calculating algorithms can be
proved for many practical examples



Conclusion 35

Summary

I Program calculation can get awkward if non-deterministic
specifications are around

I Elegant solution by allowing for non-deterministic functions
I Minimally invasive

I little new syntax
I old syntax/semantics embeddable
I only minor changes to rules
I some subtleties but manageable

formalization in logical framework helps

I Many program calculation principles carry over
deserves systematic attention


	Background
	Calculate Functional Programs
	History

	Overview
	Summary
	Non-Determinism

	Motivation
	A Common Optimization Problem
	A More Specific Setting
	Idea to Derive Efficient Algorithm
	Solution through Program Calculation
	Solution through Program Calculation
	A Subtle Problem
	What went wrong?

	Formal System: Syntax
	Key Intuitions (Don't skip this slide)
	Key Intuitions (Don't skip this slide)
	Key Intuitions (Don't skip this slide)
	Key Intuitions (Don't skip this slide)
	Key Intuitions (Don't skip this slide)
	Syntax: Type Theory
	Syntax: Logic
	Syntax: Logic
	Syntax: Logic

	Formal System: Semantics
	Semantics: Overview
	Semantics: Functions
	Semantics: Functions
	Semantics: Purity and Base Cases

	Formal System: Proof Theory
	Overview
	Refinement and Choice
	Refinement and Choice
	Refinement and Choice
	Rules for Purity
	Rules for Function Application
	Beta-Conversion
	Xi-Conversion
	Eta-Conversion

	Formal System: Meta-Theorems
	Overview

	Conclusion
	Revisiting the Motivating Example
	Summary


