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Calculate Functional Programs

I Bird–Meertens formalism (Squiggol)
I derive functional programs from specifications
I use equational reasoning to calculate correct programs
I optimize along the way

Example:

h (foldr f e xs) = foldrF (h e) xs

try to solve for F to get more efficient algorithm
I Richard’s textbooks on functional programming

I Introduction to Functional Programming, 1988
I Introduction to Functional Programming using Haskell, 1998
I Thinking Functionally with Haskell, 2014
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History

My background
I Not algorithms or functional programming

I Formal systems (logics, type theories, foundations, DSLs, etc.)

I Design, analysis, implementation of formal systems

I Applications to all STEM disciplines

This work
I Richard encountered problem with elementary examples

I He built bottom-up solution using non-deterministic functions

I I got involved in working out the formal details

i.e., my contribution is arguably the less interesting part of this work :)
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Summary

Our Approach

I Specifications tend to have non-deterministic flavor
even when specifying deterministic functions

I Program calculation with deterministic λ-calculus can be limiting

I Our idea:
I extend to λ-calculus with non-deterministic functions
I in a way that preserves existing notations and theorems
I mostly following the papers by Morris and Bunkenburg

Warning
I We calculate and execute only deterministic functions.

I We use non-deterministic functions only for specifications and
intermediate values. calculus allows more but not explored here
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Non-Determinism

Kinds of function
I Function A→ B is relation on A and B that is

I total (at least one output per input)
I deterministic (at most one output per input)

I Partial functions = drop totality
I very common in math and elementary CS
I can be modeled as option-valued total functions

A→ OptionB

I Non-deterministic functions = drop determinism
I somewhat dual to partial functions, but much less commonly

used
I can be modeled as nonempty-set-valued deterministic functions

A→ P6=∅ B
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A Common Optimization Problem

Two-step optimization process

1. generate list of candidate solutions (from some input)

genCand : Input→ List Cand

2. choose cheapest candidate from that list

minCost : List Cand→ Cand

optimum input = minCost (genCand input)

minCost is where non-determinism will come in

I minCost cs = some c with minimal cost among cs non-deterministic

I for now: minCost cs = first such c deterministic
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A More Specific Setting

genCand : Input→ List Cand

minCost : List Cand→ Cand

I input is some recursive data structure

I candidates for bigger input are built from
candidates for smaller input

I our case: input is a list, and genCand is a fold over input

extCand x : Cand→ List Cand

extends candidate for xs to candidate list for x :: xs

genCand (x :: xs) = extCand x (genCand xs)
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Idea to Derive Efficient Algorithm

optimum input = minCost (genCand input)

genCand (x :: xs) = extCand x (genCand xs)

genCand : Input→ List Cand

minCost : List Cand→ Cand

extCand x : Cand → List Cand

I Fuse minCost and genCand into a single fold
I Greedy algorithm

I don’t: build all candidates, apply minCost once at the end
I do: apply minCost early on, extend only optimal candidates

I Not necessarily correct
non-optimal candidates for small input
might extend to
optimal candidates for large input
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Solution through Program Calculation

Obtain a greedy algorithm from the specification

1. Assume
optimum input = foldrF c0 input

(c0 is base solution for empty input)
and try to solve for folding function F

2. Routine equational reasoning yields
I solution:

F x c = minCost (extCand x c)

I correctness condition:

optimum (x :: xs) = F x (optimum xs)

Intuition: solution F x c for input x :: xs is
cheapest extension of solution c for input xs
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A Subtle Problem

Correctness condition (from previous slide):

F x c = minCost (extCand x c)

optimum (x :: xs) = F x (optimum xs)

optimal candidate for x :: xs must be
optimal extension of optimal candidate for xs

Correctness condition is intuitive and common
but subtly stronger than needed:

I optimum and F defined in terms of minCost

I Actually states:
first optimal candidate for x :: xs is
first optimal extension of first optimal candidate for xs

rarely holds in practice
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What went wrong?

What happens:

I Specification of minCost naturally non-deterministic

I Using standard λ-calculus forces
artificial once-and-for-all choice to make minCost

deterministic

I Program calculation uses only equality

artificial choices must be preserved

What should happen:

I Use λ-calculus with non-deterministic functions

I minCost returns some candidate with minimal cost

I Program calculation uses equality and refinement

gradual transition towards deterministic solution



Formal System: Syntax 15

Formal System: Syntax



Formal System: Syntax 16

Key Intuitions (Don’t skip this slide)

Changes to standard λ-calculus

I A→ B is type of non-deterministic functions

I Every term represents a nonempty set of possible values

I Pure terms roughly represent a single value

I Refinement relation between terms of the same type:

s
ref← t iff s-values are also t-values

I Refinement is an order at every type, in particular

s
ref← t ∧ t

ref← s ⇒ s
.

= t

.
= is the usual equality between terms

I Refinement for functions
I point-wise: f

ref← g iff f (x)
ref← g(x) for all pure x

I deterministic functions are minimal wrt refinement
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Syntax: Type Theory

A,B ::= a base types (integers, lists, etc.)
| A→ B non-det. functions

s, t ::= c base constants (addition, folding, etc.)
| x variables
| λx : A.t function formation
| s t function application
| s u t non-deterministic choice

Typing rules as usual plus

` s : A ` t : A

` s u t : A
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Syntax: Logic

Additional base types/constants:

I bool : type

I logical connectives and quantifiers as usual, e.g.,

` s : A ` t : A

` s .= t : bool

I refinement predicate

` s : A ` t : A

` s ref← t : bool

I purity predicate
` t : A

` pure(t) : bool
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Semantics: Overview

Syntax Semantics

type A set JAK
context declaring x : A environment mapping ρ : x 7→ JAK
term t : A nonempty subset JtKρ ∈ P6=∅JAK
refinement s

ref← t subset JsKρ ⊆ JtKρ
purity pure(t) for t : A JtKρ is closure of a single v ∈ JAK
choice s u t union JsKρ ∪ JtKρ

Examples:
JZK = usual integers

J1 u 2Kρ = {1, 2}

J(λx : Z.x u 3x) 1Kρ = {1, 3}

J(λx : Z.x u 3x) (1 u 2)Kρ = {1, 2, 3, 6}
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Semantics: Functions

Functions are interpreted as set-valued semantic functions:

JA→ BK = JAK⇒ P 6=∅JBK

using ⇒ for the usual set-theoretical function space
Function application is monotonous wrt refinement:

Jf tKρ =
⋃

ϕ∈Jf Kρ, τ∈JtKρ

ϕ(τ)

The interpretation of a λ-abstractions is closed under refinements:

Jλx : A.tKρ =
{
ϕ | for all ξ ∈ JAK : ϕ(ξ) ⊆ JtKρ,x 7→ξ

}
contains all deterministic functions that return refinements of t
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Semantics: Purity and Base Cases
For every type A, also define embedding JAK 3 ξ 7→ ξ← ⊆ JAK

I for base types: ξ← = {ξ}
I for function types: closure under refinement

Pure terms are interpreted as embeddings of singletons:

Jpure(t)Kρ = 1 iff JtKρ = τ← for some τ

I Variables
JxKρ = ρ(x)←

note: ρ(x) ∈ JAK, not ρ(x) ⊆ JAK
I Base types: as usual

I Base constants c with usual semantics C :

JcKρ = C←

straightforward if c is first-order
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Overview

Akin to standard calculi for higher-order logic
I Judgment Γ`F for a context Γ and F : bool

I Essentially the usual axioms/rules
modifications needed when variable binding is involved

I Intuitive axioms/rules for choice and refinement
technical difficulty to get purity right

Multiple equivalent axiom systems
I In the sequel, no distinction between primitive and derivable rules

I Can be tricky in practice to intuit derivability of rules
formalization in logical framework helps
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Refinement and Choice

I General properties of refinement

I s
ref← t is an order (wrt

.
= )

I characteristic property:

s
ref← t iff u

ref← s implies u
ref← t for all u

I General properties of choice
I s u t is associative, commutative, idempotent (wrt

.
= )

I no neutral element
we do not have an undefined term with J⊥Kρ = ∅

I Refinement of choice
I u

ref← s u t refines to pure u iff s or t does

I in particular, ti
ref← (t1 u t2)
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Rules for Purity

I Purity predicate only present for technical reasons
I Pure are

I primitive constants applied to any number of pure arguments
I λ-abstractions

and thus all terms without u
I Syntactic vs. semantic approach

I Semantic = use rule

` pure(s) ` s .= t

` pure(t)

thus 1 u 1 and (λx : Z.x u 1) 1 are pure
I literature uses syntactic rules like “variables are pure”

easier at first, trickier in the formal details
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Rules for Function Application

I Distribution over choice:

` f (s u t)
.

= (f s) u (f t)

` (f u g) t
.

= (f t) u (g t)

Intuition: resolve non-determinism before applying a function

I Monotonicity wrt refinement:

` f ′ ref← f t ′
ref← t

` f ′ t ′ ref← f t

I Characteristic property wrt refinement:

u
ref← f t iff f ′

ref← f , t ′
ref← t, u

ref← f ′ t ′
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Beta-Conversion

Intuition: bound variable is pure, so only substitute with pure terms

` s : A ` pure(s)

` (λx : A.t) s
.

= t[x/s]

Counter-example if we omitted the purity condition

I Wrong:

(λx : Z.x + x) (1 u 2)
.

= (1 u 2) + (1 u 2)
.

= 2 u 3 u 4

I Correct:

(λx : Z.x+x) (1u2)
.

= ((λx : Z.x+x) 1)u((λx : Z.x+x) 2)
.

= 2u4

Computational intuition: no lazy resolution of non-determinism
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Xi-Conversion

I Equality conversion under a λ (= congruence rule for binders)

I Usual formulation

x : A` f (x)
.

= g(x)

`λx : A.f (x)
.

=λx : A.g(x)

I Adjusted: bound variable is pure, so add purity assumption
when traversing into a binder

x : A, pure(x)` f (x)
.

= g(x)

`λx : A.f (x)
.

=λx : A.g(x)

needed to discharge purity conditions of the other rules

Computational intuition: functions can assume arguments to be pure
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Eta-Conversion

Because λ-abstractions are pure, η can only hold for pure functions

` f : A→ B ` pure(f )

` f .
=λx : A.(f x)

Counter-example if we omitted the purity condition:

I Wrong:
f u g

.
=λx : Z.(f u g) x

even though they are extensionally equal

I Correct:
f u g

ref← λx : Z.(f u g) x

but not the other way around

Computational intuition: choices under a λ are resolved fresh each call
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Overview

Soundness

I If `F , then JF Kρ = 1

I In particular: if ` s ref← t, then JsKρ ⊆ JtKρ.

Consistency

I `F does not hold for all F

Completeness

I Not investigated at this point

I Presumably similar to usual higher-order logic
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Revisiting the Motivating Example

I Applied to many examples in forthcoming textbook
Algorithm Design using Haskell, Bird and Gibbons

I Two parts on greedy and thinning algorithms

I Based on two non-deterministic functions

MinWith : ListA→ (A→ B)→ (B → B → bool)→ A

ThinBy : ListA→ (A→ A→ bool)→ ListA

I minCost from motivating example defined using MinWith

I Correctness conditions for calculating algorithms can be
proved for many practical examples
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Summary

I Program calculation can get awkward if non-deterministic
specifications are around

I Elegant solution by allowing for non-deterministic functions
I Minimally invasive

I little new syntax
I old syntax/semantics embeddable
I only minor changes to rules
I some subtleties but manageable

formalization in logical framework helps

I Many program calculation principles carry over
deserves systematic attention
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