Flexary Operators for Formalized Mathematics

Fulya Horozal Florian Rabe Michael Kohlhase
Jacobs University, Bremen, Germany
Mathematical Knowledge Management
Conferences on Intelligent Computer Mathematics
July 07, 2014
Coimbra, Portugal

Flexary Operators

- flexary = flexible arity
- Many operators naturally flexary
compare unary, binary, etc.
pervade mathematics
- associative operators

$$
a_{1}+\ldots+a_{n}=+\left(a_{1}, \ldots, a_{n}\right)
$$

- collection constructors

$$
\left\{a_{1}, \ldots, a_{n}\right\}=\operatorname{set}\left(a_{1}, \ldots, a_{n}\right)
$$

- vector, matrix, polynomial constructors
- Not commonly supported in content representation languages
surprising

Motivation

Flexary Binders

- Binder $=$ operator that binds some variables in a scope
- Arity $=$ number of bound variables
- Flexary binders very common actually, hard to find a fixed-arity binder
- Define: binder B is associative if

$$
B x, y \cdot E=B x \cdot B y \cdot E
$$

- Most binders not only flexary but also associative
- associative: \forall, \exists
- associative up to currying: \int, λ
- not associative (but still naturally flexary): \exists^{1}
- Support for flexary binders equally desirable

Standard Solution (1)

Use (some incarnation of) lists

$$
a_{1}+\ldots+a_{n}=+\left(\operatorname{list}\left(a_{1}, \ldots, a_{n}\right)\right)
$$

But

- awkward
even more so for a mathematician
- introduces foundational dependency
what if there are no lists in my language?

Standard Solution (2)

Use notations

- only fixed arity in content
- parser and printer adapted to mimic flexible arity
$a_{1}+\ldots+a_{n}$ parsed as $+\left(a_{1}, \ldots,+\left(a_{n-1}, a_{n}\right) \ldots\right)$

But

- flexary representation often more natural
- requires choice between right- and left-associative notations no-canonical choice for non-associative flexary operators
- requires domain=codomain
cannot make the $\{\ldots\}$ operator right-associative
- no flexary reasoning
would be nice to quantify over the number of arguments

Ellipses

- Flexary operators naturally lead to ellipses
- Sequential ellipsis

$$
\text { define } \quad\left[a_{i}\right]_{i=1}^{n} \quad \text { as } \quad a_{1}, \ldots, a_{n}
$$

example:

$$
+\left[a_{i}\right]_{i=1}^{n}=+\left(a_{1}, \ldots, a_{n}\right)
$$

- No standardized formalization
dot-dot-dot notation fine on paper

Motivation

Ellipses

- Flexary operators naturally lead to ellipses
- Sequential ellipsis

$$
\text { define } \quad\left[a_{i}\right]_{i=1}^{n} \quad \text { as } \quad a_{1}, \ldots, a_{n}
$$

example:

$$
+\left[a_{i}\right]_{i=1}^{n}=+\left(a_{1}, \ldots, a_{n}\right)
$$

- No standardized formalization
dot-dot-dot notation fine on paper
- Nested ellipsis

$$
f_{1}\left(\ldots f_{n}(x) \ldots\right)
$$

special case of sequential ellipsis via flexary function composition:

$$
f_{1}\left(\ldots f_{n}(x) \ldots\right)=\circ\left[f_{i}\right]_{i=1}^{n}(x)
$$

Motivation

Where to Formalize Flexible Arities?

- Theory level: not good
- amounts to creating a theory of lists
- must be imported into any theory with flexary operators
e.g., monoids
- Logic level: better but
- logics becomes more complicated
- flexible arities logic-independent feature
- Logical framework level
our approach
- once-and-for-all formalization
- corresponds to mathematical practice
flexible arity and ellipses are assumed at the meta-level

Overview

1. Define logical framework LFS extends Edinburgh Logical Framework (LF) with

- sequences
- ellipses
- flexible arities

2. Use LFS to define flexary logics

- flexary connectives
- flexary quantifiers
- with corresponding flexary inference rules concretely: flexary FOL, flexary λ-calculus

3. Use flexary logics to formalize mathematical examples

LF with Sequences (LFS)

- LF = dependently-typed λ-calculus
- LF primitives
- terms, types, and kinds
- Π-types, λ, and application
- typing judgment $\vdash E: E^{\prime}$
- Very simple, but just right as logical framework
- New primitives in LFS
- term, type, and kind sequences
- natural numbers
- sequence ellipsis $[E(i)]_{i=1}^{n}$
- flexary function composition
needed for indices in ellispes
needed for nested ellipses

LF Grammar
$E::=$ type $|\Pi x: E . E| \lambda x: E . E \mid E E$
olive

LFS Syntax

LFS Grammar

$E, n::=\operatorname{type}^{n}|\Pi x: E . E| \lambda x: E . E \mid E E$

$$
\cdot|E, E| E_{n}
$$

- Empty sequence .
- Concatenation E, E^{\prime}
- Index E_{n}

LFS Syntax

LFS Grammar

$E, n::=\operatorname{type}^{n}|\Pi x: E . E| \lambda x: E . E \mid E E$

$$
E, E\left|E_{n}\right|[E]_{x=1}^{n} \mid \circ E
$$

- Empty sequence .
- Concatenation E, E^{\prime}
- Index En
n-th element of E
- Sequence ellipses $[E(x)]_{x=1}^{n}$
reduces to $E(1), \ldots, E(n)$
- Flexary function composition $\circ f$
$\circ\left(f_{1}, \ldots, f_{n}\right) s$ reduces to $f_{1}\left(\ldots\left(f_{n} s\right) \ldots\right)$
olive

Flexary Interpretation of LF Primitives

- LF primitives retained but now flexary
- Flexary application $=$ sequence arguments

$$
f \cdot=f \quad f\left(E, E^{\prime}\right)=(f E) E^{\prime}
$$

- Flexary binding $=$ sequence variables

$$
\begin{gathered}
\lambda x: \cdot E=E[x / \cdot] \\
\lambda x:\left(E, E^{\prime}\right) \cdot F=\lambda x^{1}: E \cdot \lambda x^{2}: E^{\prime} \cdot F\left[x /\left(x^{1}, x^{2}\right)\right]
\end{gathered}
$$

accordingly for Π

- LF typing rules can be reused without change

Axiomatized as LF declarations

$$
\begin{array}{ll}
\text { nat } & \text { type } \\
\leq & : \\
\text { nat } \rightarrow \text { nat } \rightarrow \text { type } \\
0 & : \\
\text { nat } \\
1 & : \\
+ & \text { nat } \\
+ & \text { nat } \rightarrow \text { nat } \rightarrow \text { nat }
\end{array}
$$

with appropriate axioms

Type System: Introduction of Sequences

Kind sequences

$$
\frac{\Sigma \vdash n: \text { nat : type }}{\Sigma \vdash \text { type }^{n} \text { Kind }}
$$

Type sequences

$$
\frac{\vdash \Sigma \operatorname{Sig}}{\Sigma \vdash \cdot \text { type }^{0}}
$$

$$
\frac{\Sigma \vdash U: \text { type }^{m} \quad \Sigma \vdash V: \text { type }^{n}}{\Sigma \vdash U, V: \text { type }^{m+n}}
$$

Term sequences

$$
\frac{\vdash \Sigma \operatorname{Sig}}{\Sigma \vdash \cdot \cdot \text { type }^{0}}
$$

Term sequences

$$
\frac{\Sigma \vdash S: U: \text { type }^{n} \quad \Sigma \vdash x^{*}: 1 \leq x: \text { type } \quad \Sigma \vdash x_{*}: x \leq n: \text { type }}{\Sigma \vdash S_{x}: U_{x}: \text { type }}
$$

accordingly for type sequences
Static bound checking:

- Only valid indices within bounds well-typed
- 2 implicit arguments for $1 \leq x$ and $x \leq n$

Type System: Ellipses

Ellipsis for sequence of terms
$\Sigma \vdash n$:nat: type Σ, $x:$ nat, $x^{*}: 1 \leq x, x_{*}: x \leq n \vdash S: U$: type

$$
\Sigma \vdash[S]_{x=1}^{n}:[U]_{x=1}^{n}: \text { type }^{n}
$$

accordingly for sequence of types
Static bound checking:

- Actually binds 3 variables
- Bounds $1 \leq x$ and $x \leq n$ passed as assumptions

Flexary Function Composition

$$
\frac{\Sigma \vdash U: \text { type }^{n+1} \quad \Sigma \vdash F:\left[U_{i+1} \rightarrow U_{i}\right]_{i=1}^{n}}{\Sigma \vdash \circ F: U_{n+1} \rightarrow U_{1}}
$$

Example: Folding

If

$$
S: A, \ldots, A: \text { type }^{n} \quad \text { and } \quad f: A \rightarrow A \rightarrow A \quad \text { and } \quad a: A
$$

then

$$
i: n a t \vdash \lambda x: A . f \times S_{i}: A \rightarrow A
$$

and we define

$$
\text { foldl } S f a=\left(\circ\left[\lambda x: A \cdot f x S_{i}\right]_{i=1}^{n}\right) a
$$

(here $U_{i}=A$ for $1 \leq i \leq n+1$)

Flexary Connectives

LFS type form : type of FOL formulas
Notation: Write form ${ }^{n}$ for $[\text { form }]_{i=1}^{n}$
Binary conjunction

$$
\wedge: \text { form } \rightarrow \text { form } \rightarrow \text { form }
$$

Flexary conjunction
$\wedge^{*}: \Pi n:$ nat. form ${ }^{n} \rightarrow$ form $=\lambda n:$ nat. $\lambda F:$ form n. foldl $F \wedge$ true
Thus,

$$
\begin{gathered}
\wedge^{*} n F_{1}, \ldots, F_{n}=\left(\ldots\left(\text { true } \wedge F_{1}\right) \ldots\right) \wedge F_{n} \\
\wedge^{*} 0 \cdot=\text { true }
\end{gathered}
$$

- Flexary proof rules also definable in terms of rules for binary conjunction
- Other flexary connectives defined accordingly

Flexary Quantifiers

LFS type term : type of FOL terms
Unary universal quantifier

$$
\forall:(\text { term } \rightarrow \text { form }) \rightarrow \text { form }
$$

Flexary universal quantifier

$$
\begin{aligned}
& \forall^{*}: \Pi n: \text { nat. }\left(\text { term }^{n} \rightarrow \text { form }\right) \rightarrow \text { form } \\
& =\lambda n: \text { nat. } \lambda F: \text { term }^{n} \rightarrow \text { form. } \\
& \circ \underbrace{\left[f: \text { term }^{i} \rightarrow \text { form. } \lambda y: \text { term }^{i-1} \cdot \forall \lambda x: \text { term. } f(y, x)\right.}_{\left(\text {term }^{i} \rightarrow \text { form }\right) \rightarrow\left(\text { term }^{i-1} \rightarrow \text { form }\right)}]_{i=1}^{n} F
\end{aligned}
$$

- Flexary proof rules definable accordingly
- Other flexary quantifiers definable accordingly

Powers

- Signature of monoids in FOL
a : type
$\bullet: a \rightarrow a \rightarrow a$

$$
e: a
$$

- Power operator routinely used in informal mathematics often introduced in same paragraph but not definable in FOL
- Now: flexary monoid operator definable in flexary FOL

$$
\bullet *: \Pi n: \text { nat. } a^{n} \rightarrow a=\lambda n . \lambda x: a^{n} \text {.foldl } \bullet x e
$$

and thus power operator definable

$$
\text { power }: a \rightarrow \text { nat } \rightarrow a=\lambda x . \lambda n . \bullet^{*} x^{n}
$$

Multirelations

- Multi-relations routinely used in informal mathematics

$$
\text { e.g., } a \in b \subseteq c
$$

- But cannot be defined as single operators within a fixary logic
- In flexary FOL:
multirel : Пn : nat. term ${ }^{n+1} \rightarrow(\text { term } \rightarrow \text { term } \rightarrow \text { form })^{n} \rightarrow$ form

$$
=\lambda n \cdot \lambda x \cdot \lambda r \cdot \wedge^{*}\left[r_{i} x_{i} x_{i+1}\right]_{i=1}^{n}
$$

- Example:

$$
a \in b \subseteq c=\text { multirel }(a, b, c)(\in, \subseteq)
$$

Conclusion

- Sequences and ellipses meta-level operators of informal mathematics
- But a challenge for formalized mathematics
- Logical framework approach permits clean solution
- LFS = LF with sequences and ellipses
- flexary logics defined in LFS
- natural formalizations in flexary logics
- Key properties
- flexary operators take natural number argument arity polymorphism
- LFS retains semantics of LF primitives
no new type constructors, no change to typing rules
- length of sequences known to type system static bounds check

