A Universal Machine for Biform Theory Graphs

Michael Kohlhase Felix Mance Florian Rabe
Computer Science, Jacobs University Bremen

Calculemus, CICM, July 2013

Mathematical Knowledge Representation

Three aspects of mechanized representations:
> declarative
plus: RxR — R
> deductive
Vx,y € R, plus(x, y) = plus(y, x)
» computational
fun plus(x:real, y:real) = x +y

Motivation

» Mathematical practice involves all 3 aspects
and jumps between them seamlessly
» But: Mechanized systems tend to focus on 1-2 aspects

» declarative representation languages
» deduction systems
» computer algebra systems

> Large body of research, but still no satisfactory result

Relation between Aspects

DECLARATIVE

COMPUTATIONAL

The declarative aspect is shared between the computational and
the deductive representation. .

Actually it looks like this

COMPUTATIONAL

Deductive and computational systems redo the declarative part at
least partially.

Actually it looks like this

Multiple deductive and computational refine the same declarative
representation differently

Actually it looks like this

The various refinements are not actually spelt out.

Observations on Meta-Theories (1)

v

Every representation uses a meta-theory at least implicitly

v

Deductive: the logic underlying the deduction system
e.g., Isabelle/HOL, Coq

Computational: the language of the environment
programming language, built-in types/values

v

v

Declarative: the type system/logic needed for the occasion
e.g., first-order logic for algebra

Observations on Meta-Theories (2)

» The choice of meta-theory follows different trade-offs
» Deductive/computational meta-theory should
> have few primitives
> permit rich structure of conservative extensions
e.g., in set theory: 0 = {}, succ(n) = nU {n}
necessary to justify investment theorem prover, compiler, ...
» Declarative meta-theory should
> be as weak as possible
» avoid commitment

e.g., Peano axioms
necessary to maximize refinement options

Long Term Goal

1. Represent declarative aspects in weakly committed
meta-theory no fixed logic, no fixed programming language
many, flexibly custom-fitted meta-theories

2. Refine it in various deductive/computational system
specific logics and/or programming languages
prove theorems, implement functions
3. Shared declarative representation provides interface between
systems
Note:

» Declarative language expressive enough for most questions
and answers

> Refined representations mainly needed to find the answer

10

Our Contribution Here

» Start with the declarative aspect MMT
» Make MMT computation-aware new: universal machine
> Represent computational languages in MMT

new: biform theory graphs in MMT

v

No integration with computer algebra systems yet future work

11

So What's MMT?

» Universal framework for formal mathematical/logical content
» declarative representations of interrelated languages
» explicit modular meta-theories little meta-theories
» choose meta-theory flexible
» move representations across meta-theories

> Close relatives

» logical frameworks like LF, Isabelle
but: more generic, heterogeneous
» OMDoc/OpenMath
but with formal semantics, more automation
» Main paper: Rabe, Kohlhase, A Scalable Module System,
Information & Computation, 2013
» ~ 10 CICM papers on individual aspects of the
implementation

12

Central ldea: Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement a meta-framework
then define many logical frameworks in it
foundation-independence: MMT

13

A Small Formalization Example in MMT
The logical framework LF in MMT:

theory Types { type }
theory LF {include Types, N, —, X\, @ }

First-order Logic defined in MMT/LF:

theory Logic meta LF {o: type, ded : o — type }
theory FOL meta LF {

include Logic

u: type. imp: o —- o — o,

}

Algebraic theories in MMT /LF/FOL:

theory Magma meta FOL { o: u - u — u }

theory Ring meta FOL {
additive: CommutativeGroup
multiplicative: Semigroup

14

MMT as a Universal Machine

» New component of MMT system

» maintains set of computation rules
» provides service for exhaustive rule application
HTTP, API, Scala interpreter, OS shell

> Very general perspective:
a rule for symbol s is a function that
> takes any OMA(OMS(s), argy, ..., arg,)
» returns some other object
> For example:
» OMA(OMS(plus), OMI(2), OMI(3), OMV(x))) ~»
OMA(OMS(plus), OMI(5), OMV(x))
» OMA(OMS(integral),f) ~
what Mathematica says
» OMA(OMS(o), OMV(x), OMS(e)) ~~
OMV(x) (in a monoid)

15

Feeding the Universal Machine

> MMT takes rules from anywhere
» hand-written in any programming language
» normalization rules of type checker e.g., B-reduction for LF
» generated from declarative specification e.g., algebra
» exported from deductive system e.g., Isabelle code generation
» wrapper for external computational system e.g., Mathematica

» MMT
» maintains sources of rules
» determines applicable rules

16

Our Case Study

1. Written a set of declarative specifications in MMT

» meta-theory: OpenMath
» specifications: OpenMath standard CDs
arith, linalg, lists, sets, logic, relations, ...

2. Translated to a computational system

» meta-theory: Scala
» refinements: implementations of the CDs
example: arithl for integers, arithl for vectors, ...

3. Each refinement yields a bunch of rules

» Why OpenMath: simplest possible meta-theory almost empty

» Why Scala: rules can be loaded by MMT
same programming language

17

Theory-Implementation Codevelopment in MMT

» Automated translation
MMT theory hierarchy «<— Scala class hierarchy
bijective, preserves module system
» Theories developed in MMT, implementations developed in a

Scala IDE MMT project is also elicpse project
MMT theory based on OpenMath: MMT theory based on Scala
(generated):
theory om.arithl meta OpenMath = theory sc.arithl meta Scala =
plus : Obj x Obj — Obj plus : (Term, Term) = Term

Scala class (generated)

abstract class arithl {
def
plus(x : Term,y : Term) : Term

}

Term: type of OpenMath objects in MMT system

Theory-Implementation Codevelopment in MMT (2)

» Scala snippets embedded into MMT source files
partially parsed by MMT
» Scala snippets may
> refer to previously defined functions
> use intuitive constructors+pattern matchers
automatically generated by MMT
» Scala snippets edited/compiled using Scala IDE
» Edited code and compiled binaries loaded back into MMT

view integers from sc.arithl to Scala
plus = (x : Term,y : Term) = "scala

(x, y) match {
case (OMI(a), OMI(b)) => OMI(a + b)
case (a, arithl.unary_minus(b)) =>
arithl.minus(a,b)
case _ => OMA(plus, x, vy)

Our Case Study as a Theory Graph

» s: translation MMT/OpenMath — Scala
» theories (i.e., CDs) become abstract classes
» theory inclusion becomes class extension
» theory morphisms between CDs become functors

» s': induced translation of OpenMath objects to Scala
expressions
> integers: implementation of arithl for numbers

s
Scala

OpenMath
implementing class integers

-
s
arithl CD ——— abstract class arithl

20

General Case: Biform Theory Graphs

» L: Declarative specification » s(T) translated version of
language T in simple cases: pushout

e.g., first-order logic » s': induced encoding of

» T: Specification L-expressions in P

e.g., rings, integers s
L———FP

» P: Realization language

» programming language
or

> primitive concepts of
computer algebra system

» s: refinement L to P st
. . . T————5s(T)
possibly partial, e.g., drop axioms

Note: same picture applies if P is deduction system

21

Putting Things together in MMT

1. Develop declarative theory graph in MMT
e.g., algebra in MMT/FOL

2. Translate theories to a more refined meta-theory
algebra in MMT /Scala

» for operations: just pushout
» for axioms: generate unit tests

3. Generate (abstract) Scala classes from MMT /Scala theories
trivial step

4. Implement abstract classes in Scala IDE

5. Merge edited code back into MMT source

6. Load compiled rules into universal machine

2, 3, 5, 6 automated by MMT system
user focuses on 1, 4

22

Conclusion and Future Work

» Good understanding of MMT as interface framework

» Develop more translation+code generation pipelines
current targets: Python+Sage, OpenAxiom, ...

» Uniformly generated classes provide interface between target
systems

» Dually: export CAS code base as MMT theories
easy for Sage using Python code introspection

> Relate MMT-generated classes to existing CAS classes

» Code generation leverages known relations
automatically generate converter functions

23

