A Universal Machine for Biform Theory Graphs

Michael Kohlhase Felix Mance Florian Rabe

Computer Science, Jacobs University Bremen

Calculemus, CICM, July 2013

Mathematical Knowledge Representation

Three aspects of mechanized representations:

declarative

 $\mathsf{plus}\,:\,\mathbb{R}\times\mathbb{R}\to\mathbb{R}$

deductive

 $\forall x, y \in \mathbb{R}, \mathtt{plus}(x, y) = \mathtt{plus}(y, x)$

computational

fun plus(x:real, y:real) = x + y

Motivation

Mathematical practice involves all 3 aspects and jumps between them seamlessly

- But: Mechanized systems tend to focus on 1-2 aspects
 - declarative representation languages
 - deduction systems
 - computer algebra systems

Large body of research, but still no satisfactory result

Relation between Aspects

The declarative aspect is shared between the computational and the deductive representation. 4

Deductive and computational systems redo the declarative part at least partially.

Multiple deductive and computational refine the same declarative representation differently

Actually it looks like this

The various refinements are not actually spelt out.

Observations on Meta-Theories (1)

- Every representation uses a meta-theory at least implicitly
- Deductive: the logic underlying the deduction system e.g., Isabelle/HOL, Coq
- Computational: the language of the environment programming language, built-in types/values
- Declarative: the type system/logic needed for the occasion e.g., first-order logic for algebra

Observations on Meta-Theories (2)

- The choice of meta-theory follows different trade-offs
- Deductive/computational meta-theory should
 - have few primitives
 - permit rich structure of conservative extensions

e.g., in set theory: $0 = \{\}$, $succ(n) = n \cup \{n\}$

necessary to justify investment theorem prover, compiler, ...

- Declarative meta-theory should
 - be as weak as possible
 - avoid commitment

e.g., Peano axioms

necessary to maximize refinement options

Long Term Goal

- 1. Represent declarative aspects in weakly committed meta-theory no fixed logic, no fixed programming language many, flexibly custom-fitted meta-theories
- 2. Refine it in various deductive/computational system specific logics and/or programming languages prove theorems, implement functions
- 3. Shared declarative representation provides interface between systems

Note:

- Declarative language expressive enough for most questions and answers
- Refined representations mainly needed to *find* the answer

Our Contribution Here

- Start with the declarative aspect
 MMT
- Make MMT computation-aware new: universal machine
- Represent computational languages in MMT new: biform theory graphs in MMT
- No integration with computer algebra systems yet future work

So What's MMT?

- Universal framework for formal mathematical/logical content
 - declarative representations of interrelated languages
 - explicit modular meta-theories
- little meta-theories

- choose meta-theory flexible
- move representations across meta-theories
- Close relatives
 - logical frameworks like LF, Isabelle but: more generic, heterogeneous
 - OMDoc/OpenMath but with formal semantics, more automation
- Main paper: Rabe, Kohlhase, A Scalable Module System, Information & Computation, 2013
- $\blacktriangleright \sim 10$ CICM papers on individual aspects of the implementation

Central Idea: Foundation-Independence

- 1. We can fix and implement a logical theory e.g., set theory
- 2. We can fix and implement a logic then *define many theories in it* e.g., first-order logic
- 3. We can fix and implement a logical framework then *define many logics in it* the foundation, e.g., LF
- 4. We can fix and implement a meta-framework then *define many logical frameworks in it* foundation-independence: MMT

A Small Formalization Example in MMT

The logical framework LF in MMT:

theory Types { type } theory LF {include Types, $\Pi, \ \rightarrow, \ \lambda, \ {\rm @}$ }

First-order Logic defined in MMT/LF:

```
theory Logic meta LF {o: type, ded : o \rightarrow type } theory FOL meta LF { include Logic u: type. imp: o \rightarrow o \rightarrow o, ... }
```

Algebraic theories in MMT/LF/FOL:

```
theory Magma meta FOL { \circ: u \rightarrow u \rightarrow u }
...
theory Ring meta FOL {
additive: CommutativeGroup
multiplicative: Semigroup
...
}
```

MMT as a Universal Machine

- New component of MMT system
 - maintains set of computation rules
 - provides service for exhaustive rule application

```
HTTP, API, Scala interpreter, OS shell
```

Very general perspective:

a rule for symbol s is a function that

- takes any OMA(OMS(s), arg₁,..., arg_n)
- returns some other object
- ► For example:
 - ► OMA(OMS(plus), OMI(2), OMI(3), OMV(x))) ~~ OMA(OMS(plus), OMI(5), OMV(x))
 - ► OMA(OMS(integral), f) ~~
 what Mathematica says
 - ► $OMA(OMS(\circ), OMV(x), OMS(e))$ \rightsquigarrow OMV(x) (in a monoid)

Feeding the Universal Machine

MMT takes rules from anywhere

- hand-written in any programming language
 normalization rules of type checker e.g., β-reduction for LF
- generated from declarative specification
 e.g., algebra
- exported from deductive system e.g., Isabelle code generation
- wrapper for external computational system e.g., Mathematica
- MMT
 - maintains sources of rules
 - determines applicable rules

Our Case Study

- 1. Written a set of declarative specifications in MMT
 - meta-theory: OpenMath
 - specifications: OpenMath standard CDs

arith, linalg, lists, sets, logic, relations, ...

- 2. Translated to a computational system
 - meta-theory: Scala
 - refinements: implementations of the CDs example: arith1 for integers, arith1 for vectors, ...
- 3. Each refinement yields a bunch of rules
- Why OpenMath: simplest possible meta-theory almost empty
- ► Why Scala: rules can be loaded by MMT

same programming language

Theory-Implementation Codevelopment in MMT

Automated translation

 $\mathsf{MMT} \text{ theory hierarchy} \longleftrightarrow \mathsf{Scala \ class \ hierarchy}$

bijective, preserves module system

 Theories developed in MMT, implementations developed in a Scala IDE
 MMT project is also elicpse project

MMT theory based on OpenMath:

MMT theory based on Scala (generated):

theory *om.arith***1 meta** *OpenMath* = $plus : Obj \times Obj \rightarrow Obj$

theory *sc.arith*1 **meta** *Scala* = *plus* : (*Term*, *Term*) ⇒ *Term*

Scala class (generated)

abstract class arith1 {
 def
plus(x : Term, y : Term) : Term
}

Term: type of OpenMath objects in MMT system

Theory-Implementation Codevelopment in MMT (2)

Scala snippets embedded into MMT source files

partially parsed by MMT

- Scala snippets may
 - refer to previously defined functions
 - use intuitive constructors+pattern matchers

automatically generated by MMT

- Scala snippets edited/compiled using Scala IDE
- Edited code and compiled binaries loaded back into MMT

```
view integers from sc.arith1 to Scala

plus = (x : Term, y : Term) \Rightarrow "scala

(x, y) match {

    case (OMI(a), OMI(b)) \Rightarrow OMI(a + b)

    case (a, arith1.unary_minus(b)) \Rightarrow

    arith1.minus(a,b)

    case _ \Rightarrow OMA(plus, x, y)

}
```

Our Case Study as a Theory Graph

- ► s: translation MMT/OpenMath → Scala
 - theories (i.e., CDs) become abstract classes
 - theory inclusion becomes class extension
 - theory morphisms between CDs become functors
- ► s^T: induced translation of OpenMath objects to Scala expressions
- integers: implementation of arith1 for numbers

General Case: Biform Theory Graphs

 L: Declarative specification language

e.g., first-order logic

- T: Specification
 e.g., rings, integers
- P: Realization language
 - programming language or
 - primitive concepts of computer algebra system
- s: refinement L to P possibly partial, e.g., drop axioms

Note: same picture applies if P is deduction system

- s(T) translated version of
 T in simple cases: pushout
- ► s^T: induced encoding of L-expressions in P

Putting Things together in MMT

1. Develop declarative theory graph in MMT

e.g., algebra in MMT/FOL

2. Translate theories to a more refined meta-theory

algebra in $\mathsf{MMT}/\mathsf{Scala}$

- for operations: just pushout
- for axioms: generate unit tests
- 3. Generate (abstract) Scala classes from MMT/Scala theories

trivial step

- 4. Implement abstract classes in Scala IDE
- 5. Merge edited code back into MMT source
- 6. Load compiled rules into universal machine

2, 3, 5, 6 automated by MMT system user focuses on 1, 4

Conclusion and Future Work

- Good understanding of MMT as interface framework
- Develop more translation+code generation pipelines current targets: Python+Sage, OpenAxiom, ...
- Uniformly generated classes provide interface between target systems
- Dually: export CAS code base as MMT theories easy for Sage using Python code introspection
- Relate MMT-generated classes to existing CAS classes
- Code generation leverages known relations

automatically generate converter functions