
A Universal Machine for Biform Theory Graphs

Michael Kohlhase Felix Mance Florian Rabe

Computer Science, Jacobs University Bremen

Calculemus, CICM, July 2013

1

Mathematical Knowledge Representation

Three aspects of mechanized representations:

I declarative
plus : R× R→ R

I deductive
∀x , y ∈ R, plus(x , y) = plus(y , x)

I computational
fun plus(x:real, y:real) = x + y

2

Motivation

I Mathematical practice involves all 3 aspects
and jumps between them seamlessly

I But: Mechanized systems tend to focus on 1-2 aspects
I declarative representation languages
I deduction systems
I computer algebra systems

I Large body of research, but still no satisfactory result

3

Relation between Aspects

DECLARATIVE

DEDUCTIVE COMPUTATIONAL

The declarative aspect is shared between the computational and
the deductive representation. 4

Actually it looks like this

DECL

DEDUCTIVE COMPUTATIONAL

DECL DECL

refinesrefines

Deductive and computational systems redo the declarative part at
least partially.

5

Actually it looks like this

DECL

DED 1

...

DED n

COMP 1

...

COMP n

DECL DECL

DECL DECL

refines refines

refines refines

Multiple deductive and computational refine the same declarative
representation differently

6

Actually it looks like this

DED 1

...

DED n

COMP 1

...

COMP n

DECL DECL

DECL DECL

The various refinements are not actually spelt out.

7

Observations on Meta-Theories (1)

I Every representation uses a meta-theory at least implicitly

I Deductive: the logic underlying the deduction system
e.g., Isabelle/HOL, Coq

I Computational: the language of the environment
programming language, built-in types/values

I Declarative: the type system/logic needed for the occasion
e.g., first-order logic for algebra

8

Observations on Meta-Theories (2)

I The choice of meta-theory follows different trade-offs
I Deductive/computational meta-theory should

I have few primitives
I permit rich structure of conservative extensions

e.g., in set theory: 0 = {}, succ(n) = n ∪ {n}
necessary to justify investment theorem prover, compiler, ...

I Declarative meta-theory should
I be as weak as possible
I avoid commitment

e.g., Peano axioms
necessary to maximize refinement options

9

Long Term Goal

1. Represent declarative aspects in weakly committed
meta-theory no fixed logic, no fixed programming language

many, flexibly custom-fitted meta-theories

2. Refine it in various deductive/computational system
specific logics and/or programming languages

prove theorems, implement functions

3. Shared declarative representation provides interface between
systems

Note:

I Declarative language expressive enough for most questions
and answers

I Refined representations mainly needed to find the answer

10

Our Contribution Here

I Start with the declarative aspect MMT

I Make MMT computation-aware new: universal machine

I Represent computational languages in MMT
new: biform theory graphs in MMT

I No integration with computer algebra systems yet future work

11

So What’s MMT?

I Universal framework for formal mathematical/logical content
I declarative representations of interrelated languages
I explicit modular meta-theories little meta-theories
I choose meta-theory flexible
I move representations across meta-theories

I Close relatives
I logical frameworks like LF, Isabelle

but: more generic, heterogeneous
I OMDoc/OpenMath

but with formal semantics, more automation

I Main paper: Rabe, Kohlhase, A Scalable Module System,
Information & Computation, 2013

I ∼ 10 CICM papers on individual aspects of the
implementation

12

Central Idea: Foundation-Independence

1. We can fix and implement a logical theory e.g., set theory

2. We can fix and implement a logic
then define many theories in it e.g., first-order logic

3. We can fix and implement a logical framework
then define many logics in it the foundation, e.g., LF

4. We can fix and implement a meta-framework
then define many logical frameworks in it

foundation-independence: MMT

13

A Small Formalization Example in MMT
The logical framework LF in MMT:

t h e o r y Types { t y p e }
t h e o r y LF { i n c l u d e Types , Π , → , λ , @ }

First-order Logic defined in MMT/LF:

t h e o r y L o g i c meta LF {o : type , ded : o → t y p e }
t h e o r y FOL meta LF {

i n c l u d e L o g i c
u : t y p e . imp : o → o → o , . . .

}

Algebraic theories in MMT/LF/FOL:

t h e o r y Magma meta FOL { ◦ : u → u → u }
. . .
t h e o r y Ring meta FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}
14

MMT as a Universal Machine

I New component of MMT system
I maintains set of computation rules
I provides service for exhaustive rule application

HTTP, API, Scala interpreter, OS shell

I Very general perspective:
a rule for symbol s is a function that

I takes any OMA(OMS(s), arg1, . . . , argn)
I returns some other object

I For example:
I OMA(OMS(plus),OMI (2),OMI (3),OMV (x)))

OMA(OMS(plus),OMI (5),OMV (x))
I OMA(OMS(integral), f)

what Mathematica says
I OMA(OMS(◦),OMV (x),OMS(e))

OMV (x) (in a monoid)

15

Feeding the Universal Machine

I MMT takes rules from anywhere
I hand-written in any programming language
I normalization rules of type checker e.g., β-reduction for LF
I generated from declarative specification e.g., algebra
I exported from deductive system e.g., Isabelle code generation
I wrapper for external computational system e.g., Mathematica

I MMT
I maintains sources of rules
I determines applicable rules

16

Our Case Study

1. Written a set of declarative specifications in MMT
I meta-theory: OpenMath
I specifications: OpenMath standard CDs

arith, linalg, lists, sets, logic, relations, . . .

2. Translated to a computational system
I meta-theory: Scala
I refinements: implementations of the CDs

example: arith1 for integers, arith1 for vectors, . . .

3. Each refinement yields a bunch of rules

I Why OpenMath: simplest possible meta-theory almost empty

I Why Scala: rules can be loaded by MMT
same programming language

17

Theory-Implementation Codevelopment in MMT
I Automated translation

MMT theory hierarchy ←→ Scala class hierarchy

bijective, preserves module system
I Theories developed in MMT, implementations developed in a

Scala IDE MMT project is also elicpse project

MMT theory based on OpenMath:

theory om.arith1 meta OpenMath =
plus : Obj × Obj → Obj

MMT theory based on Scala
(generated):

theory sc.arith1 meta Scala =
plus : (Term,Term)⇒ Term

Scala class (generated)

abstract class arith1 {
def

plus(x : Term, y : Term) : Term
}

Term: type of OpenMath objects in MMT system

Theory-Implementation Codevelopment in MMT (2)
I Scala snippets embedded into MMT source files

partially parsed by MMT
I Scala snippets may

I refer to previously defined functions
I use intuitive constructors+pattern matchers

automatically generated by MMT
I Scala snippets edited/compiled using Scala IDE
I Edited code and compiled binaries loaded back into MMT

view integers from sc .arith1 to Scala
plus = (x : Term, y : Term)⇒ ”scala

(x , y) match {
c a s e (OMI(a) , OMI(b)) => OMI(a + b)
c a s e (a , arith1.unary minus (b)) =>

arith1.minus (a , b)
c a s e => OMA(p l u s , x , y)

}
”

Our Case Study as a Theory Graph

I s: translation MMT/OpenMath −→ Scala
I theories (i.e., CDs) become abstract classes
I theory inclusion becomes class extension
I theory morphisms between CDs become functors

I sT : induced translation of OpenMath objects to Scala
expressions

I integers: implementation of arith1 for numbers

OpenMath Scala

arith1 CD abstract class arith1

s

sT

implementing class integers

20

General Case: Biform Theory Graphs

I L: Declarative specification
language

e.g., first-order logic

I T : Specification
e.g., rings, integers

I P: Realization language

I programming language
or

I primitive concepts of
computer algebra system

I s: refinement L to P
possibly partial, e.g., drop axioms

I s(T) translated version of
T in simple cases: pushout

I sT : induced encoding of
L-expressions in P

L P

T s(T)

s

sT

Note: same picture applies if P is deduction system

21

Putting Things together in MMT

1. Develop declarative theory graph in MMT
e.g., algebra in MMT/FOL

2. Translate theories to a more refined meta-theory
algebra in MMT/Scala

I for operations: just pushout
I for axioms: generate unit tests

3. Generate (abstract) Scala classes from MMT/Scala theories
trivial step

4. Implement abstract classes in Scala IDE

5. Merge edited code back into MMT source

6. Load compiled rules into universal machine

2, 3, 5, 6 automated by MMT system
user focuses on 1, 4

22

Conclusion and Future Work

I Good understanding of MMT as interface framework

I Develop more translation+code generation pipelines
current targets: Python+Sage, OpenAxiom, . . .

I Uniformly generated classes provide interface between target
systems

I Dually: export CAS code base as MMT theories
easy for Sage using Python code introspection

I Relate MMT-generated classes to existing CAS classes

I Code generation leverages known relations
automatically generate converter functions

23

