Towards Knowledge Management for HOL Light

Cezary Kaliszyk Florian Rabe

University of Innsbruck, Austria

Jacobs University, Bremen, Germany

MKM 2014

Motivation 1: System Compatibility

- Developments in one system can be used in another
 - shared library / library translations
- In practice: Most systems are not compatible
 - Typically only the system can parse its library
- Positive exceptions
 - Matita and Coq shared the format once
 - Various Translations (HOL Light \rightarrow Isabelle/HOL)

Motivation 2: System Interoperability

- One system can be called while working in another one
- In practice: common for a main system to outsource ...
 - specialized tools

```
e.g., decision procedures, theory exploration
```

automated provers, model finders

```
e.g., use ATPs in proof assistant
```

computation systems

use computer algebra system in deduction system

- ...but mostly ...
 - restricted to individual system pairs
 - brittle ad hoc connections
 - no symmetric interoperability

Motivation 3: Library compatibility

 $\ensuremath{\mathbb{R}}$ defined using:

- Cauchy sequences
- Dedekind cuts

▶ ...

Next talk

Motivation 4: Library Management

- Same functionality needed in every system
 - browsing, navigation
 - distribution, versioning
 - search, querying
 - refactoring, change management
- Dilemma
 - typically not interesting for proof assistant developers
 - but necessary for large scale case studies
- Could be realized generically
- In practice: only system-specific ad hoc solutions (if any)

The HOL Light System

- HOL Logic
 - Church simple type theory
 - Shallow polymorphism
 - Small inference system
 - 10 basic rules
 - 3 extension principles
- HOL Light kernel
 - LCF style
 - Private OCaml types for HOL types, terms, theorems
 - List references to store results of extensions

The HOL Light Library

- HOL Light core system
 - ▶ N, Z, R, lists, sets
 - And their basic properties
 - pprox 2,000 theorems
- HOL Light standard library
 - ▶ $\mathbb{R}^{\mathbb{N}}$, 100 theorems, $\binom{n}{k}$, $\lfloor x \rfloor$, ...
 - ≈ 17,000 theorems
- Flyspeck
 - Fans, Graphs, Packings, ...
 - \approx 14,000 theorems

MMT

- Representation language for formal mathematical content
 - Foundation-independent
- Heterogeneous
 - Defining logical frameworks, logics, theorems in one syntax
- Implementation with generic
 - module system
 - parsing + type reconstruction
 - ► IDE
 - change management
- Category theory semantics
 - theories, morphisms, declarations, expressions
- Developed since 2007, > 30000 lines of Scala code
 - OMDoc/OpenMath-based XML syntax with Scala-based API
- Close relatives:
 - Fixed logical framework: LF, Isabelle, Dedukti
 - Hets: but declarative logic definitions

Exporting the HOL Light Library

- Popular integration test case due to
 - simplicity of logic
 - size of the kernel
- Examples exports
 - to Isabelle/HOL
 - to OpenTheory
 - to Coq
 - to Dedukti

Obua, 2006; Kaliszyk 2013 Hurd, 2011 Keller, Werner, 2010 Dowek et al., 2013

But: already the exports are adapted to the target system

Approach

- Use MMT for logic, data and infrastructure
 - 1. LF represented and implemented within MMT
 - 2. HOL Light logic (kernel) represented as LF theory
 - (formalization of HOL Light kernel)
 - 3. Automatically exported HOL Light library
 - OMDoc theories
- All part of the same MMT theory graph

The HOL LIGHT Logic in MMT/LF (1)

- One LF-type per concept
 - types, term, theorems
- Constructors for primitive operators
 - booleans, equality, λ -calculus

```
holtype : type

term : holtype \rightarrow type

thm : term bool \rightarrow type

bool : holtype

fun : holtype \rightarrow holtype \rightarrow holtype

Abs : {A,B} (term A \rightarrow term B) \rightarrow term (A \Rightarrow B)

Comb : {A,B} term (A \Rightarrow B) \rightarrow term A \rightarrow term B

equal : {A} term A \Rightarrow (A \Rightarrow bool)
```

The HOL LIGHT Logic in MMT/LF (2)

- Curry-Howard: proofs as terms
- A constructor for each primitive proof rule

REFL : {A, X:term A}
$$\vdash$$
 X = X
TRANS : {A, X, Y, Z:term A}
 \vdash X = Y \rightarrow \vdash Y = Z \rightarrow \vdash X = Z
MP : p,q \vdash p = q \rightarrow \vdash p \rightarrow \vdash q
BETA : {A, B, F:term A \rightarrow term B, X:term A}
 \vdash (λ F)'X = (F X)
MK_COMB : {A, B, F, G:term A \Rightarrow B, X, Y:term A}
 \vdash F = G \rightarrow \vdash X = Y \rightarrow \vdash F'X = G'Y
ABS : {A, B, S, T:term A \rightarrow term B}
({x: term A} \vdash (S x) = (T x)) \rightarrow \vdash λ S = λ T
DEDUCT_ANTISYM_RULE
: {p,q} (\vdash p \rightarrow \vdash q) \rightarrow (\vdash q \rightarrow \vdash p) \rightarrow \vdash p = q

The HOL LIGHT Logic in MMT/LF (3)

One pattern declaration for each primitive extension principle

- Definition
- Type definitions
- (HOL axioms can be realized by meta axioms)

[Horozal, Kohlhase, Rabe, MKM 2012]

```
extension definition =

[n: nat] [A: holtype<sup>n</sup> \rightarrow holtype]

[a: {T: holtype<sup>n</sup>} term (A T)]

c : {T} term (A T)

DEF : {T} \vdash (c T) = (a T)
```

extension new_basic_type_definition =

• • •

Exporting the Library

- Gathering an export list
 - Theories
 - Types, Constants, Definitions
 - Notations
- OMDoc theory file for each HOL Light file
 - MMT constants for types, constants, theorems

```
<constant name="PRE"><type>
<constant name="PRE"><type>
<con:OMOBJ xmlns:om="http://www.openmath.org/OpenMath">
<com:OMOBJ xmlns:om="http://www.openmath.org/OpenMath">
<com:OMS module="LF" name="apply"></om:OMS>
<com:OMS module="LF" name="apply"></om:OMS>
<com:OMS module="Kernel" name="term"></om:OMS>
<com:OMS module="LF" name="apply"></om:OMS>
<com:OMS module="LF" name="fun"></om:OMS>
<com:OMS module="nums" name="num"></com:OMS>
<com:OMS module="nums" name="num"></com:OMS>
<com:OMS module="nums" name="num"></com:OMS>
</com:OMS>
</com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:OMA></com:
```

```
</om:OMA></om:OMOBJ>
```

```
</type></constant>
```

Goal: Generic Library Management

- Library browser
 - MMT generates HTML (Presentation MathML)
 - interactive (JavaScript)
 - semantics-aware

e.g., dynamic type inference of subterms

- cross-library browsing
- Search
 - MMT generates index for MathWebSearch

[Kohlhase et al.]

- Change management
 - export/detect dependencies between library items
 - detect changes between library versions
 - propagate changes along dependencies

Example Service: The MMT Browser

The MMT Web Server		
	Graph View Search Administration Help	
Style: html5	code.google.com / p / hol-light / source / browse / trunk ? bool	
🕂 hollight 🔺	bool	
arith.omdoc	T show/hide type show/hide onedim-notation show/hide tags show/hide metadata	
	(T_DEF show/hide type show/hide tags show/hide metadata	
+ calc_num.omdoc	(TRUTH show/hide type show/hide definition show/hide tags show/hide metadata)	
± cart.omdoc	(\ show/hide type show/hide onedim-notation show/hide tags show/hide metadata)	
+ class.omdoc	(AND_DEF show/hide type show/hide tags show/hide metadata	
ind_defs.omdoc	=> show/hide type show/hide onedim-notation show/hide tags show/hide metadata)	
+ ind_types.omdoc	[IMP_DEF show/hide type show/hide tags show/hide metadata)	
+ iterate.omdoc	! show/hide type show/hide onedim-notation show/hide tags show/hide metadata	
Iists.omdoc in mums.omdoc	type $\{A: holtype\}(A \Rightarrow bool) \Rightarrow bool$	
pair.omdoc	onedim-notation	
real.omdoc	$\forall x: _$. a (precedence 0)	
+ realarith.omdoc + realax.omdoc + sets.omdoc	FORALL_DEF show/hide type show/hide tags show/hide metadata type $\{A: holtype\} \vdash (!A) = \lambda P: A \Rightarrow bool. P = \lambda x: A. T$	

Browser Features: 2-dimensional Notations

Browser Features: Type Inferece

Browser Features: Parsing

Example Service: Search

Enter Java regular expression	s to filter based on the URI of a declaration
Namespace	
Theory	
Name	

Enter an expression over theory http://code.google.com/p/hol-light/source/browse/trunl

x,y,p: x MOD p = y MOD p

Use \$x,y,z:query to enter unification variables.

Search

type of MOD_EQ

 $\forall m:$ num. $\forall n:$ num. $\forall p:$ num. $\forall q:$ num. $m = n + q * p \Longrightarrow m \text{ MOD } p = n \text{ MOD } p$

type of MOD_MULT_ADD $\vdash \forall m:$ num . $\forall n:$ num . $\forall p:$ num . (m*n+p) MOD n = p MOD n

Conclusion

- Complete export of HOL LIGHT
 - Kernel
 - Library files as independent theories
- ► MMT services avaliable for HOL LIGHT users
 - Interactive browsing, search, parsing
- Future work
 - Refactoring (to introduce heterogeneity)
 - Correspondences between concepts in different libraries
 - as an MKM concept
 - partial morphisms?