A Foundational View on Integration Problems

Florian Rabe¹, Michael Kohlhase¹, Claudio Sacerdoti Coen²

Computer Science, Jacobs University, Bremen (DE)
 Department of Computer Science, University of Bologna (IT)

Motivation

 Computer algebra systems, deduction systems, MKM systems are becoming more and more powerful

How can we make them work together?

- Avoid duplication of efforts
- ▶ Let systems and developers specialize
- Overall gain for developers and users

A Basic System Integration Work Flow

- 1. We have a problem in System 1
- 2. We send it to System 2 (e.g., via Content MathML)
- 3. System 2 finds a solution
- 4. We send the solution back to System 1

For example,

Problem	Solution
proof goal	proof (in practice often only: "yes")
expression	simplified/decomposed expression
formula with free variables	(set of) substitution(s)

A Basic System Integration Work Flow

- 1. We have a problem in System 1
- 2. We send it to System 2 (e.g., via Content MathML)
- 3. System 2 finds a solution
- 4. We send the solution back to System 1

For example,

Problem	Solution
proof goal	proof (in practice often only: "yes")
expression	simplified/decomposed expression
formula with free variables	(set of) substitution(s)

Key challenge: make sure that System 1 and System 2 agree on the semantics of problem and solution

The Formality Spectrum of System Integration

1) The pragmatic approach

- Slogan: "send problem/solution and hope for the best"
 - works well if the semantics is clear: literals, finite collections, first-order formulas, . . .
 - gets unreliable fast: partial functions, side conditions in analysis, any other logic, . . .

ambiguity already with $0 \in N$ or with x/x

- Key method: semi-formal specification of the System 1-System 2 interface
- Standardized through content dictionaries symbol N in OpenMath CD setname1 is natural numbers with 0

The Formality Spectrum of System Integration

2) The fundamentalist approach

- our work
- Slogan: "prove everything and hope you'll ever have the time to get a running system"
- expensive but then works perfectly
- requires formalizing semantics of systems and their relation

Classifying Fundamentalist Approaches (1)

When does integration happen?

- ► a priori: translate a whole library to a different system forward translation run once by developer
- on-demand: translate individual problems our work forward and backward translation run automatically

Examples:

- a priori
 - using HOL in Nuprl, Schürmann, Stehr, 2004
 - using Isabelle/HOL in HOL Light, McLaughlin, 2006
- on-demand
 - using first-order logic in Isabelle, Meng, Paulson, 2008
 - using first-order logic in SUMO, Trac, Sutcliffe, Pease, 2008

Classifying Fundamentalist Approaches (2)

When is the integration verified?

- dynamically
 - solution-providing system is unconstrained
 - solution-requesting system verifies the solution
 - key advantage: no trust in the providing system of the communication needed
- ► statically our work
 - define both systems in a meta-language
 - formalize systems and translations between them
 - prove correctness
 - key advantage: no communication of proofs needed

Examples:

- ▶ dynamically: using Maple in HOL Light, Harrison, Thery, 1998
- statically: using first-order logic in modal logic, Hustadt, Schmidt, 2000

Classifying Fundamentalist Approaches (3)

How is the static integration verified?

- on paper using semi-formal mathematics, using
 - an ad hoc argument
 - an argument within a (usually categorical) framework such as institutions, fibrations
- mechanically in a deduction system our work typically, based on type theory as in LF, Coq, Isabelle

Examples:

- on paper, ad hoc: using Isabelle/HOL in Isabelle/ZF, Krauss, Schropp, 2010
- on paper, with framework: integrating logics in the Hets system, Mossakowski et al., 2007
- mechanized: using HOL in Nuprl
- mechanized: LATIN logic integrator, recall this morning's talk

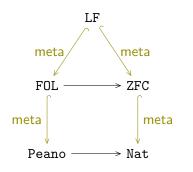
Our Frameworks of Choice: MMT + LF/Twelf

- MMT: module system for mathematical theories, Rabe, Kohlhase 2008
 generic declarative language based on OMDoc/OpenMath
- ▶ LF: Harper, Honsell, Plotkin, 1993 logical framework based on dependent type theory
- ► Twelf: Pfenning, Schürmann, 1999 mechanization of LF

Division of labor:

- MMT provides the global semantics: theory graphs, module system, scalable MKM framework
- ► LF/Twelf provide the local semantics: type reconstruction, proof checking, adequate encodings

Our Frameworks of Choice: MMT + LF/Twelf



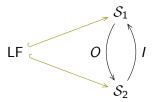
```
form: type proof: form \rightarrow type impl: form \rightarrow form \rightarrow form modus_ponens: proof (A impl B) \rightarrow proof B
```

Division of labor:

- MMT provides the global semantics: theory graphs, module system, scalable MKM framework
- ► LF/Twelf provide the local semantics: type reconstruction, proof checking, adequate encodings

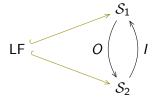
Static Verification in MMT (ideally)

- 1. Define an MMT theory M for the meta-language M (e.g., LF) M provides semantics, e.g., type- and proof-checking
- 2. Represent System 1 and System 2 as MMT-theories \mathcal{S}_1 , \mathcal{S}_2 with meta-theory M $\mathcal{S}_i \text{ contains, e.g., symbol } \vdash_i \text{ for truth judgment}$
- 3. Give mutually inverse M-theory morphisms $I:\mathcal{S}_2\to\mathcal{S}_1$ and $O:\mathcal{S}_1\to\mathcal{S}_2$



Static Verification in MMT (ideally)

- ▶ Given a proof goal $\vdash_2 F$ in System 2
 - 1. translate it to $\vdash_1 I(F)$ in System 1,
 - 2. find a proof $\vdash_1 p : I(F)$ in System 1
 - 3. translate it back yielding $\vdash_2 O(p) : O(I(F)) = F$
- Static verification: valid theory morphism O preserves judgment ⊢₁ p : I(F)
- Mechanical verification: validity of O is verified by MMT+Twelf



Problem: This is really difficult

- 1. Representing systems in M is hard
 - need to represent syntax and semantics
 - need to show adequacy of representation assuming the semantics is documented
 - good progress in LATIN
- 2. Giving theory morphisms *I* and *O* is even harder
 - need to translate syntax and semantics
 - ongoing work in LATIN

Problem: This is really difficult

- 1. Representing systems in M is hard
 - need to represent syntax and semantics
 - need to show adequacy of representation assuming the semantics is documented
 - good progress in LATIN
- 2. Giving theory morphisms I and O is even harder
 - need to translate syntax and semantics
 - ongoing work in LATIN
- 3. But even then: mismatch of libraries

Classifying Fundamentalist Approaches (4)

- Integration is most interesting if there are big libraries
- ▶ But: system libraries use different concrete formalizations of the same abstract concept e.g., natural numbers N_i in S_i , and $O(N_1) \neq N_2$
- ▶ How does the integration relate, e.g., $O(N_1)$ and N_2 ?
 - not at all
 - isomorphism theorems established individually: e.g., $O(N_1) \cong N_2$
 - ightharpoonup ad hoc correspondence of symbols, e.g., $N_1 \sim N_2$ translation can yield (only) proof sketches
 - ► formal framework our work

theory morphisms may be partial

theory A	theory B	morphism $\mu:A o B$
s : type	t : type	$s\mapsto t$
C : S		filter c

- theory morphisms may be partial
- partiality is strict, i.e., propagates along the dependency relation

theory A	theory ${\it B}$	morphism $\mu:A o B$
s : type	t : type	$s\mapsto t$
c : s		filter c
c' := c		necessarily: filter c'

- theory morphisms may be partial
- partiality is strict, i.e., propagates along the dependency relation
- key new idea: controlled relaxation of propagation

theory A	theory B	morphism $\mu:A o B$
s : type	t : type	$s\mapsto t$
c : s		filter c
c' := c		necessarily: filter c'

- theory morphisms may be partial
- partiality is strict, i.e., propagates along the dependency relation
- key new idea: controlled relaxation of propagation

theory A	theory B	morphism $\mu:A o B$
s : type	t : type	$s\mapsto t$
c : s		filter c
c' := c		necessarily: filter c'
	d : t	

- theory morphisms may be partial
- partiality is strict, i.e., propagates along the dependency relation
- key new idea: controlled relaxation of propagation

theory A	theory <i>B</i>	morphism $\mu:A o B$
s : type	t : type	$s\mapsto t$
c : s		filter c
c' := c		necessarily: filter c'
	d : t	possibly: $c' \mapsto d$

Filtering: Example

- Peano: MMT theory with axiomatic presentation of natural numbers
- ZFC: MMT theory with a concrete definition for them
- \blacktriangleright μ : (total) theory morphism that proves ZFC realizes Peano

Peano	ZFC	μ
	Ø, ∪, etc.	
0	$0 := \varnothing$	$0\mapsto 0$
SUCC	$\verb+succ+(n) := n \cup \{n\}$	$\mathit{succ} \mapsto \mathtt{succ}$
$nocycle: 0 \neq succ(X)$	$\mathtt{nocycle} := [PROOF]$	$\textit{nocycle} \mapsto \texttt{nocycle}$
Peano		
LF μ		
ZFC		

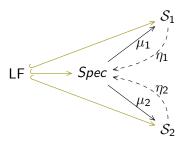
Filtering: Example

- Peano: MMT theory with axiomatic presentation of natural numbers
- ZFC: MMT theory with a concrete definition for them
- \blacktriangleright μ : (total) theory morphism that proves ZFC realizes Peano

Peano	ZFC	μ
	Ø, ∪, etc.	
0	$0 := \emptyset$	$0 \mapsto 0$
succ	$\verb+succ+(n) := n \cup \{n\}$	$\mathit{succ} \mapsto \mathtt{succ}$
$nocycle: 0 \neq succ(X)$	$\mathtt{nocycle} := [PROOF]$	$\textit{nocycle} \mapsto \texttt{nocycle}$
fil	partial theory morphism $\mathbf{ter} \varnothing, \mathbf{filter} \cup, \\ \mapsto 0, \mathbf{succ} \mapsto \mathbf{succ}, \mathbf{nocy}$	

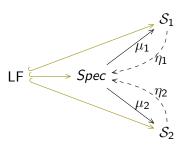
Integration by Filtering

- ► Spec: specification of the abstract concepts e.g., axiomatic presentation of the natural numbers
- \triangleright S_i : two concrete definitions of *Spec* e.g., natural numbers in ZFC and in Coq
- $\blacktriangleright \mu_i$: theory morphism that proves S_i realizes Spec
- $ightharpoonup \eta_i$: partial theory morphism that inverts μ_i



Integration by Filtering

- Spec: specification of the abstract concepts
 e.g., axiomatic presentation of the natural numbers
- \triangleright S_i : two concrete definitions of *Spec* e.g., natural numbers in ZFC and in Coq
- $\blacktriangleright \mu_i$: theory morphism that proves S_i realizes Spec
- $ightharpoonup \eta_i$: partial theory morphism that inverts μ_i



mediating morphisms now definable:

definable:
$$I: \mathcal{S}_2 \to \mathcal{S}_1 = \mu_2 \circ \eta_1$$
 $O: \mathcal{S}_1 \to \mathcal{S}_2 = \mu_1 \circ \eta_2$ MMT guarantees truth-preservation along I, O whenever defined

Conclusion

- Filtering with relaxed propagation
 - technically, a minor change in MMT
 - pragmatically, a major step forward for applications in LATIN
- ▶ Does not cover all integration challenges, but a lot e.g., we can now finish our Mizar → ZFC translation in LF
- Implementation
 - adaptation in MMT finished
 - integration with Twelf pending