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Motivation

I Computer algebra systems, deduction systems, MKM systems
are becoming more and more powerful

How can we make them work together?

I Avoid duplication of efforts

I Let systems and developers specialize

I Overall gain for developers and users
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A Basic System Integration Work Flow

1. We have a problem in System 1

2. We send it to System 2 (e.g., via Content MathML)

3. System 2 finds a solution

4. We send the solution back to System 1

For example,
Problem Solution

proof goal proof (in practice often only: “yes”)
expression simplified/decomposed expression
formula with free variables (set of) substitution(s)

Key challenge: make sure that System 1 and System 2 agree on
the semantics of problem and solution
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The Formality Spectrum of System Integration

1) The pragmatic approach
I Slogan: “send problem/solution and hope for the best”

I works well if the semantics is clear: literals, finite collections,
first-order formulas, . . .

I gets unreliable fast: partial functions, side conditions in
analysis, any other logic, . . .

ambiguity already with 0 ∈ N or with x/x

I Key method: semi-formal specification of the
System 1-System 2 interface

I Standardized through content dictionaries
symbol N in OpenMath CD setname1 is natural numbers with 0
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The Formality Spectrum of System Integration

2) The fundamentalist approach our work

I Slogan: “prove everything and hope you’ll ever have the time
to get a running system”

I expensive but then works perfectly

I requires formalizing semantics of systems and their relation
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Classifying Fundamentalist Approaches (1)

When does integration happen?

I a priori: translate a whole library to a different system
forward translation run once by developer

I on-demand: translate individual problems our work
forward and backward translation run automatically

Examples:
I a priori

I using HOL in Nuprl, Schürmann, Stehr, 2004
I using Isabelle/HOL in HOL Light, McLaughlin, 2006

I on-demand
I using first-order logic in Isabelle, Meng, Paulson, 2008
I using first-order logic in SUMO, Trac, Sutcliffe, Pease, 2008
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Classifying Fundamentalist Approaches (2)
When is the integration verified?

I dynamically
I solution-providing system is unconstrained
I solution-requesting system verifies the solution
I key advantage: no trust in the providing system of the

communication needed

I statically our work

I define both systems in a meta-language
I formalize systems and translations between them
I prove correctness
I key advantage: no communication of proofs needed

Examples:

I dynamically: using Maple in HOL Light, Harrison, Thery, 1998

I statically: using first-order logic in modal logic, Hustadt,
Schmidt, 2000
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Classifying Fundamentalist Approaches (3)
How is the static integration verified?

I on paper using semi-formal mathematics, using
I an ad hoc argument
I an argument within a (usually categorical) framework such as

institutions, fibrations

I mechanically in a deduction system our work
typically, based on type theory as in LF, Coq, Isabelle

Examples:

I on paper, ad hoc: using Isabelle/HOL in Isabelle/ZF, Krauss,
Schropp, 2010

I on paper, with framework: integrating logics in the Hets
system, Mossakowski et al., 2007

I mechanized: using HOL in Nuprl

I mechanized: LATIN logic integrator, recall this morning’s talk
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Our Frameworks of Choice: MMT + LF/Twelf

I MMT: module system for mathematical theories, Rabe,
Kohlhase 2008
generic declarative language based on OMDoc/OpenMath

I LF: Harper, Honsell, Plotkin, 1993
logical framework based on dependent type theory

I Twelf: Pfenning, Schürmann, 1999
mechanization of LF

Division of labor:

I MMT provides the global semantics: theory graphs, module
system, scalable MKM framework

I LF/Twelf provide the local semantics: type reconstruction,
proof checking, adequate encodings
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Our Frameworks of Choice: MMT + LF/Twelf

LF

FOL ZFC

Peano Nat

meta meta

meta meta

form : type
p r oo f : form → t ype
imp l : form → form → form
modus ponens :

p r oo f (A imp l B) →
p roo f A → p roo f B

Division of labor:

I MMT provides the global semantics: theory graphs, module
system, scalable MKM framework

I LF/Twelf provide the local semantics: type reconstruction,
proof checking, adequate encodings
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Static Verification in MMT (ideally)

1. Define an MMT theory M for the meta-language M (e.g., LF)
M provides semantics, e.g., type- and proof-checking

2. Represent System 1 and System 2 as MMT-theories S1, S2
with meta-theory M

Si contains, e.g., symbol `i for truth judgment

3. Give mutually inverse M-theory morphisms I : S2 → S1 and
O : S1 → S2

LF

S1

S2

IO
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Static Verification in MMT (ideally)

I Given a proof goal `2 F in System 2

1. translate it to `1 I (F ) in System 1,
2. find a proof `1 p : I (F ) in System 1
3. translate it back yielding `2 O(p) : O(I (F )) = F

I Static verification: valid theory morphism O preserves
judgment `1 p : I (F )

I Mechanical verification: validity of O is verified by
MMT+Twelf

LF

S1

S2

IO
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Problem: This is really difficult

1. Representing systems in M is hard
I need to represent syntax and semantics
I need to show adequacy of representation

assuming the semantics is documented
I good progress in LATIN

2. Giving theory morphisms I and O is even harder
I need to translate syntax and semantics
I ongoing work in LATIN

3. But even then: mismatch of libraries
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Classifying Fundamentalist Approaches (4)

I Integration is most interesting if there are big libraries

I But: system libraries use different concrete formalizations of
the same abstract concept
e.g., natural numbers Ni in Si , and O(N1) 6= N2

I How does the integration relate, e.g., O(N1) and N2?
I not at all
I isomorphism theorems established individually: e.g.,

O(N1) ∼= N2

I ad hoc correspondence of symbols, e.g., N1 ∼ N2

translation can yield (only) proof sketches
I formal framework our work
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Filtering in MMT

I theory morphisms may be partial

I partiality is strict, i.e., propagates along the dependency
relation

I key new idea: controlled relaxation of propagation

theory A theory B morphism µ : A→ B

s : type t : type s 7→ t
c : s filter c

c ′ := c necessarily: filter c ′

d : t possibly: c ′ 7→ d
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Filtering: Example

I Peano: MMT theory with axiomatic presentation of natural
numbers

I ZFC: MMT theory with a concrete definition for them

I µ: (total) theory morphism that proves ZFC realizes Peano

Peano ZFC µ

∅, ∪, etc.
0 0 := ∅ 0 7→ 0

succ succ(n) := n ∪ {n} succ 7→ succ

nocycle : 0 6= succ(X ) nocycle := [PROOF] nocycle 7→ nocycle

LF

Peano

ZFC

µ

η

η: partial theory morphism that inverts µ
filter∅,filter∪,
0 7→ 0, succ 7→ succ , nocycle 7→ nocycle
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Integration by Filtering

I Spec: specification of the abstract concepts
e.g., axiomatic presentation of the natural numbers

I Si : two concrete definitions of Spec
e.g., natural numbers in ZFC and in Coq

I µi : theory morphism that proves Si realizes Spec

I ηi : partial theory morphism that inverts µi

LF Spec

S1

S2

µ1

µ2

η1

η2

mediating morphisms now
definable:
I : S2 → S1 = µ2 ◦ η1
O : S1 → S2 = µ1 ◦ η2
MMT guarantees
truth-preservation along I ,O
whenever defined
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Conclusion

I Filtering with relaxed propagation
I technically, a minor change in MMT
I pragmatically, a major step forward for applications in LATIN

I Does not cover all integration challenges, but a lot
e.g., we can now finish our Mizar → ZFC translation in LF

I Implementation
I adaptation in MMT finished
I integration with Twelf pending
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