
1

Extracting Theory Graphs from Aldor Libraries
(System&Data Paper)

Florian Rabe, Stephen Watt

September 2023



2

Our Results in One Slide

Setting

▶ Aldor = computer algebra system arose from Scratchpad II, Axiom
▶ several interesting type system features
▶ significant library (> 300 files) unlicensed, closed source
▶ small user community

▶ theory graphs = diagrams of theories and morphisms
e.g., Group → Ring → Field

▶ MMT = logic-independent MKM language based on theory graphs

Result
▶ represented Aldor language in MMT

▶ exported Aldor library as MMT theory graph
440 theories and morphisms, open source



3

Dual Contribution

Aldor export
▶ makes Aldor more well-known, available

▶ enables KM services for Aldor e.g., search, library browser

▶ starting point to integrate Aldor with other systems/libraries

solid work, but unsurprising
kind of boring to present

Design type systems for math

▶ proof assistant type systems ̸= computer algebra type systems
very different

▶ to be expected
▶ CASs designed for (a fragment of) math
▶ PAs mostly designed for software verification

▶ but embarrassing how badly we understand the difference

more interesting to talk about



4

Aldor Features: Theories as Types

Principal concepts

▶ categories: special types = theories, record types

define Group: Category == Monoid with {
/: (%, %) => %;

}

▶ domains: elements of categories = models, record elements

define IntegerAddition: Group == add {
Rep == Z;
*(x:%, y:%):% == ...;
1: % == ...;
/(x:%, y:%): % == ...;

}

▶ values: elements of domains x:IntegerAddition refers to an element of
the representation type of IntegerAddition

dual role of domains: elements and types



5

Aldor Features: Parametric Theories, Functors

Toplevel definition = function
▶ typed arguments

▶ domain variable (typed by some category)
▶ object variable (typed by some domain)

▶ typed return value
▶ new category = parametric theory, dependent type
▶ domain of some category = theory morphism, functor

define ResidueClassRing(R: CommutativeRing, p: R): Category ==
CommutativeRing with {...
modularRep: R => %;
...

}

define IntegerMod(Z:IntegerCategory, p:Z): ResidueClassRing(Z, p) == add {
Rep == Z;
modularRep(r:Z):% == per(r mod p);
...

}



6

Aldor Features: Soft Records

Soft typing well-known
▶ type membership checked dynamically

▶ e.g., e:prime depends on run-time value of e undecidable typing

define ResidueClassRing(R: CommutativeRing, p: R): Category ==
CommutativeRing with {
if R has SourceOfPrimes And (prime? $ R) p then
Field;

}

Now: presence of a declaration dynamic
▶ R has SourceOfPrimes soft-typing check on a category type

▶ (prime? $ R) p if so, prime? available on R

▶ if ... then Field and if p is prime, the resulting ring also inherits
category Field

presence of declarations on ResidueClassRing(Z,x) undecidable



7

Aldor Features: Soft Records (2)
Presence of declarations depends on context

define Complex(R: ArithmeticType): ArithmeticType == add {
complex: (R, R) => %;
...

}

extend Complex(R: ArithmeticType):
LinearArithmeticType R with {if R has Field then Field} ==
add {
ˆ(p:%, n:Integer):% == ...
if R has Field then {
inv(a:%):% == ...

}

Add declarations to a domain/category

▶ extend interface when using it, e.g.,
▶ to keep definitions in a different file
▶ to add to another author’s definition

▶ extend interface when arguments have sharper types



8

Representing Aldor in MMT

Aldor Language
▶ MMT theory Aldor declaring all Aldor primitives

theory Aldor
type
...

▶ currently only Aldor syntax represented

▶ future work: Aldor type system, logic, computation

Categories
▶ special MMT theory

theory Category =
include Aldor
%:type

▶ categories that use % ⇝ theories that include Category

▶ category-valued function ⇝ parametric theories



9

Representing Domains in MMT

Basic domains
▶ domain D of category C ⇝ theory morphism D : C → Aldor

define PointedSet == add {c: %}
define NatZero: PointedSet == add {Rep == Nat; c: % = 0}

⇝

theory PointedSet =
include Category
c: %

morphism NatZero : PointedSet => Aldor =
% = Nat
c = 0

▶ Aldor representation type ⇝ definition of special constant %



10

Representing Domains in MMT (2)

Domain-valued function D
▶ invent special theory for the arguments

define D(ARGS): C == DEFS

⇝

theory D args =
include Aldor
ARGS

morphism D: C => D args =
DEFS

MMT limitation: awkward name generation required



11

Representing Soft Records in MMT

Conditional declarations
▶ invent nested theory with condition as axiom

define category C == {... if p then DECLS ...}

⇝

theory C =
...
theory C cond 1(condition: p) =
DECLS

...

awkward non-canonical name generation C cond 1

▶ given domain d of C satisfying p

access of DECLS ⇝
composition of d:C =>Aldor with
retraction from pushout(d,C cond 1)(proof of d(p)) to C



12

Conclusion

Overview
▶ exported 321 Aldor source files as 440 MMT theories/morphisms

▶ a few advanced Aldor features
▶ unsupported
▶ eliminated in intermediate representation provided by Aldor

▶ key insight: Aldor type system very nice but
▶ deserves modern reinterpretation
▶ not directly representable in modern systems

MMT representation helps with both

Future Work
▶ expand MMT to support Aldor-like features more naturally

▶ theory/morphism-valued functions
▶ smoother handling of conditional declarations/extensions

▶ represent Aldor semantics via logical framework

▶ use Aldor export for interoperability, KM applications


	Our Results in One Slide
	Dual Contribution
	Aldor Features: Theories as Types
	Aldor Features: Parametric Theories, Functors
	Aldor Features: Soft Records
	Aldor Features: Soft Records (2)
	Representing Aldor in MMT
	Representing Domains in MMT
	Representing Domains in MMT (2)
	Representing Soft Records in MMT
	Conclusion

