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Basic Definitions

For the purposes of this talk, a logic L consists of

I theories T

I T -formulas F : prop

I T -proofs and provability judgment `T F

I T -models M and satisfaction M |=T F

Theories are lists of symbol declarations.
types, functions, predicates, axioms, proof rules, rewrite rules, . . .

S ↪→ T is a theory extension if S-declarations ⊆ T -declarations
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Two Conflicting Definitions of Conservativity

Intuition: S ↪→ T is conservative if T -semantics does not
substantially differ from S-semantics.

e.g., T adds only definitions, theorems, admissible rules, . . .

Problem: How to define that rigorously?

Two answers for “When is S ↪→ T conservative?”:

I proof theorist: for any T -proof of S-formula F , there is an
S-proof of F proof retraction

mentions only proofs, no models

I model theorist: for any S-model M, there is a T -model M ′

that agrees with M on S-symbols model extension
mentions only models, no proofs
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Tension between the Definitions

Are proofs or models primary for semantics?
practical, social, and philosophical difference

Not so unusual — compare “When is F a theorem?”
I proof theorist: if there is a proof of F

I model theorist: if F holds in all models

I both are equivalent via soundness/completeness
achieved by fine-tuning the definitions

Ideally, model and proof-theoretical conservativity also equivalent.
(they aren’t)
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Relating the Definitions

Theorem:

If L is sound and complete, then
model-conservative implies proof-conservative.

But not the other way around.

causes confusion at best, conflict at worst
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Motivation

Vision: UniFormal

a universal framework for the formal representation of knowledge

I integrate all domains
model theory, proof theory, computation, mathematics, . . .

I be independent of foundational languages
logics, programming languages, foundations of mathematics, . . .

I build generic, reusable implementations
type checker, module system, library manager, IDE, . . .

My (evolving) solution: MMT

I a uniformal knowledge representation framework
developed since 2006, ∼ 100, 000 loc, ∼ 500 pages of publications

I allows foundation-independent solutions
module system, type reconstruction, theorem proving, . . .

IDE, search, build system, library, . . .

http://uniformal.github.io/

http://uniformal.github.io/
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Foundation-Independent Development

Foundation-specific workflow (almost all systems)

1. choose foundation
type theories, set theories, first-order logics, higher-order logics, . . .

2. implement kernel

3. develop support algorithms, tools reconstruction, proving, IDE, . . .

4. build library

Foundation-independent workflow (MMT)

1. MMT provides generic kernel
no built-in bias towards any foundation

2. develop generic support on top of MMT

3. flexibly customize MMT for desired foundation(s)

4. build multi-foundation universal library
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Advantages of Foundation-Independence

I Avoids segregation into mutually incompatible systems

I Allows maximally general results
meta-theorems, algorithms, formalizations

I Separation of concerns between
I foundation developers
I support service developers: search, axiom selection, . . .
I application developers: IDE, proof assistant, . . .

I Rapid prototyping for logic systems

I Allows evolving and experimenting with foundations

But how much can be done foundation-independently?
surprisingly much — this talk: conservativity



Representing Logics in MMT 9

Logical Frameworks and Syntax
Logical framework LF in MMT

theory LF {
t y p e
Pi # Π V1 . 2 name[ : type][#notation]
arrow # 1 → 2
lambda # λ V1 . 2
a p p l y # 1 2

}

Logics in MMT/LF

theory L o g i c : LF {
prop : t y p e
ded : prop → t y p e # ` 1 judgments-as-types

}
theory FOLSyn : LF {

i n c l ude L o g i c
term : t y p e higher-order abstract syntax
f o r a l l : ( term → prop ) → prop # ∀ V1 . 2

}
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Proof Theory

FOLSyn from previous slide:

theory FOLSyn : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : ( term → prop ) → prop # ∀ V1 . 2

}

Proof-theory = syntax + calculus

theory FOL : LF {
i n c l ude FOLSyn

rules are constants
f o r a l l I n t r o : ΠF:term→prop .

(Πx:term .` (F x ) ) → ` ∀(λx:term . F x )
f o r a l l E l i m : ΠF:term→prop .

` ∀(λx:term . F x ) → Πx:term .` (F x )
}
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Domain Theories

FOLSyn from previous slide:

theory FOLSyn : LF {
i n c l ude L o g i c
term : t y p e
f o r a l l : ( term → prop ) → prop # ∀ V1 . 2

}

Algebraic theories in MMT/LF/FOL:

theory Magma : FOL {
comp : term → term → term # 1 ◦ 2

}
theory SemiGroup : FO {

i n c l ude Magma
a s s o c i a t i v e : ` ∀ x , y , z . ( x ◦ y ) ◦ z = x ◦ ( y ◦ z )

}
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MMT Theory Morphisms (highly simplified)

An MMT theory is a list of declarations c[: E ], where E is an
expression using the previous symbols.

An MMT theory morphism m : S → T maps every S-symbol to a
T -expression such that
if `S A : B then `T m(A) : m(B) preservation of typing/truth
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Model Theory
Universe = set theory, category theory, programming languages, ...

theory ZFC : LF {
s e t : t y p e
prop : t y p e
i n : s e t → s e t → prop # 1 ∈ 2
e q u a l : s e t → s e t → prop # 1 = 2
ded : prop → t y p e # ` 1
. . .
b o o l : s e t = { 0 ,1 }
. . .

}

Interpretation = theory morphism from syntax+calculus to
semantics

morphism FOLMod : FOL → ZFC {
prop 7→ b o o l
ded 7→ λx∈b o o l . x=1
. . . (proof rules mapped to their soundness proofs)

}
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Individual Models

FOLMod from previous slide:

morphism FOLMod : FOL → ZFC {
prop 7→ b o o l
ded 7→ λx∈b o o l . x=1
. . .

}

Integer addition as a model of SemiGroup:

morphism I n t e g e r A d d i t i o n : SemiGroup → ZFC {
i n c l ude FOLMod
term 7→ Z
comp 7→ +
a s s o c 7→ . . . (proof that + is associative)

}
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Derivable and Admissible Rules

Consider an extension S ↪→ T in MMT.

Example: T = S , cut : R
S is a cut-free sequent calculus and R is the cut rule.

We say that S ↪→ T is
I derivable if

I example case: there is a term r : R over S
I general case: there is a retraction morphism r : T → S

I `-admissible if ` F is inhabited over S whenever it is
inhabited over T
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Conservative as a Special Case of Derivable/Admissible

FOL

S

T

ZFC

FOLMod(S)

FOLMod(T )

FOLMod

FOLMod ∗ S

FOLMod ∗ T

M ∈ Mod(S)

FOLMod(S)

I pushout of L ↪→ S along FOLMod

I obtained by homomorphic translation of S-declarations
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Conservative as a Special Case of Derivable/Admissible

FOL

S

T

ZFC

FOLMod(S)

FOLMod(T )

FOLMod

FOLMod ∗ S

FOLMod ∗ T

M ∈ Mod(S)

Theorem: S ↪→ T is

I proof-conservative iff S ↪→ T is `-admissible

I model-conservative iff FOLMod(S) ↪→ FOLMod(T ) is
derivable
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Different Kinds of Conservativity

General case: 4 notions of conservativity

S

T

FOLMod(S)

FOLMod(T )

FOLMod ∗ S

FOLMod ∗ T

I S ↪→ T is `-admissible proof-conservative

I S ↪→ T is derivable

I FOLMod(S) ↪→ FOLMod(T ) is derivable model-conservative

I FOLMod(S) ↪→ FOLMod(T ) is `-admissible
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Relating the Different Kinds of Conservativity

I S ↪→ T is derivable
I syntax has witness for conservativity
I minimal/strongest reasonable definition

I S ↪→ T is `-admissible proof-conservative

I syntax has no counter-example for conservativity
I maximal/weakest reasonable definition

I FOLMod(S) ↪→ FOLMod(T ) is derivable model-conservative

I semantics has witness for conservativity
I in between the above

I FOLMod(S) ↪→ FOLMod(T ) is `-admissible
I equivalent to proof-conservative for sound and complete logics
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Conservativity under Refinement of Semantics
Refinement chain of multiple interpretations, e.g.,

ModalLogic

S

T

FOL
p

p(S)

p(T )

HOL
q

q(p(S))

q(p(T ))

ZFC
r

r(q(p(S)))

r(q(p(T )))

At each step, 2 notions of conservativity of S ↪→ T :
I using `-admissibility:

I all notions equivalent for sound+complete interpretations
I strongest possible notion proof-conservativity (absolute)

I Using derivability: model-conservativity relative to semantics

I notions grow weaker as semantics is more refined
I converges to proof-conservativity for increasing refinements
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Summary

I MMT: foundation-independent framework for formal systems
maximally general conceptualizations, theorems, implementations

I Allows resolving conflict between notions of conservativity
results apply to arbitrary logic defined in arbitrary logical framework

I Proof-conservativity
I corresponds to `-admissiblity of rules
I weakest possible notion

I Model-conservativity
I corresponds to derivability of rules
I relative to chosen model theory
I strongest possible notion if applied to initial semantics
I grows weaker as semantics is more refined
I converges against proof-conservativity
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Terms
Abstract syntax

contexts Γ ::= (x [: E ][= E ])∗

terms E ::=
constants | c
variables | x
complex terms | c(Γ;E ∗)

Complex term examples

I typical operators: Γ empty e.g., apply(·; f , a) for (f a)

I typical binders: Γ and ~E have length 1
e.g., lambda(x :A; t) for λx :A.t

Judgments relative to a theory T that declares the constants c

Γ `T t : E t has type E
Γ `T E = E ′ E and E ′ are equal
Γ `T : E E is inhabitable
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