Generic Literals

Florian Rabe

Jacobs University Bremen, Computer Science
Calculemus track at CICM 2015

Literal $=$ atomic expression with fixed interpretation

Prevalent in formal systems:

- booleans: true, false
- natural numbers: $0,1, \ldots$
- 32-bit integers: -32767, ..., 32768
- IEEE single precision floats: $1.234 e 2, \mathrm{NaN}, \ldots$
- characters: 'a', 'b', ...
- strings: "abc", "def", ...
- physical units, regular expressions, URIs, colors, dates, ...

Formal system $\mathcal{F}=$ set of expressions e (and inference system)

Model $M=$

- set of values $|M|$
- interpretation function $e \mapsto \llbracket e \rrbracket^{M} \in|M|$

Literal $=$ expression v such that for all M

$$
\llbracket v \rrbracket^{M}:=v
$$

Values v come from background universe of \mathcal{F}

- logical foundation
- underlying programming language

What literals should we pick?

Canonical options

- none
- can use inductive types instead
- optionally, e.g., parse 3 as $s(s(s(0)))$
- all
(there aren't that many useful ones)
- e.g., start with nat, int, float
- extend implementation if necessary
- extensible by user
- just like types, operators, axioms/theorems, notations
- elegant but has overhead

Hard-wired choice

Both MathML and OpenMath

- integers (unlimited precision)
- IEEE floats (double precision)
- strings
- byte arrays

Only MathML

- real numbers (unspecified text encoding)

Consider languages in which others are represented logical frameworks, MathML, MMT, etc.

Reasonably

- allow any choice of literals
any language representable
- disallow literals in certain contexts
empty theory should have no literals

Ideally

- modular language definitions reusable, orthogonal language features
- each set of literals separate feature
literals available if explicitly imported

New MMT Feature: modular, extensible Literals

- Vision: Universal framework for the formal representation of knowledge and its semantics
- Maturity:
- developed since 2006
- > 300 pages of publications
- > 30, 000 lines of Scala code
- Key features:
- systematically abstract from foundational logics
- maximize reusability of concepts, results, implementation

So far

- Theories
- Morphisms
- Declarations symbols, defintions, axioms/theotems, rules, ...
- Objects
- Typing relation

Now also: literals
logics, theories, models, ... imports, language translations,... formulas, types, terms, proofs, ... typing, provability, ...

Originally same as OpenMath objects:

$$
\begin{aligned}
O::= & s|x| \operatorname{Apply}\left(O, O^{*}\right) \mid \operatorname{Bind}\left(O,(x: O)^{*}, O\right) \\
& \mid \text { int } \mid \text { float } \mid \text { string } \mid \text { bytearray }
\end{aligned}
$$

Originally same as OpenMath objects:

$$
\begin{gathered}
O::=\quad c|x| \operatorname{Apply}\left(O, O^{*}\right) \mid \operatorname{Bind}\left(O,(x: O)^{*}, O\right) \\
\mid \text { int } \mid \text { float } \mid \text { string } \mid \text { bytearray } \\
\mid v^{s}
\end{gathered}
$$

Now: single constructor v^{s} for literals

- v : the extra-linguistic value
- s : the symbol defining the semantics of v

$$
3^{\text {int }}, 1.0^{\text {IEEEDouble }}, \ldots
$$

What v are allowed?

- any extra-linguistic value v
- in line with MathML philosophy: syntax allows anything that might make sense

Symbol s determines semantics of v^{s} in 3 ways: declared extensibly in theories

1. informal documentation
2. practical implementation
3. theoretical definition
details on next slides

1: Informal Documentation

- Symbol s is declared in MMT theory $\quad \approx$ content dictionary
- Documentation of s defines
- legal values v
- string encoding $E(v)$
- MMT concrete syntax of v^{s} uses string encoding

$$
\begin{aligned}
& <\text { literal type }=" s " \text { value }=" E(v) " /> \\
& <\text { literal type=" nat" value }=" 3 " />
\end{aligned}
$$

2: Practical Implemenation

- MMT type checker parametric in set of rules
- MMT relegates to rules for all language-specific aspects
- Rules provided as Scala snippets

$$
\text { e.g., } \sim 10 \text { rules for LF, } 10 \text { loc each }
$$

- New abstract rule for s-literals
- to check v^{s}, MMT looks for rule R_{s} for s-literals
- R_{s} implements string encoding, validity check for s-literals
- if valid, type of v^{s} is s

Example

Natural number literals

```
val nat = "http:// example.org?Literals?Nat"
object StandardNat extends LiteralRule(nat) {
    def fromString(s: String) = {
        val i = Biglnt(s)
        if (i >= 0) Some(i)
        else None
    }
    def toString = ...
}
```

All OpenMath literals definable accordingly

3: Theoretical Definition

- Type s declared in MMT theory T
- T-models M treated as theory extensions $T \hookrightarrow D_{M}$
- Typing rule (essentially)

$$
\frac{v \in \llbracket s \rrbracket^{M}}{D_{M} \vdash v^{s}: s}
$$

Extended Example

1. Define MMT theory T

MMT	Scala
theory Int $\{$	
u \quad : type	
zero: u	
plus: u $\rightarrow \mathrm{u} \rightarrow \mathrm{u}$	
p	

Extended Example

1. Define MMT theory T
2. MMT generates abstract Scala class S_{T}

MMT	Scala
theory Int \{	abstract class lnt \{
u : type	type u
zero: u	val zero: u
plus: u $\rightarrow \mathrm{u} \rightarrow \mathrm{u}$	def plus (x1: u, x2: u) : u
\}	$\} \quad$,

1. Define MMT theory T
2. MMT generates abstract Scala class S_{T}
3. User provides T-model M by implementing S_{T}

MMT	Scala
```theory Int \{ u : type zero: u plus: \(u \rightarrow u \rightarrow u\) \}```	```abstract class Int { type u val zero: u def plus(x1: u, x2: u): u }```
	```class Standardlnt extends Int { type u = Biglnt val zero = Biglnt(0) def plus(x1:Biglnt, x2: Biglnt) = x1 + x2 }```

1. Define MMT theory T
2. MMT generates abstract Scala class S_{T}
3. User provides T-model M by implementing S_{T}
4. User imports theory D_{M} to use M-literals

MMT	Scala
```theory Int { u : type zero: u plus: u }->\textrm{u}->\textrm{u }```	```abstract class Int { type u val zero: u def plus(x1: u, x2: u): u }```
```theory Test { include Int include StandardInt test : u = plus(1,1) }```	```class StandardInt extends Int { type u = Biglnt val zero = Biglnt(0) def plus(x1:Biglnt, x2: Biglnt) = x1 + x2 }```

Function literals

Function Literals

- Do we need literals of non-atomic types?
- Only useful case: literals of function type
- represent built-in operators
- only way to compute with literals
- In MMT: function literals = infinite set of axioms

Diagrams: Models as Theories

- Assume T-model M
- Diagram theory $T \hookrightarrow D_{M}$ defined by
- one nullary constant v^{s} for each $v \in \llbracket s \rrbracket^{M} \quad 0^{\text {int }}, 1^{\text {int }}, \ldots$
- one axiom for each true instance of an atomic formula

$$
\vdash 1^{i n t}+1^{i n t}=2^{i n t}, \ldots
$$

- Standard result:

$$
D_{M} \vdash F \quad \text { iff } \quad M \models F
$$

- Assume T-model M
- Diagram theory $T \hookrightarrow D_{M}$ defined by
- one nullary constant v^{s} for each $v \in \llbracket s \rrbracket^{M} \quad 0^{\text {int }}, 1^{\text {int }}, \ldots$
- one axiom for each true instance of an atomic formula

$$
\vdash 1^{i n t}+1^{i n t}=2^{i n t}, \ldots
$$

- Standard result:

$$
D_{M} \vdash F \quad \text { iff } \quad M \models F
$$

Side remark

- Is there a theory morphism $d_{m}: D_{M} \rightarrow D_{M^{\prime}}$ for each model morphism $m: M \rightarrow M^{\prime}$?
- Easy part: $d_{m}: v^{s} \mapsto v^{\prime s}$ whenever $m: v \mapsto v^{\prime}$
- But
- theory morphisms preserve all true sentences
- model morphisms preserve all true atomic sentences
- Diagram D_{M} yields infinite set of atomic axioms
- In particular, function symbols defined by axioms of the form

$$
\vdash f\left(v_{1}^{c_{1}}, \ldots, v_{n}^{c_{n}}\right)=v^{c}
$$

- Reflected into MMT as rewrite rules

Function Literals: Example

21

MMT	Scala
```theory Int { u : type zero: u plus: u }->\mathrm{ u \to u }```	```abstract class Int { type u val zero: u def plus(x1: u, x2: u): u }```
```theory Test { include Int include StandardInt test : u = plus(1,1)```	```class StandardInt extends Int { type u = Biglnt val zero = Biglnt(0) def plus(x1:Biglnt, x2: Biglnt) = x1 + x2 }```

Test $\vdash \operatorname{plus}\left(1^{u}, 1^{u}\right) \rightsquigarrow 2^{u}$

Relationship to Biform Theories

Farmer and von Mohrenschildt, 2003

- Biform theory $=$ axioms + syntax transformers
- syntax transformer: externally given algorithm that perform certain equality conversion
- allows combining logic with algorithms

This paper

- Biform theory $=$ theories + models
- Two kinds of models: semantic or computational treated uniformly
- Models combined with axiomatic theories via diagrams D_{M}
- Diagrams of computational models yield
- literals for all values
- rewrite rules for all true atomic formulas

Future work: mixing computation and deduction is hard not surprising

- Pure deduction: axiomatic theories typical for proof assistants
- Pure computation: computational models typical for computer algebra
- Reality: nice to mix both

Lots of difficulties
Example: find X such that

$$
\operatorname{plus}\left(1^{i n t}, X\right)=3^{i n t}
$$

comes up all the time during type checking, proof search Partial solution in MMT: models may supply inversion rules

Inductive family of vectors dependently-typed, implicit arguments

```
include StdNat
c : a
a : type
vec : nat }->\mathrm{ type
nil : vec0
cons:{n: nat} a }->\operatorname{vec}n->\operatorname{vec}(\operatorname{succ}n
head : {n: nat}vec (succ n) }->\mathrm{ a
test0 : vec 2 = cons c(cons c nil)
test1 : a = head test0
```

Checking test 0 requires vec $(\operatorname{succ}(\operatorname{succ} 0))=\operatorname{vec} 2$ Checking test 1 requires solving vec $(\operatorname{succ} n)=\operatorname{vec} 1$

- Literals new feature in MMT
- foundation-independent
any choice of literals combinable with any logic
- user-extensible like symbols, theorems, notations, ...
- integrated with MMT type system
dependent types, type reconstruction, module system, ...
- Library of literals as part of LATIN logic library import literals as needed
- Computation integrated with axiomatic logic
- computation rules provided by models
- computation called seamlessly during checking, proving computation also inverted if needed

