Generic Literals

Florian Rabe

Jacobs University Bremen, Computer Science

Calculemus track at CICM 2015

Literals

Literal = atomic expression with fixed interpretation

Prevalent in formal systems:
» booleans: true, false
> natural numbers: 0,1,...
32-bit integers: —32767,...,32768
IEEE single precision floats: 1.234e2, NaN, ...

characters: 'a’, 'b’, ...

v

v

v

> strings: "abc”, "def’, ...

v

physical units, regular expressions, URlIs, colors, dates, ...

A Simple Definition
Formal system F = set of expressions e (and inference system)
Model M =

» set of values |M|

> interpretation function e — [e]M € |M|

Literal = expression v such that for all M
[V]M =v

Values v come from background universe of F
> logical foundation

» underlying programming language

What literals should we pick? 4

Canonical options
> none (not as dumb as it may sound)

» can use inductive types instead
» optionally, e.g., parse 3 as s(s(s(0)))

> all (there aren’t that many useful ones)

> e.g., start with nat, int, float
» extend implementation if necessary

> extensible by user this talk

> just like types, operators, axioms/theorems, notations
> elegant but has overhead

Literals in OpenMath/MathML

Hard-wired choice

Both MathML and OpenMath
> integers (unlimited precision)
> |EEE floats (double precision)
> strings

> byte arrays

Only MathML

» real numbers (unspecified text encoding)

bug?

Frameworks Need Extensible Literals 6
Consider languages in which others are represented
logical frameworks, MathML, MMT, etc.

Reasonably

> allow any choice of literals any language representable

» disallow literals in certain contexts
empty theory should have no literals

Ideally

» modular language definitions reusable, orthogonal language features

» each set of literals separate feature
literals available if explicitly imported

New MMT Feature: modular, extensible Literals

MMT Background 8

> Vision: Universal framework for the formal representation of
knowledge and its semantics
> Maturity:
» developed since 2006

» > 300 pages of publications
» > 30,000 lines of Scala code

» Key features:

» systematically abstract from foundational logics
» maximize reusability of concepts, results, implementation

Generic Concepts in MMT

So far
» Theories logics, theories, models, ...
» Morphisms imports, language translations,. ..
» Declarations symbols, defintions, axioms/theotems, rules, ...
» Objects formulas, types, terms, proofs, ...
» Typing relation typing, provability, ...

Now also: literals

MMT Objects 10

Originally same as OpenMath objects:
O == s|x|Apply(O,0%)| Bind(O,(x: 0)*,0)

| int | float | string | bytearray

awkward

MMT Objects 10

Originally same as OpenMath objects:
O == c|x|Apply(0,0%)| Bind(O,(x: 0)*, 0)

| int | float | string | bytearray

| v?

Now: single constructor v*® for literals

» v: the extra-linguistic value

» s: the symbol defining the semantics of v
3int 1 OIEEEDoubIe

MMT Literals 11

What v are allowed?
> any extra-linguistic value v

» in line with MathML philosophy:
syntax allows anything that might make sense

Symbol s determines semantics of v°® in 3 ways:
declared extensibly in theories
1. informal documentation
2. practical implementation

3. theoretical definition

details on next slides

1: Informal Documentation 12

» Symbol s is declared in MMT theory ~ content dictionary
» Documentation of s defines
> legal values v
» string encoding E(v)
» MMT concrete syntax of v°® uses string encoding
< literal type="s" value="E(v)" />
< literal type="nat" value="3"/>

v

v

v

v

2: Practical Implemenation 13

MMT type checker parametric in set of rules
MMT relegates to rules for all language-specific aspects
Rules provided as Scala snippets
e.g., ~ 10 rules for LF, 10 loc each

New abstract rule for s-literals

» to check v°, MMT looks for rule R for s-literals
» R implements string encoding, validity check for s-literals
» if valid, type of v® is s

Example
Natural number literals

14

val nat = "http://example.org?Literals?Nat”

object StandardNat extends LiteralRule(nat) {
def fromString(s: String) = {
val i = Biglnt(s)
if (i >= 0) Some(i)
else None
¥

def toString =

}

All OpenMath literals definable accordingly

3: Theoretical Definition
» Type s declared in MMT theory T
» T-models M treated as theory extensions T < Dy,
» Typing rule (essentially)

v e [s]M
Dytbvs:s

15

Extended Example
1. Define MMT theory T

16

MMT ‘Smb
theory Int {

u : type

zZero: u

plus: u - u — u

}

1. Define MMT theory T

Extended Example

2. MMT generates abstract Scala class St

16

MMT Scala

theory Int { abstract class Int {

u type type u

zero: u val zero: u

plus: u - u — u def plus(xl: u, x2: u):

}

}

1. Define MMT theory T

Extended Example 16

2. MMT generates abstract Scala class St

3. User provides T-model M by implementing St

MMT Scala

theory Int { abstract class Int {

u type type u

zero: u val zero: u

plus: u - u — u def plus(xl: u, x2: u): u
} }

class StandardInt extends Int {

type u = Biglnt

val zero = Biglnt(0)

def plus(x1:Biglnt, x2: Biglnt)
x1l 4+ x2

Extended Example 16
1. Define MMT theory T
2. MMT generates abstract Scala class St
3

. User provides T-model M by implementing St
4. User imports theory Dy, to use M-literals

MMT Scala

theory Int { abstract class Int {

u © type type u

zero: u val zero: u

plus: u - u — u def plus(xl: u, x2: u): u
} }

class StandardInt extends Int {

type u = Biglnt

val zero = Biglnt(0)

def plus(x1:Biglnt, x2: Biglnt) =
x1l 4+ x2

theory Test {
include Int
include StandardInt
test : u = plus(1,1)

) }

Function literals

Function Literals

» Do we need literals of non-atomic types?
» Only useful case: literals of function type

> represent built-in operators
» only way to compute with literals

» In MMT: function literals = infinite set of axioms

18

Diagrams: Models as Theories 19

» Assume T-model M (Z,0,+)
» Diagram theory T — Dy, defined by
» one nullary constant v* for each v € [s]M oine, int

» one axiom for each true instance of an atomic formula
- 1int + lint — 2int

» Standard result:

Dyt F iff MEF

Diagrams: Models as Theories 19

» Assume T-model M (Z,0,+)
» Diagram theory T — Dy, defined by
» one nullary constant v* for each v € [s]M oine, int

» one axiom for each true instance of an atomic formula
- 1int + lint — 2int

» Standard result:

Dyt F iff MEF

Side remark

> Is there a theory morphism d,, : Dy — Dy
for each model morphism m: M — M'?

» Easy part: d, : v — v/'° whenever m: v — v/
» But

> theory morphisms preserve all true sentences
» model morphisms preserve all true atomic sentences

Function Literals as Rule Schemata 20

» Diagram Dy, yields infinite set of atomic axioms

» In particular, function symbols defined by axioms of the form

Ff(vet, . ver) = ve

» Reflected into MMT as rewrite rules

Function Literals: Example 21

MMT Scala
theory Int { abstract class Int {
u © type type u
zero: u val zero: u
plus: u — u \to u def plus(xl: u, x2: u): u
} }
theory Test { class Standz.ardlnt extends Int {
. type u = Biglnt
include Int .
. val zero = Biglnt(0)
include Standardlint - .
def plus(x1:Biglnt, x2: Biglnt) =
test u= plus(1,1)
x1l + x2
J)

Test - plus(1Y,1Y) ~ 2

Relationship to Biform Theories

Biform Theries 23
Farmer and von Mohrenschildt, 2003

» Biform theory = axioms + syntax transformers

> syntax transformer: externally given algorithm that perform certain
equality conversion

> allows combining logic with algorithms

This paper
» Biform theory = theories + models
» Two kinds of models: semantic or computational treated uniformly
> Models combined with axiomatic theories via diagrams Dy
» Diagrams of computational models yield

» literals for all values
» rewrite rules for all true atomic formulas

Future work: mixing computation and deduction is hard
not surprising

Mixed Objects 25

» Pure deduction: axiomatic theories typical for proof assistants

» Pure computation: computational models
typical for computer algebra

> Reality: nice to mix both

Lots of difficulties
Example: find X such that

p/US(lint,X) _ 3int

comes up all the time during type checking, proof search
Partial solution in MMT: models may supply inversion rules

Example 26

Inductive family of vectors dependently-typed, implicit arguments

include StdNat

c :a

a :type

vec :nat — type

nil :vecO

cons : {n:nat}a— vecn — vec(succn)
head : {n:nat}vec(succn) — a

test0 : vec2 = cons ¢ (cons cnil)
testl : a = head testQ

Checking test0 requires vec(succ(succ0)) = vec?2
Checking test1 requires solving vec(succ n) = vecl

Conclusion 27

> Literals new feature in MMT
» foundation-independent
any choice of literals combinable with any logic
» user-extensible like symbols, theorems, notations, ...
> integrated with MMT type system
dependent types, type reconstruction, module system, ...

> Library of literals as part of LATIN logic library
import literals as needed
» Computation integrated with axiomatic logic

» computation rules provided by models
» computation called seamlessly during checking, proving
computation also inverted if needed

	Motivation
	Literals in MMT
	Mixing Computation and Deduction
	Biform Theories
	Problems with Mixing Computation and Deduction

