Generic Literals

Florian Rabe

Jacobs University Bremen, Computer Science

Calculemus track at CICM 2015

Literal = atomic expression with fixed interpretation

Prevalent in formal systems:

- ▶ booleans: *true*, *false*
- ▶ natural numbers: 0,1,...
- ▶ 32-bit integers: −32767,...,32768
- ▶ IEEE single precision floats: 1.234e2, NaN, ...
- characters: 'a', 'b', . . .
- strings: "abc", "def", ...
- physical units, regular expressions, URIs, colors, dates, . . .

Formal system $\mathcal{F}=$ set of expressions e (and inference system)

Model M =

- ▶ set of values |M|
- ▶ interpretation function $e \mapsto \llbracket e \rrbracket^M \in |M|$

Literal = expression v such that for <u>all</u> M

$$\llbracket v
Vert^M := v$$

Values v come from background universe of ${\mathcal F}$

- logical foundation
- underlying programming language

Canonical options

▶ none (not as dumb as it may sound)

- can use inductive types instead
- optionally, e.g., parse 3 as s(s(s(0)))
- ► all (there aren't that many useful ones)
 - e.g., start with nat, int, float
 - extend implementation if necessary
- extensible by user

this talk

- just like types, operators, axioms/theorems, notations
- elegant but has overhead

Literals in OpenMath/MathML

Hard-wired choice

Both MathML and OpenMath

- integers (unlimited precision)
- ► IEEE floats (double precision)
- strings
- byte arrays

Only MathML

real numbers (unspecified text encoding)

bug?

Frameworks Need Extensible Literals

Consider languages in which others are represented logical frameworks, MathML, MMT, etc.

Reasonably

- ► allow any choice of literals any language representable
- disallow literals in certain contexts
 empty theory should have no literals

Ideally

- modular language definitions reusable, orthogonal language features
- each set of literals separate feature
 literals available if explicitly imported

New MMT Feature: modular, extensible Literals

- Vision: Universal framework for the formal representation of knowledge and its semantics
- Maturity:
 - developed since 2006
 - > 300 pages of publications
 - > 30,000 lines of Scala code
- Key features:
 - systematically abstract from foundational logics
 - maximize reusability of concepts, results, implementation

```
Generic Concepts in MMT
```

So far

```
    ▶ Theories logics, theories, models, ...,
    ▶ Morphisms imports, language translations,...
    ▶ Declarations symbols, definitions, axioms/theotems, rules, ...
    ▶ Objects formulas, types, terms, proofs, ...
    ▶ Typing relation typing, provability, ...
```

Now also: literals

Originally same as OpenMath objects:

$$O \quad ::= \quad s \mid x \mid Apply(O, O^*) \mid Bind(O, (x : O)^*, O)$$

| int | float | string | bytearray

awkward

Originally same as OpenMath objects:

$$O ::= c \mid x \mid Apply(O, O^*) \mid Bind(O, (x : O)^*, O)$$

$$\mid int \mid float \mid string \mid bytearray$$

$$\mid v^s$$

Now: single constructor v^s for literals

- v: the extra-linguistic value
- s: the symbol defining the semantics of v

```
3<sup>int</sup>, 1.0<sup>IEEEDouble</sup>, ...
```

What v are allowed?

- any extra-linguistic value v
- in line with MathML philosophy: syntax allows anything that might make sense

Symbol s determines semantics of v^s in 3 ways:

declared extensibly in theories

- 1. informal documentation
- 2. practical implementation
- 3. theoretical definition

details on next slides

- Symbol s is declared in MMT theory \approx content dictionary

- Documentation of s defines
 - ▶ legal values *v*
 - \triangleright string encoding E(v)
- \triangleright MMT concrete syntax of v^s uses string encoding

```
< literal type="s" value="E(v)"/>
 < literal type="nat" value="3"/>
```

- MMT type checker parametric in set of rules
- ▶ MMT relegates to rules for all language-specific aspects
- Rules provided as Scala snippets

e.g., \sim 10 rules for LF, 10 loc each

- ▶ New abstract rule for *s*-literals
 - ▶ to check v^s , MMT looks for rule R_s for s-literals
 - R_s implements string encoding, validity check for s-literals
 - if valid, type of v^s is s

Natural number literals

```
val nat = "http://example.org?Literals?Nat"

object StandardNat extends LiteralRule(nat) {
  def fromString(s: String) = {
    val i = BigInt(s)
    if (i >= 0) Some(i)
    else None
  }
  def toString = ...
}
```

All OpenMath literals definable accordingly

- ► Type *s* declared in MMT theory *T*
- ▶ T-models M treated as theory extensions $T \hookrightarrow D_M$
- Typing rule (essentially)

$$\frac{v \in [\![s]\!]^M}{D_M \vdash v^s : s}$$

1. Define MMT theory T

MMT	Scala
theory Int {	
u : type	
zero: u	
plus: u $ ightarrow$ u $ ightarrow$ u	
}	

- 1. Define MMT theory *T*
- 2. MMT generates abstract Scala class S_T

MMT	Scala
theory Int {	abstract class Int {
u : type	type u
zero: u	val zero: u
plus: u $ ightarrow$ u $ ightarrow$ u	def plus(x1: u, x2: u): u
}	}

- 1. Define MMT theory *T*
- 2. MMT generates abstract Scala class S_T
- 3. User provides T-model M by implementing S_T

```
MMT

theory Int {
    u : type
    zero: u
    plus: u → u → u
}

class StandardInt extends Int {
    type u = BigInt
    val zero = BigInt, x2: BigInt) =
    x1 + x2
```

- 1. Define MMT theory T
- 2. MMT generates abstract Scala class S_T

4. User imports theory D_M to use M-literals

3. User provides T-model M by implementing S_T

MMT Scala theory Int { abstract class Int { u : type type u zero: u val zero: u def plus(x1: u, x2: u): uplus: $u \rightarrow u \rightarrow u$ class StandardInt extends Int { theory Test { type u = BigIntinclude Int val zero = BigInt(0)include StandardInt def plus(x1:BigInt, x2:BigInt) =test : u = plus(1,1)x1 + x2

Function literals

- ▶ Do we need literals of non-atomic types?
- Only useful case: literals of function type
 - represent built-in operators
 - only way to compute with literals
- ▶ In MMT: function literals = infinite set of axioms

 $(\mathbb{Z},0,+)$

- ► Assume *T*-model *M*
- ▶ Diagram theory $T \hookrightarrow D_M$ defined by
 - ▶ one nullary constant v^s for each $v \in \llbracket s \rrbracket^M$ 0^{int} , 1^{int} , . . .
 - ▶ one axiom for each true instance of an atomic formula $\vdash 1^{int} + 1^{int} = 2^{int} \dots$

Standard result:

$$D_M \vdash F$$
 iff $M \models F$

► Assume *T*-model *M*

 $(\mathbb{Z},0,+)$

- ▶ Diagram theory $T \hookrightarrow D_M$ defined by
 - ▶ one nullary constant v^s for each $v \in [s]^M$ 0^{int} , 1^{int} , ...
 - ▶ one axiom for each true instance of an atomic formula $\vdash 1^{int} + 1^{int} = 2^{int}, \dots$

Standard result:

$$D_M \vdash F$$
 iff $M \models F$

Side remark

- ▶ Is there a theory morphism $d_m: D_M \to D_{M'}$ for each model morphism $m: M \to M'$?
- ▶ Easy part: $d_m: v^s \mapsto v'^s$ whenever $m: v \mapsto v'$
- But
 - theory morphisms preserve all true sentences
 - model morphisms preserve all true atomic sentences

- ▶ Diagram D_M yields infinite set of atomic axioms
- ▶ In particular, function symbols defined by axioms of the form

$$\vdash f(v_1^{c_1},\ldots,v_n^{c_n})=v^c$$

Reflected into MMT as rewrite rules

```
Function Literals: Example
MMT
                         Scala
                         abstract class Int {
theory Int {
 u : type
                          type u
 zero: u
                          val zero: u
 plus: u \rightarrow u \setminus to u
                          def plus(x1: u, x2: u): u
                         class StandardInt extends Int {
theory Test {
                          tvpe u = BigInt
 include Int
                          val zero = BigInt(0)
 include StandardInt
                          def plus(x1:BigInt, x2:BigInt) =
 test : u = plus(1,1)
                            x1 + x2
```

Test \vdash plus(1^u, 1^u) \rightsquigarrow 2^u

Relationship to Biform Theories

Farmer and von Mohrenschildt, 2003

- ▶ Biform theory = axioms + syntax transformers
- syntax transformer: externally given algorithm that perform certain equality conversion
- allows combining logic with algorithms

This paper

- ▶ Biform theory = theories + models
- ► Two kinds of models: semantic or computational treated uniformly
- ightharpoonup Models combined with axiomatic theories via diagrams D_M
- Diagrams of computational models yield
 - literals for all values
 - rewrite rules for all true atomic formulas

Future work: mixing computation and deduction is hard $\qquad \qquad \text{not surprising}$

- ▶ Pure deduction: axiomatic theories typical for proof assistants
- ► Pure computation: computational models typical for computer algebra
- ► Reality: nice to mix both

Lots of difficulties

Example: find X such that

$$plus(1^{int}, X) = 3^{int}$$

comes up all the time during type checking, proof search Partial solution in MMT: models may supply inversion rules

Example

Inductive family of vectors dependently-typed, implicit arguments

```
include StdNat

c: a
a: type

vec: nat \rightarrow type
```

Checking test0 requires vec(succ(succ 0)) = vec2Checking test1 requires solving vec(succ n) = vec 1

Conclusion

- Literals new feature in MMT
 - foundation-independent
 - any choice of literals combinable with any logic
 - ▶ user-extensible like symbols, theorems, notations, . . .
 - ▶ integrated with MMT type system dependent types, type reconstruction, module system, ...
- Library of literals as part of LATIN logic library
 import literals as needed
- Computation integrated with axiomatic logic
 - computation rules provided by models
 - computation called seamlessly during checking, proving computation also inverted if needed