
MMT Objects

Florian Rabe

Jacobs University, Bremen, Germany

OpenMath 2014

1

Overview

I Major OpenMath-based experiment/system
I MMT

I Universal representation language for formal logical content
inspired by OpenMath, OMDoc

I Implementation with generic support for logical and knowledge
management functionality
e.g., module system, type reconstruction; presentation, editing

I Object layer uses OpenMath as primary data structure

2

Point of This Talk

I Describe differences between Mmt objects and OpenMath
objects

I Provide additional information for further development of
OpenMath

I Not a
I position paper
I standard enhancement proposal

Mmt’s deviations may or may not be good for OpenMath

3

Grammars
c : reference to symbol/constant (OMS)
x : reference to variable (OMV)

OpenMath

objects O ::= I(i) | F(f) | S(s) | BA(b)
| c | x
| A(O,O∗) | AT T (O;KV ∗)
| B(O;AT T (x ;KV ∗)∗;O) | E(c ;O∗)

(key-values lists) KV ::= c 7→ O

Mmt
objects E ::= Lc(s)

| c | x
| c(γ; Γ;E ∗)

contexts Γ ::= (x [: E][= E])∗

substitutions γ ::= (x = E)∗

4

Literals

OpenMath

I 4 fixed literal types: integers, float, string, byte array

I concrete syntax fixed by standard

I side note: OpenMath standard CDs define no operations on
strings or byte arrays

Mmt literals Lc(s)

I extensible set of literal types like extensible set of symbols

I no individual literal types built-in
I c is symbol whose documentation defines

I syntax (string encoding)
I semantics (valid values and their meaning)

of string s, which represents the literal value

5

Attributions

OpenMath

I attributed variables in particular needed for type attributions

I semantically attributed objects does anybody use this?

I ignorable attributions

Mmt: no attributions

I contexts declare variables x [: E][= E]
effectively 2 built-in attribution keys

AT T (x ; [type 7→ T], [def 7→ D]) ' x [: T][= D]

I ignorable attributions as extra-linguistic metadata
somewhat similar to HTML + RDFa

6

Errors

OpenMath

I Explicit error objects

Mmt: no errors

I error objects recovered as special case of application objects

7

Complex Objects
OpenMath

I 4 constructions: attribution of key-value list, error,
application, binding

I Note:
I attribution and binding are purely structural
I error implies semantic properties
I application is in between

is function application semantics implied or not?

Mmt

I single construction c(γ; Γ; ~E)
I purely structural

I named children γ
I bound variables Γ
I unnamed children (in scope of bound variables)

I each construction labeled with symbol c
I semantics of c(γ; Γ; ~E) defined solely by semantics of c

8

Complex Objects (2)

OpenMath-Mmt correspondence O ' E
If

Oi ' Ei and Vj ' Xj ,

then for applications:

A(c ,O1, . . . ,On) ' c(·; ·;E1, . . . ,En)

bindings:

B(c ;V1, . . . ,Vm;O1) ' c(·;X1, . . . ,Xn;E1)

errors:
E(c ;O1, . . . ,On) ' c(·; ·;E1, . . . ,En)

9

Complex Objects (3)

I What does γ do in c(γ; Γ; ~E)?

I Generalization beyond application and binding objects
I Substitution γ used for

I named arguments in function application
I records
I list of cases in pattern-match

10

Conclusion

I Mmt grammar uses only 4 productions
I constants
I variables
I literals
I complex objects

I OpenMath uses 10 productions
I 4 kinds of literals
I 4 kinds of complex objects

I Mmt loses some expressivity, especially for applications

I But gained simplification crucial in Mmt implementation

11

	
	Overview
	Point of This Talk
	Grammars
	Literals
	Attributions
	Errors
	Complex Objects
	Complex Objects (2)
	Complex Objects (3)
	Conclusion

