
1

Type-Dependent Equality (TDE)

Florian Rabe

Summer 2021

Motivation 2

Motivation

Motivation 3

Soft vs. Hard Typing

Hard Typing
I typing is function from terms to types

I types exist independently of terms

I terms exist as inhabitants of types

I type-checking (usually) decidable

I examples: HOL, dependent type theory (Coq, Agda, HoTT, . . .)

Soft Typing
I typing is relation between terms and types

I types are predicates on terms

I terms exist independently of types

I type-checking (usually) undecidable

I examples: Nuprl, Mizar

TDE only an option in soft-typed systems

Motivation 4

Side note: Soft-Hard Intermediates

PVS
I hard-typed HOL

I plus predicate subtypes at any type

I plus anonymous record types with structural (horizontal) subtyping

OOP
I hard-typed language for base types, enums

I nominal subtyping between user-defined types (= classes)

I is-instance-of operator and type casts

Duck typing
I formal type system deemphasized

I types represent expectations (presence of methods) about objects

Motivation 5

Equality in Soft-Typed Systems

Without TDE
I binary relation x = y on untyped terms

I independent of type Mizar, formal set theory

With TDE
I ternary relation x =A y

I allows x =A y but x 6=B y
Nuprl, occasionally in informal mathematics

I Quotients:
1 6=Z 3 but 1 =Z mod 2 3

I Structures:

(N,+) 6=Monoid (N, ·) but (N,+) =Set (N, ·)

I Generated sets:

X · Y 6=Group〈X ,Y 〉 Y · X but X · Y =R[X ,Y] Y · X

Motivation 6

Subtyping in Soft-Typed Systems

Subtyping A <: B iff

Without TDE
I for all x , if x : A, then x : B

I identity map is injection A→ B

With TDE
I for all x , if x : A, then x : B, and

I for all x , y , if x =A y , then x =B y

I identity map is function A→ B preserves membership and equality

I not necessarily injective: B may equate more terms than A

Type Theoretical Features: Predicate Types 7

Type Theoretical Features: Predicate Types

Type Theoretical Features: Predicate Types 8

Overview

I Motivation: subtype A|p of A by
unary predicate p : A→ bool {x ∈ A | p(x)} in math

I Example: positive integers

Z|(λx .x > 0)

I Subtyping: A|p <: A

I Representation: inhabitants of A reused as inhabitants of A|p
injection is no-op

I elegant on paper
I efficient in implementations

Type Theoretical Features: Predicate Types 9

Typing Rules
Type formation:

` A : type ` p : A→ bool

` A|p : type

Introduction:
` t : A ` p t

` t : A|p
Elimination:

` t : A|p
` t : A

` t : A|p
` p t

Type-dependent equality:

` s : A|p ` t : A|p ` s =A t

` s =A|p t

Note:
I introduction and elimination are no-ops — no new syntax
I introduction rule is type-dependent definedness

Type Theoretical Features: Quotient Types 10

Type Theoretical Features: Quotient Types

Type Theoretical Features: Quotient Types 11

Overview

I Motivation: quotient A/r of A by binary predicate
r : A→ A→ bool

I Example: integers modulo 3

Z/(λxy .x ≡ y mod 3)

I Subtyping: no obvious subtyping between A/r and A

I Representation: equivalence classes as elements of A/r
awkard on paper and in implementations

I Idea with TDE
I reuse inhabitants of A as inhabitants of A/r
I projection A→ A/r as no-op
I TDE: use different equalities =A and =A/r

Type Theoretical Features: Quotient Types 12

Typing Rules
Type formation:

` A : type ` r : A→ A→ bool

` A/r : type

Introduction (type-dependent definedness):

` t : A

` t : A/r

Elimination:

` s : A/r x : A ` t(x) : B x : A, y : A, r x y ` t(x) =B t(y)

` t(s) : B

Type-dependent equality:

` s : A ` t : A ` r s t

` s =A/r t

Note:
I r need not be equivalence — closure taken by equality rules
I elimination form t(s) applies t to any representative s

Predicate-Quotient Type Duality 13

Predicate-Quotient Type Duality

Predicate-Quotient Type Duality 14

Motivation

Predicate types A|p
I canonical injections into A

I every function f into A uniquely factors through minimal A|p
image of f

Quotient types A/r

I canonical projections out of A

I every function f out of A uniquely factors through maximal A/r
kernel of f

dual in the sense of category theory
Duality not fully exploited in typical mathematics

I injections are no-ops

I projections via equivalence classes
with TDE: projections are no-ops

Predicate-Quotient Type Duality 15

Predicate/Quotient Subtype Hierarchy with TDE

A|(λx .false) = ∅ initial object, empty type
<:
A|p predicate types
<: for ∀x .p x ⇒ q x using increasingly
A|q true predicates
<:
A|(λx .true)
= A = base type
A/(λxy .false)
<:
A/r quotient types
<: for ∀xy .r x y ⇒ s x y using increasingly
A/s true relations
<:
A/(λxy .true) = > terminal object, unit type

Type Theoretical Features: Record Types 16

Type Theoretical Features: Record Types

Type Theoretical Features: Record Types 17

Strict vs. Lax Records

Strict record types R

I records of type R have exactly the fields of R {} unit type

I forgetful functor S → R copies/removes fields R quotient of S

I equality at R: all fields equal normal equality

Lax record types R (also called extensible)

I records of type R have at least the fields of R {} type of all records

I forgetful functor S → R is no-op S <: R

I equality at R: fields required by R equal,
extraneous fields may differ → type-dependent equality

Lax record example: R = {x : N} and S = {x : N, y : N}

[x = 0, y = 1] =R [x = 0, y = 2]

[x = 0, y = 1] 6=S [x = 0, y = 2]

Type Theoretical Features: Record Types 18

Are mathematical structures strict or lax?

Mathematical practice abstracts from distinction

Case pro strictness

I Typical definitions define structures as certain tuples
A group is a tuple (G , ◦, e,−1) such that . . .

I Yields different categories with explicit forgetful functors

Case pro laxness
I Subtyping routinely used

I Every group is a monoid
I Every topological group is a group
I Every vector space with distinguished base is a vector space

forgetful functor is no-op, same letter used

I Elements of tuples routinely seen as flexible
Groups also given as tuples (G , ◦)

A Language with Type-Dependent Equality 19

A Language with Type-Dependent Equality

A Language with Type-Dependent Equality 20

Syntax

Minimal syntax for function+predicate+quotient types

A,B ::= bool | A→ B | A|p | A/r
s, t, p, r ::= x | (usual logical operators)

| λx : A.t | t t | s =A t | t ∈ A

intro/elim for predicate/quotient types are no-ops
easy to add dependent types, lax record types etc.

Rules:

I for function types as usual

I for predicate and quotient types as above

I for equality: see below

A Language with Type-Dependent Equality 21

Semantics

Based on partial equivalence relations (PER) on universe U
well-known trick

PER on U = equivalence relation on subset of U

Interprets

I type A as PER JAK ⊆ U × U
U restricted to domain of JAK and quotiented by JAK

I term t : A as elements JtK ∈ U
equivalence class of t relative to JAK

I typing t : A
JtK in domain of JAK

I equality s =A t as
(JsK, JtK) ∈ JAK

A Language with Type-Dependent Equality 22

Rules for Equality

Introduction rule (reflexivity)

` t : A

` t =A t

Elimination rule (substitution):

` s =A s ′ x : A ` F (x) : bool ` F (s)

` F (s ′)

Main problem with TDE: soundness of substitution very brittle

Need to check interaction between

I each type and e.g., quotient types, lax record types

I each generic operation e.g., substitution, ∈-operator

A Language with Type-Dependent Equality 23

Soundness of Substitution: Failures

Boolean operator t ∈ A
I t ∈ (A|p) can simulate ill-typed application p(t)

I for x : (N/mod2)
I IsPrime(x) ill-typed
I x ∈ (N|IsPrime) well-typed

2 =N/mod2 4

2 ∈ (N|IsPrime) and 4 6∈ (N|IsPrime)

Lax record types with access to extraneous fields
I record types AbelianGroup <: Group

I function λx : Group. if(x hasField commutative) . . .

I may treat Group-equal inputs differently

Handling in Proof Assistants 24

Handling in Proof Assistants

Handling in Proof Assistants 25

Mizar

Type System
I Soft typing

I No TDE

I Equality
I syntax: x = y
I semantics x =A y where A is smallest type containing x and y

Records

I Only named record types declared individually at toplevel

I Inheritance between records yields
I nominal subtyping (special case of lax records)
I explicit forgetful functors

I Equality between records
I equality of all shared fields
I forgetful functors applied to compare fewer fields

Handling in Proof Assistants 26

Nuprl

Type System
I Soft typing

I With TDE

I Quotients as before

Records
I No primitive records

I lax records defined via other type operators

Handling of substitution

` s =A s ′ x : A ` F (x) : bool ` F (s)

` F (s ′)

` A : type t closed

t ∈ A : bool
thus not:

A <: B

x : B ` x ∈ A : bool

Conclusion 27

Conclusion

Conclusion 28

Big-Picture Message

Hard typing arguably dominant paradigm

I type theoretical programming languages Haskell, ML

I formalized mathematics most ITPs

But soft typing inherent feature of mathematics
hard typing doomed as formalism for math?

Soft typing worth revisiting
I main drawback: theorem proving needed for type checking

I but today
I type systems much better understood
I ATPs much stronger

Quote:
I Me: What would you change if starting from scratch?
I Main developer of a hard-typed ITP: I’d do everything

soft-typed like in Mizar.

When considering soft typing, also consider type-dependent equality

Conclusion 29

Type-Dependent Equality (TDE)
Optional feature in soft-typed systems

Advantages

I elegant representation of quotients projection is no-op

I better capture of duality of predicate/quotient typing

I good handling of equality for lax records

I maybe closer to informal mathematics

Disadvantages
I not well-understood

I soundness of substitution subtly difficult

I not combinable with every other language feature
e.g., inspecting lax record fields

“Type-Dependent Equality” is an impractical name

I causes misunderstandings, impossible to google

I tell me if you have a better suggestion

	Motivation
	Soft vs. Hard Typing
	Side note: Soft-Hard Intermediates
	Equality in Soft-Typed Systems
	Subtyping in Soft-Typed Systems

	Type Theoretical Features: Predicate Types
	Overview
	Typing Rules

	Type Theoretical Features: Quotient Types
	Overview
	Typing Rules

	Predicate-Quotient Type Duality
	Motivation
	Predicate/Quotient Subtype Hierarchy with TDE

	Type Theoretical Features: Record Types
	Strict vs. Lax Records
	Are mathematical structures strict or lax?

	A Language with Type-Dependent Equality
	Syntax
	Semantics
	Rules for Equality
	Soundness of Substitution: Failures

	Handling in Proof Assistants
	Mizar
	Nuprl

	Conclusion
	Big-Picture Message
	Type-Dependent Equality (TDE)

