
A Logic-Independent IDE

Florian Rabe

Computer Science, Jacobs University Bremen

UITP @ FLoC 2014

1



Introduction

MMT+jEdit = Logic-Independent IDE

I MMT
I prototypical declarative language
I Foundation-independent

I no commitment to particular logic or logical framework
both represented as MMT theories themselves

I concise and natural representations of wide variety of formal
systems virtually all of them

I focus on customizable, reusable services

I written in Scala

I jEdit
I mature general purpose text editor
I written in Java

I MMT IDE
I jEdit plugin that bundles MMT API
I relatively thin glue layer between MMT and jEdit

only ∼ 1000 loc

2



Introduction

Background: MMT

I Attempt at a universal framework for formal knowledge and
its semantics

I MMT language
I prototypical formal declarative language
I foundation-independent: no commitment to particular logic or

type theory no built-in operators at all
I admits concise representations of most formal systems

logics, specification languages, ontology languages, . . .
I continuous development since 2006 (with Michael Kohlhase)
I > 100 pages of publication

I MMT system
I API and services
I continuous development since 2007 (with > 10 students)
I > 30, 000 lines of Scala code
I > 10 papers on individual aspects

3



Introduction

Small Example
Logical frameworks in MMT:

t h e o r y Types { t y p e }
t h e o r y LF { i n c l u d e Types , Π , → , λ , @ }

Logics in MMT/LF:

t h e o r y L o g i c : LF {o : type , ded : o → t y p e }
t h e o r y FOL : LF {

i n c l u d e L o g i c
u : t y p e . imp : o → o → o , . . .

}

Algebraic theories in MMT/LF/FOL:

t h e o r y Magma : FOL { ◦ : u → u → u }
. . .
t h e o r y Ring : FOL {

a d d i t i v e : CommutativeGroup
m u l t i p l i c a t i v e : Semigroup
. . .

}
4



Introduction

Big Picture: The OAF Project
I Open Archive of Formalizations 2014-2017
I Logic formalizations in LF (or variants as necessary)
I Import proof assistant libraries

joint theory graph for HOL Light, Mizar, Coq, . . .
I stepping stone towards library integration

MMT

LF LF+X

LATIN logic library . . .HOL Light

HOL Light library Bool Arith
. . .

Mizar

Mizar library
XBoole XReal

. . .
Arith

. . .

5



Introduction

Foundation-Independence

I Practical systems often foundation-specific
I fixed logical foundational e.g., CIC
I fixed kernel implementation for it e.g., Coq
I as many features on top as developer community can afford

often a bottleneck

I Effect
I slow evolution
I isolated systems
I hard to get new systems to meaningful scale

I MMT approach
I foundation-independent wherever possible
I develop generic solutions at MMT level
I Very similar to logical framework but even more general

6



Introduction

MMT Design Methodology

1. Choose a typical problem

2. Survey and analyze the existing solutions

3. Differentiate between foundation-specific and
foundation-independent definitions/theorems/algorithms

4. Integrate the foundation-independent aspects into MMT
language and API

5. Define plugin interfaces to supply the logic-specific aspects

Applied to

I knowledge management features
e.g., search, querying, browsing, change management

I logical features e.g., module system, type reconstruction

I Here: IDE

7



Architecture

Kernel-UI Interface

I Kernel implementation of logic
originally often read-eval-print style loop

I Not good for modern UI standards
various work towards better kernel-UI integration

I Central idea of MMT IDE
I use MMT data structures for knowledge representation

shared by kernel and UI
I use jEdit as UI framework
I design abstract interface for kernel functionality

not a goal to work with any existing kernel

8



Architecture

Overview

user interface

text
representation

Mmt
representation

MMT IDE

structure parser

term parser

structure validator

term validator

kernel

parsing validation

uses uses

9



Architecture

Abstract Kernel

2× 2 kernel operations Parsing Validation

Structure
Terms

I Structure parsing
I parses only outer syntax

e.g., very fast, e.g., run on every keystroke
I leaves terms as strings

I Term parsing
I parsing units generated by structure parser
I called at the liberty of the UI

e.g., change management: only reparse on change
I Structure validation

I identifier scopes
I theory graph

I Term validation
I validation units generated by structure validator
I type reconstruction, proof obligations, etc.

change management, parallelization10



Features

Content-Presentation Cross-References

I Structure and term parser should return source regions
detailed cross-references data structures ←→ buffer

I Outline view: side bar shows syntax tree of document
to the extent parsed/validated

I Joint focus, selection of subterms

I Tool tips show qualified identifiers, implicit arguments, . . .

I Hyperlinks CTRL-click on operators

11



Features

IDE: Example View

12



Features

Auto-Completion

I Show only identifiers that are in scope

I If needed type is know, show only identifiers whose return
type unifies

13



Features

Type Inferece

I Dynamic type inference of selected subterm

I Shown as tool tip

14



Features

Search

I Substitution tree index for a whole library

I Hosted on remote server Kohlhase et al., MathWebSearch

I Highly optimized for large libraries

I Index produced by MMT

I Queried from within UI

15



Features

Change Management

I 2-dimensional dependency relation
1. for each term, dependency between

I string
I parsed
I validated

2. between validation units
I type of any declaration
I definiens (= proof) of any declaration

I Dependencies tracked by MMT
I Changing a term triggers

I reparse
I revalidate
I revalidate all depending validation units

16



Example Kernel

Structure Parser

I Keyword-based

I ASCII characters 28-31 as delimiters

I Works generically at Mmt level
I Further customization possible

I plugins register individual keywords and handlers

17



Example Kernel

Term Parser

I Notation-based

I Uses Mmt notations that are in scope

I Works generically at Mmt level

I Adds meta-variables for unknown subterms
implicit arguments, omitted types

I Customization implied based on notations

18



Example Kernel

Structure Validator

I Implements structural semantics of Mmt

I Break declarations into proof obligations
I Example: c : A = t generates

I validity check of A
I type check of t against A

I Change management
I if term validator returns dependencies, jMmt revalidates only

when needed
I t changes much more often than A
I checking t (= proofs) and A (= assertion) separately splits

their dependency

19



Example Kernel

Term Validator

I Rule-based
I Type reconstruction

I solves unknown meta-variables inserted by term parser
I returns dependencies

I Customized by inference rules provided by plugins
I Several LF-based instances

I module system
I shallow polymorphism
I literals
I modulo

20



Conclusion

I MMT: rapid prototyping logic systems

I Generic IDE making good progress
I Currently, no competitor yet for dedicated “first-tier” systems

I no native theorem proving support in MMT
I no connection of abstract kernel interface and existing proof

assistant

should be tried, but not on my personal critical path
I Promising for less well supported systems

I experimental languages
I new languages
I small communities

21


	Introduction
	MMT+jEdit = Logic-Independent IDE
	Background: MMT
	Small Example
	Big Picture: The OAF Project
	Foundation-Independence
	MMT Design Methodology

	Architecture
	Kernel-UI Interface
	Overview
	Abstract Kernel

	Features
	Content-Presentation Cross-References
	IDE: Example View
	Auto-Completion
	Type Inferece
	Search
	Change Management

	Example Kernel
	Structure Parser
	Term Parser
	Structure Validator
	Term Validator

	 
	Conclusion


