A Logic-Independent IDE

Florian Rabe

Computer Science, Jacobs University Bremen

UITP @ FLoC 2014

Introduction

MMT—+jEdit = Logic-Independent IDE
» MMT

» prototypical declarative language
» Foundation-independent
> no commitment to particular logic or logical framework
both represented as MMT theories themselves
> concise and natural representations of wide variety of formal
systems virtually all of them
» focus on customizable, reusable services
> written in Scala
» jEdit
> mature general purpose text editor
> written in Java

» MMT IDE

» jEdit plugin that bundles MMT API
> relatively thin glue layer between MMT and jEdit
only ~ 1000 loc

Introduction

Background: MMT

» Attempt at a universal framework for formal knowledge and
its semantics

» MMT language

» prototypical formal declarative language
» foundation-independent: no commitment to particular logic or
type theory no built-in operators at all
» admits concise representations of most formal systems
logics, specification languages, ontology languages, . ..
» continuous development since 2006 (with Michael Kohlhase)
» > 100 pages of publication

» MMT system

API and services

continuous development since 2007 (with > 10 students)
> 30,000 lines of Scala code

> 10 papers on individual aspects

v

v vy

Introduction
Small Example
Logical frameworks in MMT:

theory Types { type }
theory LF {include Types, N, —, X\, @ }

Logics in MMT/LF:

theory Logic : LF {o: type, ded : o — type }
theory FOL : LF {

include Logic

u: type. imp: o —- o — o,

}

Algebraic theories in MMT /LF/FOL:

theory Magma : FOL { o: u - u — u }

theory Ring : FOL {
additive: CommutativeGroup
multiplicative: Semigroup

Introduction

Big Picture: The OAF Project

» Open Archive of Formalizations 2014-2017
» Logic formalizations in LF (or variants as necessary)
» Import proof assistant libraries

joint theory graph for HOL Light, Mizar, Coq, ...
> stepping stone towards library integration

MMT

N

LF LF+X

LATIN logic library

HOL Light library
Mizar library

Introduction
Foundation-Independence

» Practical systems often foundation-specific
» fixed logical foundational e.g., CIC
» fixed kernel implementation for it e.g., Coq
» as many features on top as developer community can afford
often a bottleneck

» Effect
» slow evolution

> isolated systems
» hard to get new systems to meaningful scale

» MMT approach
» foundation-independent wherever possible

» develop generic solutions at MMT level
» Very similar to logical framework but even more general

Introduction

MMT Design Methodology

1. Choose a typical problem
2. Survey and analyze the existing solutions

3. Differentiate between foundation-specific and
foundation-independent definitions/theorems/algorithms

4. Integrate the foundation-independent aspects into MMT
language and API

5. Define plugin interfaces to supply the logic-specific aspects

Applied to

» knowledge management features
e.g., search, querying, browsing, change management

> logical features e.g., module system, type reconstruction
» Here: IDE

Architecture
Kernel-Ul Interface

» Kernel implementation of logic
originally often read-eval-print style loop

» Not good for modern Ul standards
various work towards better kernel-Ul integration

» Central idea of MMT IDE

» use MMT data structures for knowledge representation
shared by kernel and Ul
» use jEdit as Ul framework
» design abstract interface for kernel functionality
not a goal to work with any existing kernel

Overview

Architecture

MMT IDE

user interface

text
representation

MwMmT

representation

parsing

(validation>

\

s

structure parser

structure validator

term parser term validator

kernel

Architecture

Abstract Kernel

’ 2 x 2 kernel operations H Parsing Validation

Structure
Terms

v

Structure parsing
> parses only outer syntax
e.g., very fast, e.g., run on every keystroke
> leaves terms as strings
» Term parsing
> parsing units generated by structure parser
» called at the liberty of the Ul
e.g., change management: only reparse on change
Structure validation
> identifier scopes
> theory graph
Term validation
» validation units generated by structure validator
> type reconstruction, proof obligations, etc.
10Change management, parallelization

v

v

Features
Content-Presentation Cross-References

v

Structure and term parser should return source regions
detailed cross-references data structures <— buffer

v

Outline view: side bar shows syntax tree of document
to the extent parsed/validated

v

Joint focus, selection of subterms

v

Tool tips show qualified identifiers, implicit arguments, ...

v

Hyperlinks CTRL-click on operators

11

Features

IDE: Example View

jEdit - C:\other\oaff\test\source\examples\pL.mmt
Fle Edit Search Markers Folding View Utiities Magros‘glug'\ns Help

% @Im’"t ﬂ < plmmt x|

: F\lter'l7‘ - namespace http:/s/cds.omdoc.org/exampless: =]
T ;theory PL @ http://cds.omdoc.orgs/urtheories?LF =
3 | fle:/Criotherfoafiftestiso. 3 Prop 1 type
w EtenryPL I ded T prop =+ tgpe
s and i prop * prop + prop
¢« impl : prop + prop + prop ¥
il ~; equiv : prop » prop + prop =
& et o = [%,y] (% = u) ~ ded
E-lambda s
Bx o al
~prop 1| I i
By
& e 5 [o - =»
=-impl i PY
e : object: s.0mdo / ¢ ini :
argument must have domain type
ﬁ http://cds.omdoc.org/examples?PL; x:prop, y:prop |- ded : prop
http://cds.omdoc.org/examples?PL; x:prop, y:prop |- prop—type = prop LI
4 | #|> | console [Error List mmT

8,30 (mmt, sidekick,UTF-8)S i r o WVEERIELMD 4 error(s)19:50

12

Features
Auto-Completion

» Show only identifiers that are in scope

> If needed type is know, show only identifiers whose return
type unifies

interactive_example : {A} ded A = (A A A) ¥

= [A] «ded A = (A & AYY Rl

PLMatDed?impE
PLNatDed?equivEl
PLNatDed?equivEr
PLNatDed?imp2E LI

= [A] impI «ded A+ded ARy &

13

Features

Type Inferece

» Dynamic type inference of selected subterm
» Shown as tool tip

eguivI : {A,B} (ded A + ded B) + (ded B + ded A) + ded A = B

= [A,B,p,q] andI (ImpI [&@] p &l (impI [b]l g b) =}

14

Features

Search

» Substitution tree index for a whole library

» Hosted on remote server Kohlhase et al., MathWebSearch

» Highly optimized for large libraries
Index produced by MMT
> Queried from within Ul

theory: |htt|:|:f,"cds.nmdnc.nrgfexamples?PL query: |$x,y,z: X= (YA Z)

search |

A X
= . http://cds.omdoc.org/examples?PLNatDed

E| .. hitp://cds.omdoc.org/examples?PLNatDed?example?definition: [AlimpI [plandI p p
-4 subterm at 2_3: : AnA

http://cds.omdoc.org/examples?PLNatDed?example?type: {A}ded A=AAA
L4 subtermat2_2 3::AAA

http://cds.omdoc.org/examples?PLNatDed?interactive_example?definition: [A]-=ded A=AnA>
- . http://cds.omdoc.org/examples?PLNatDed?interactive_example?type: {Alded A=AAA
B0 fxyzix= (y A z)

= . hitp://cds.omdoc.org/examples?PLNatDed

- [hitp://cds.omdoc.org/examples?PLNatDed?example?type: {A}ded A=AnA

i o4 subterm at 2_2: : A=AAA
+ http://cds.omdoc.org/examples?PLNatDed?interactive_example?definition: [A]<ded A=AAAS
&~ | hitp://cds.omdoc.org/examples?PLNatDed?interactive_example?type: {Alded A=AAA

15

Features

Change Management

» 2-dimensional dependency relation
1. for each term, dependency between
> string
> parsed
> validated

2. between validation units
> type of any declaration
> definiens (= proof) of any declaration
> Dependencies tracked by MMT
» Changing a term triggers

> reparse
> revalidate
» revalidate all depending validation units

16

Example Kernel
Structure Parser

v

Keyword-based
ASCII characters 28-31 as delimiters
Works generically at MMT level

Further customization possible
> plugins register individual keywords and handlers

v

v

v

17

Example Kernel
Term Parser

Notation-based

v

v

Uses MMT notations that are in scope

v

Works generically at MMT level

Adds meta-variables for unknown subterms
implicit arguments, omitted types

v

v

Customization implied based on notations

18

Example Kernel

Structure Validator

v

Implements structural semantics of MMT

v

Break declarations into proof obligations
Example: ¢ : A=t generates

» validity check of A
» type check of t against A

v

v

Change management
» if term validator returns dependencies, JMMT revalidates only
when needed
» t changes much more often than A
» checking t (= proofs) and A (= assertion) separately splits
their dependency

19

Example Kernel

Term Validator

Rule-based

Type reconstruction

» solves unknown meta-variables inserted by term parser
» returns dependencies

v

v

v

Customized by inference rules provided by plugins
Several LF-based instances
» module system
shallow polymorphism
literals
modulo

v

v vy

20

Conclusion

v

MMT: rapid prototyping logic systems

v

Generic IDE making good progress
Currently, no competitor yet for dedicated “first-tier” systems

» no native theorem proving support in MMT
» no connection of abstract kernel interface and existing proof
assistant

v

should be tried, but not on my personal critical path

v

Promising for less well supported systems

> experimental languages
» new languages
» small communities

21

	Introduction
	MMT+jEdit = Logic-Independent IDE
	Background: MMT
	Small Example
	Big Picture: The OAF Project
	Foundation-Independence
	MMT Design Methodology

	Architecture
	Kernel-UI Interface
	Overview
	Abstract Kernel

	Features
	Content-Presentation Cross-References
	IDE: Example View
	Auto-Completion
	Type Inferece
	Search
	Change Management

	Example Kernel
	Structure Parser
	Term Parser
	Structure Validator
	Term Validator

	
	Conclusion

