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Abstract

Programming languages are the framework programs are built in. For
knowledge representation of programs a framework for such languages is
needed. Latin2 provides a basic mathematics and logical library for knowl-
edge representation, which now is extended towards programming languages.
The functional programming languages are the most similar to a logical rep-
resentation in lambda terms and thus, concepts needed for such languages
are developed first, followed by a discussion on some implementation details
and mutable features.
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1 Introduction

Motivation Knowledge representation is an important task. There was success
in building logical and mathematical frameworks to represent the knowledge in
those domains. Obviously, a large area for computer science are algorithms and
their implementation as programs. These programs are realized in different pro-
gramming languages. For knowledge representation it would be useful to build a
framework which can represent all the programming languages. This can be done
through a modular approach to the types and concepts of programming languages.
It would be beneficial if the formalization not only allows for representation but
also for execution of representative programs. Functional programming languages
are closest to logical representation and thus are the easiest group to begin with.

Contribution This work describes the data types formalized for a basic func-
tional programming language and also discusses different possibilities of realizing
concepts used in programming languages in general. The work extends the number
theories and makes them feasible for programs. It introduces strings to Latin and
formalizes list-like data types as collection types. The work adds specific monad
types to the already existing monad structure. The thesis also proposes future
changes to MMT needed for a real environment for programming.

Overview In chapter 2 related work is described. In chapter 3 MMT/LF is
briefly explained and and an overview of Latin is given. Chapter 4 details the
formalized basic data types, while chapter 5 shows the realization of more complex
data structures using the monad structure. Chapter 6 describes the concepts of
recursion in MMT and error handling techniques. This chapter also gives an
outlook on functions which use mutable data types. The last chapter concludes
the described work and outlines future work.

2 Related Work

This work concentrated on formalization of data types in functional programming.
It was inspired by libraries of functional programming languages with various
degrees of emphasis on formalization.

SML Basis Library Standard ML Basis Library is a standardization of ML
languages. The library provides an interface for basic data types. It provides
simple support data types like list and option. It does not support higher data
types. The library only specifies the data types and some basic functions operating
on them. A concrete implementation is not given. [2] [7]

Haskell Haskell is a popular and widely used functional programming language.
The language has integrated monads to a often used tool kit. The programming
language provides the basis of monadic programming with the classes of Functor,
Applicative, and Monad. The different instances of specific monad types like 10,



Maybe, and State then realize the framework specific for their type. The types
provide a functional solution for mostly non-functional problems. [3] [1]

3 Preliminaries

3.1 MMT/LF

The Meta Meta Tool (MMT) is being developed at FAU Erlangen Niirnberg. This
tool is capable of designing logical frameworks as well as working with them [5].
MMT already provides simple logical foundations, of which MMT /LF is the most
popular one. It formalizes the Edinburgh Logical Framework in MMT. In this
framework Latin is developed.

MMT documents consist mainly of theories, especially those described in this
paper. These consist of a list of constant declarations, which can contain a type
declaration, definition, notation declaration, and a role. A simplified informal
syntax of a theory is described in figure 1.

Theory := theory Name [ : Metatheory| = Body
Name = string

Metatheory := URI

Body = (Theory | Include | Constant)*

Include include URI
Constant := Name : Type [= Definition] [ #Notation] [role Role]

Figure 1: Informal syntax of a theory

Additionally MMT supports the morphisms include, view, and structure. If
theory T needs to use already defined declarations of Theory S it can include this
theory through its URI.

The view morphism is the realization of one theory through another. In the view
all declaration of its domain need to be expressed through elements of the co-
domain. In the view all instances have to realized and all axioms of the interface
need to be proven. The morphism structure is similar to view. It is in simple
terms a view from one theory to itself. This morphism will automatically realize
all not mentioned declarations. Using structure allows for renaming of functions
and types but essentially creates a distinct new theory with the same properties.

MMT allows to connect formalized content and programs. A type defined in
MMT can be matched to one defined in Scala. In the MMT code a variety of
types and functions operating on them are predefined. These can be connected
using the rule rule like in figure 2. In this example, the elements nat/Number and
zero are the types in Latin, while StandartNat and Zero are the corresponding
Scala expression given through their path in MMT.

LF LF (Edinburgh Logical Framework) is used as a meta-language for the for-
malization of deductive systems [6]. LF is a simplistic dependently typed lambda
calculus [10]. Due to its reduced syntax set LF is a relatively weak logical frame-
work which is suitable as a meta-language. The notation for the relevant operators
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rule rules?Realize nat/Number uom?StandardNat]|
rule rules?Realize zero uom?Arithmetic/Zero]

Figure 2: Example for rules in natural numbers

for formalization is shown in Figure 3. For Latin separate types are declared. The
two important concepts are tp (type) and tm (term).

theory LambdaPi =
include ?Kinded]
Pi # { VI1T,.. }
lambda # [ VIT,.. ]
apply # Sw.
arrow # ..

|

Figure 3: Core elements of LF syntax

3.2 Latin

The Logic atlas and integrator (Latin) is a project which focuses on building a
framework for knowledge representation. This framework tries to represent meta
theoretic foundations of mathematics and logic as well as to connect these foun-
dations on a meta logical level. The project provides a library for MMT called
Latin2. This library consists of an extensive amount of theories in diverse fields
of logical and mathematical theories. The library provides theories of for example
propositional logic, higher order logic, and model logic for logical representation.
It also includes mathematical theories like set-theory, topology, category-theory,
and type-theory. With this library the project provides a platform for representing
knowledge from different disciplines and tools. [8] [9]

4 Types

A core element of programming languages are their types. They build the founda-
tion the functions operate on. Programming languages provide a base set of types
which can be extended through a modular library. It allows the users to introduce
the complex structures in the form they need. Each programming language pro-
vides only its fixed base set of types, which is typically not compatible to other
languages. The advantage of such a fixed set is a better optimization of the core
elements and thus better performance.

In this work it is tried to formalize the types in Latin2 for a functional program-
ming language as modular as possible so that different realizations of the same
types can coexist and be used with the now formalized theories. The modular-
ity additionally allows for representation of programming languages with different
foundations.



These types can now be formalized in different depths. The easiest form is like it is
done in the SML Basic Library. There, only the types are declared and the signa-
tures of the functions operating on them are specified. This form of formalization
realizes an interface for real programming languages. A more in-depth realization
uses additional axioms defining the functionality of the given functions and giving
the underlying structure of the types. The most in-depth formalization also adds
the realization of the functions.

The formalization approach in this work mostly consists of a specification of func-
tions and types. Additional axioms are defined for these functions for clarification
of functionality. These axioms are used as rewriting rules for execution purposes
when possible. In the following the base types Boolean, Numbers, and String as
well as the collection types are described.

4.1 Base types

Boolean There are two variants a truth value can be implemented. One variant
is to formalize it as tp, the type representing type in Latin. This has the advantage
that all other types the language will formalize are of the same type.

The other variant is to formalize the boolean type on a lower theoretical level. This
type is already formalized as typerr and is called prop. There are problems but
also clear advantages of this second variant. Latin2 uses prop already extensively
and provides truth to a large set of logical frameworks. With the use of prop these
theories could then be utilized in the programming languages. A problem of prop
is that the type tm representing terms is formalized in Latin as tp — typepp.
Therefore prop can not be a tm, but most functions will have ¢m a as argument
and thus can not use prop as a. The boolean specific functions can be properly
formalized but in general still need a boolean tp to mitigate the problem. Through
transformation functions boolean can then be turned to prop. The prop also has
the benefit of being better supported by MMT because of its wide use.

Do to the benefits of prop this variant is the preferred one in formalization. When
this is not possible, bool of theory Booleans is used.

lazy logic Functional programming often uses lazy evaluation. In programming
generally lazy logic is an important part of conditional statements, where only
evaluating necessary parts of the formula and terminating as early as possible can
be crucial. The already existing logical connectives in Latin were only used for
formulas and don’t need these properties. The new logical connectives no longer
use the usual form of formalization but use simplification. Through this change
the formula is evaluated one part at a time and only uses the next part if the result
is not already clear.

Numbers Numbers are an essential part of programming. Most languages con-
tain an implementation through fixed precision numbers only allowing for a fixed
amount of digits. They mostly provide floating point and integer numbers in dif-
ferent degrees of precision. Typically these integers don’t distinguish between the
already existing mathematical number sets (natural and hole numbers), while the
floating point implementations only represent a part of the real number spectrum.



Most languages also contain more complex forms of these representation in the li-
braries not relying on a fixed amount of digits. This resolves some of the problems
the number types have but is still no accurate representation of math.

Latin2 models mathematical knowledge, thus the number system was implemented
through the mathematical number sets. Since the different sets of numbers are sub-
sets of each other they can be built incrementally and thus can use the already
formalized functions available from the subsets. However, the validity of certain
theorems only hold in their respective set of numbers. This problem can be han-
dled through separating these theorems in specific theories not included in the
supersets.

The described system can model the mathematical number theory, but only works
correctly if one number type is used at a time. The problem is that if more number
sets are included the largest type would be used. To overcome that problem the
specific numbers are realized through structure in MMT. This approach results in
completely different structures for the types. While this is a good solution for the
described problem it also has its own flaws. The drawback of this separation is
the difficulty of implementing a version of sub typing. The implemented version of
numbers thus show the problem that numbers of different types aren’t compatible
with each other. For example an integer 2 can’t be used for addition with a 2 of the
real numbers. These problems could probably be fixed with a better knowledge of
sub typing and more time.

The number types are built up incrementally starting with natural numbers fol-
lowed by integer and rational numbers. The natural numbers contain the basic
type of numbers and the constructors to build them are zero and successor. Addi-
tionally, they provide simple functions, such as addition and multiplication. This
theory also contain some other simple relations. The integer theory adds the nega-
tion function for negative numbers, predecessor, and subtraction. As a result of
negative numbers, this theory contains specialized computation rules for addition
and multiplication. The real numbers add division into the theories.

The representation of numbers trough succ and zero is practical for formalization
of the functions operating on them. But a programming language also works with
instances of numbers and the representation of them in this form is unpractical
and inefficient. Through the use of rules in MMT it is possible to provide a more
programmer-near form of representation. Through rules a formalized fragment
can be connected to code written in Scala. In the case of numbers the numbers
themselves and some simple functions are implemented in Scala. This additional
formalization enables to use normal numerals in MMT. An additional consequence
of this is that calculations mapped to Scala are performed as real programs instead
of by rewriting.

String Strings are a base type of programming. They are the realization of a
chain of characters. The implementation of this type is done either using a list or
an array of chars. The here formalized type does not define the type structurally
and does not need to decide on the specific realization. String is formalized simply



as type without structural definitions. Nevertheless formalization of the functions
of String need a structure they operate on. This structure is given by the con-
structors and destructors string_to_char and char_to_string. These functions are
translating between the String type and the structure of list of chars. These func-
tions need to translate between the instances of strings in Scala and the formalized
structure in MMT. This can be done solely in Scala translating between represen-
tation of string and the list of chars.

The string is realized in this way because operating on instances is more efficient
in Scala. The storage of strings should not be relevant for formalization. Because
then different structures can be designed by adding new constructors and destruc-
tors. Also the storage of strings can be adjusted without the need of changing the
formalization of the functions.

In addition to the base concept of String some simple functions are formalized with
the framework described before. A summary of these functions is given in figure 4.

functions
string_to_char
char_to_string
string_concat
size

charAt
substring
equal

Figure 4: String functions

In addition to the already mentioned types, Latin contains types which don’t
need to be changed for use in the functional programming languages. One class
of these types are the product types. Of these the Simple Product realizes tuples.
The formalization is shown in the figure 5.

theory SimpleProducts =
include ?SimpleProductTypes]|
include ?TypedEquality]|
simppair: {A,B} tm A - tm B - tm A x[] B|# 0 prec |
simppil : {A,B} tm A x[J B - tm A|# 1[] prec |
simppi2 : {A,B} tm A xJ B — tm B|# 2[] prec |

computel : {A,B,a:tm A,b:tm B} F (a ,[J b)z[] =[] alrole Simplify|
compute2 : {A,B,a:tm A,b:tm B} | (a ,J b):200 =[] blrole Simplify|

Figure 5: SimpleProducts theory

4.2 Collection Types

There are two essential theories already formalized which are essential for the col-
lection types: EndoFunctor and EndoMagmas. In EndoFunctor the applied type



is defined, it is a type of types. In practice this allows to construct complex types
building a structure around an arbitrary type. The EndoFunctor also formalizes a
map function. Building upon EndoFunctor, the EndoMagma theory contains the
basic operator op which connects two applied types to one. Additionally it de-
scribes different basic mathematical frameworks, for example EndoCommutative
specifies the commutative law for op, while EndoNeutral adds the neutral element.

The Collection type now uses these theories to build a framework for specific
data types. Collection adds two simple functions: cons and singleton. Singleton
allows to create from an object the collection version of that type. Cons adds an
object to an already existing collection. These two functions allow to build list-like
data structures commonly used in programming languages.

The Collection type also contains a neutral element. This element is defined in the
EndoNeutral theory. This neutral element is formalized on a variable type whose
type is inferable. This is not possible if no type is used in the term. The function
null_collection solves this issue enabling MMT to easily derive the right type.

The formalized Collection type not only contains the definition of the structure
and the constructors but it also provides functions operating on the structure. The
formalized functions are all built in the same way. First the head of the function
is declared, then the functionality is defined. The head of the function contains
the name of the theory, the type declaration, and the way the function will be
used. The specification of functionality is done by axioms. For the Collection
type each function specifies at least one axiom per constructor neutral, singleton,
cons, and op (Figure 6). The axioms are not written in a specified logic but in
LF directly, which is different form axioms formalized in more abstract theories
in Latin. The advantage of quantifying over the elements in first order logic is
the ability to reason in that logical theory. On the other hand, by using the kind
syntax of LF for quantification the reasoning happens in higher logic. The advan-
tage of axioms as equality in LF is the easy use of simplification rules of MMT.
These enable the execution of the function through the axioms. It is not strictly
necessary to provide axioms for all constructors, a smaller sett would suffice for
axiomatic description of the functionality. But all four constructors have their use
in formalization and thus need their axioms. In complex functions it is not always
sufficient to only have one axiom per constructor. In that case, the name indicates
the case it represents.

neutral : {a} tm &al# %n %I1|
op : {a} tm & - tm & - tm &al# o  prec |

singleton : {a} tm a — tm & |# %n  prec |

cons : {a} tma - tm & — tm &al# %n prec = [a,x,xs] singleton x o xs|

Figure 6: Constructors of collection type

Since collections are no simple data type it is more difficult to reason about
them, more precisely to reason about a general collection through its recursive
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structure. This results in the need of induction on collections. The induction in
MMT needs a formalized framework typically defined through axioms. The axiom
used for collections is inductive_proof. Not all proofs are about the effect of a
function on the collection but on a more general level. In that case it is sufficient
to know the properties of the collection type. This is given though the axiom
cons_or_neutral.

The collection type should be viewed as an interface for the recursive wrapping
data types in functional programming. With this abstract type real types can be
created. These sub types of collection have their own specification theories defin-
ing additional mathematical concepts of their type. For lists it is ListSpec with
EndoMonoid properties. The instantiation is then realized using the structure
keyword in MMT. The resulting object is called list for the List type. The effect
of this is the internal separation of the types. Otherwise the types would have the
same structural components and thus would be difficult to use simultaneously in
one theory. The benefit is the possibility of renaming the already defined com-
ponents. Every element included in the specification of the type can be called
upon. For example in List the function length is not renamed and can be used by
list/length. The already instantiated types are List, MultiSet, FiniteSet, Binary-
tree, and Option. These types have common functions already defined in collection
but also unique methods defined in their specific theories.

List For the List type a mathematical framework of EndoMonoid is used. It
adds the properties of a semigroup to the framework provided by collection. This
adds the associative rule. The resulting type is a good representation of a typical
list. The op is renamed to concat and the appliedtype to List. The neutral
element is the empty list and named nil. The basic functionality is provided by
this theory, but additional functions are formalized in the theories ListOperator
and ListIterator, see figure 7. The two most common functions on lists are head
and tail, where head gives the first element and tail the remaining list after the
first element. These functions can not be formalized generally for all collections
because some implemented types have different assumptions. An example are sets
which have no order.

List_operators | List_Iterators
hd list_ map
tl foldl
drop foldr
add_last l_exists
rev l_all
list_match filter
Zip
unzip

Figure 7: List functions




Multiset By adding the commutative law though the EndoCommutitative the-
ory to the List framework the mathematical foundation for the Multiset is given.
Through this added law the relative position of every element becomes irrelevant.
Because of this distinction there are differences in methods applicable to the data
types. The Multiset type is formalized with more of a mathematical than a pro-
gramming perspective. The functions hd and ¢l which are formalized in List could
also be formalized in Multiset but aren’t because they do not fit in the properties
of the type. The first element cannot be taken out of a set because there is no first
element. An overview of functions formalized for Multiset is shown in figure 8.

Multiset_operators
equal

union

intersect
distinct_size

occur

remove

removeall

Figure 8: MultiSet functions

FiniteSet The FinitSet is created using the mathematical framework of Multiset
and adding the law of idempotent. The theory added is Endoldempotent. With
this new addition the data type restricts every element to only occur once. The
functions formalized are very similar to the ones for Multiset.

Binarytree : The binary tree is a common data structure in programming lan-
guages for easily finding an element in a large data structure. The data structure
could be formalized in a new form of collection. But it was tried to represent it
in the already defined one because it would be beneficial to have one base class
and not many different ones. In the binary tree the leaf can easily be represented
by singleton, which creates a tree out of a single object. The connection of two
trees would normally be done by a node containing the left and right branch and a
single value. The function normally used for this would be the cons function, but
it accepts only one complex data type as argument and therefore cannot represent
a tree. Thus, the option which is used is the op function connecting two complex
types. However, with this approach there would be no values in the nodes. The
cons operator thus has the functionality as shortcut for connecting a singleton and
a tree branch. Even though the neutral element is present in the theory it is irrel-
evant. In summary the resulting tree allows for data only in the leaves, and the
theory contains functions which have no real value. The resulting structure would
probably never be used because it fails storing data efficiently and it is difficult
to find the right element. However, with a slight modification of C'ollection a real
tree could be realized. The cons operator could be modified to allow an additional
complex data type. Also the op function should be replaced as it needs to allow

12



nodes with a value.

In functional programming languages it is common to have a form of pattern
matching especially for recursive data structures like collection types. Such a
general tool can not be simply formalized in LF, since it would not be possible
to match against a general form of term. Also it would be difficult to formalize
something for an arbitrary type. Therefore only a simplistic version is provided: for
every type that requires pattern matching it needs to be implemented separately.
The concept can be seen in the example list_match in figure 9. list_match matches
on nil (the neutral element) and cons. In the nil case only a return value is needed
because that case would get always the empty list as argument. In the cons case
a function is needed, which gets as first argument the value of the cons(x in this
example) and as second the remaining list (xs). Most programming languages
allow for an arbitrary matching, but that is only syntactic sugar and this form is
equally powerful.

list_match : {a,b} tmList a - tmb - ( tm a - tm List a - tm b) - tm b|# match_list case nil = case_cons

insertionsort : {a} tm List a - (tm a - tm a - prop) — tm List a
= [a, 1,f]
1 match_list
case_nil nil
case_cons ([x, xs] insert_orderd x (insertionsort xs f) f )I

Figure 9: Example list_match

The diagram in figure 10 displays the theories relevant for the collection types.
The green nodes contain the mathematical framework in which the collection types
are formalized. These were already present in Latin. The light blue theories are
the specification for the collection and the instantiated types. The orange-colored
nodes are the instantiated types. The type specific functions are contained in the
dark blue nodes.

5 Monads

In this library some monad related theories are formalized. The structure and
types formalized were inspierd by the Haskell type class hierarchy [11]. On one
hand there are the general theories Functor, Applicative, and Monad which are the
building blocks the Monad types are built form, already present in Latin. On the
other hand there are specialized theories describing real types like ListMonad, Op-
tionMonad, FailureMonad, StateMonad, and IOMonad. These specialized monads
can be further divided in those only proving the monadic properties for a type and
those needing the monad to function.

5.1 Related Theories

EndoFunctor This is the simplest form of classification used in these monadic
forms. The class describes the application of a function on a container. In Latin the
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Endofunctor

Endomagma

Tﬁ

Endeoneutral ( EndoSemigroup W

EndoMonoid

Collection

L

l

EndoCommutative (BlnaryTreeSpec] ( ListSpec ]

L

Endoldempotent MultiSetSpec H 5
T iy
FiniteSetSpec

Figure 10: The collection framework

container used for EndoFunctor is the applytype. The description of the function
is the applyFun. The function can also be described as map. The exact formal
definition is shown in figure 11. This functor is the base for the other classifications.

Monad The monad formalization contains the base type operator of applyType,
which is the type the monad operates on, and the functions return and bind.
Return is the function creating the monad from an object. The bind function
describes how functions operate on the monad itself. There are also the axioms
all monads need to fulfill: identRight, identLeft, and associative. See figure?? for
the implementation.

Applicative The Latin library contains the Applicative theory shown in figure
13 The Applicative type is a functor weaker than Monad. It allows for a more
widespread use. The idea of Applicative is that pure wraps pure computation into
the part of the environment which is pure. splat is then the function applying

14



theory TypeOperator =
applyType: tp — tpl|# & prec |
|

theory EndoFunctor =
include ?TypeOperator]|
applyFun: {a,b} (tm a - tmb) - tm & — tm & |# map prec |
applyId : {a,xs: tm &} } xs map ([x] x) =0 xsi|
applyComp : {a,b,c,f:tma - tmb, g: tmb - tm c, xs: tm &} F xs map f map g =[] xs map [x] g (f x)I

Figure 11: applyType and Endofunctor

theory Monad =
include ?TypeOperator]|
Return : {a} tm a — tm &al|# Return prec |
Bind : {a,b} tm & - (tm a — tm &b) — tm &b|# >>= prec |

identLeft: {a,b,f:tm a - tm &b,x} F Return x >>= f =[] f x|
identRight: {a,X: tm &} | X >>= ([x] Return x) =0 X]
assoc : {a,b,c,f:tm a - tm &b, g:tm b - tm &, X} F X >>= f >>= g =[] X >>= [x] (f x) >>= g]

Figure 12: Monad theory

functions to this wrapped type. An applicative type needs to fulfill the axioms
identity, homomorphism, interchange, and composition. [4].

theory Applicative =
include ?TypeOperator]
pure : {a} tm a —» tm & |# pure prec |
splat: {a,b} tm &(a-b) — tm & - tm &b|# <*> prec |

identity: {a,X:tm &} | pure (ident a) <*> X =[] XI|

homomorphism: {a,b,f:tm a~b,x} | pure f <*> pure x =[] pure (f@x)]|

interchange: {a,b,F:tm &(a-b), x} F F <*> pure x =[] pure (applyTo x) <*> F|

composition: {a,b,c,F:tm &(a-b),G:tm &(b-c),X} F G <*> (F <*> X) =[] pure (A[fIA[g]lf;g) <*> F <*> G <*> X]|

Figure 13: Applicative theory

5.2 Monadic Types

Collection The formalized collection types can be introduced to the Monadic
type hierarchy. This is done by defining the monad of their type. Therefor the
applyType as well as the return and bind functions need to be defined. This is
shown for List in 14. The indentLeft axiom proof is simply done by the trefl
tactic. The other two should be possible but are omitted.

FailureMonad In many programming languages a form of exception throwing
and handling exists. The exceptions in prominent programming languages provide
large amounts of information on the error that has occurred. For formalization
such would be relatively difficult and time consuming if possible at all. A simpli-
fied version of an exception can be a string containing an error message provided
through the return value. The FailureMonad operates on the combined data type
of String and a type a. The monad provides a functionality to use the type simply
as if it was type a. This is done through the functions return and bind. Return
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view List_Monad : ?Monad - ?7Lists =
applyType = [x] List x |
Return = [a,x: tm a] list/singleton x |
Bind = [a,b,X: tm List a,F: tm a - tm List b] list/map2 F X |
identLeft = [a,b,f,x] trefl |

Figure 14: ListMonad view

creates the monad out of an object of type a, while bind executes a function having
a value of type a as the only argument. Though rightinjection on the union of a
and string an error message can be returned. This monad would also allow for
implementation of a catch function in the future.

StateMonad Through the properties of pure functions, functional programming
languages don’t have a global state. However, there are some algorithms which can
be implemented much simpler if a form of state exists. The language could intro-
duce mutable variables which are in conflict with the pure functional programming
paradigm. A different way is to add the state as an additional argument for func-
tions. The state should be passed on to every function call and be returned with
the result. The StateMonad represents this way of introducing states to functional
programming. It is realized by combining the result type with the state into a tu-
ple. The different forms of states can be accommodated by different formalizations
of the tuple. Bind and return are only functions operating on the return value,
but not on the state value. There are formalized functions providing options to
manipulate the state value.

IOMonad 1O operations are an important factor of programming as they allow
for interaction with the real world. These operations are essential if a program
written in this language needs to be executed. Do to their nature, functional
programming languages have difficulties with such functions. The real world in-
teraction would eliminate the deterministic nature of the program. This is the
result of the world being state dependent. A solution for including this impurity
in the functional language is through an IOMonad. This monad hides the impu-
rities as they are handled separately from the normal use.

The resulting type diagram is displayed in figure 15. The blue nodes are frame-
work theories, the yellow ones are the "real monad types” and the green ones are
the converted types. The yellow and green theories were added by this work.

6 Towards turing completeness

The previous chapters described types used in programming languages as well as
functions operating on these types. But a programming language does not only
need types. Some essential functionality programming languages need to be fully
functional are discussed in this chapter. The two main topics are recursion and
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Figure 15: Diagram of the monadic theories

exception handling. Additionally, some mutable elements are discussed and an
example is presented of how programs could be implemented in Latin.

6.1 Recursion

The most important programming technique in functional programming is recur-
sion. The ability of a function to call itself allows for decomposing a difficult task
into its simplest parts and incrementally solving the overall task. Because func-
tional programming does not have loops, recursion is the only solution for problems
with an arbitrary number of steps. Unfortunately, currently MMT does not sup-
port the use of a function in its declaration and thus eliminates the use of the most
common form of recursion. A version of recursion which could be formalized in
MMT is an anonymous recursion operator. This solution would formalize an oper-
ator applying a function recursively as shown in figure 16. This operator could be
defined using axioms. Although this form is possible in the current MMT version
it has some problems. With this approach, a function using normal recursion can
easily be formalized, but mutual recursion schemes would cause problems. Also
recursive functions having more than one argument could not be formalized using
this definition. With these problems and the less convenient use of the anony-
mous recursion operator (figure 17) compared to conventional implementation of
recursion, changes to MMT are considered the better solution. An approach which
would allow that is to add a new concept of program in parallel to the existing
concept of theory. The efficiency of the existing parser, resulting from prohibiting
recursive usage of functions, would remain, while still enabling recursion for for-
malization of functional programming related algorithms. Existing theories would
not need to be changed.

recfun: {b,c} (tma-b-tmb->c ) ->tmb->c [# %n |

Figure 16: Possible formalization of the anonymous recursion operator

factorial = recfun nat nat ([f][n] if n == then else n*f(n- ))|

Figure 17: Example of recursion using a recursion operator
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6.2 Exception handling

In computer science there are three common practices of handling errors. The
simplest one is simply leaving it to the programmer. Here, the programmer has
the task of guaranteeing only to use the functions with the right terms, i.e. ensuring
that no errors actually occur. In other words, errors are not prevented. Thus the
implementation of the base library is simpler at the expense of more effort for the
programmer. An alternative is the options data type. It is the form used in most
functional programming languages. In simple terms, it is a wrapper around the
result. In case a function was successful, the option contains the result, otherwise
it is empty. The advantage of this type is that it is clear afterwards if the return
value is a correct answer or just produced by some error that occurred during the
execution. The disadvantage of this approach is that it does not provide any sort
of information about the error occurred. The data type of Options needs to be
present for the use in that program.

The most advanced form of error handling is throwing an exception. This stops
the function when an error occurs and returns an error message to the caller of
the function. This form of error handling is the most advanced way but also needs
the most additional functionality, because a way of passing error messages needs
to be added and the catching of these must be introduced. This would be difficult
especially in pure formalization. This work decided to use the first option for
the formalization of the library. The argument against the second option of error
handling was the position at which it was formalized. Since option is a sub type of
collection it wouldn’t be usable in the formalized functions. It would be possible
to add the type additionally at a lower level but this would lead either to two
separate types or options not formalized as a subtype of collection.

6.3 Mutable

Many programming languages designed in one paradigm add functionality from
another paradigm. An example are the functions operating on mutable variables
in Scala. This concept describes the need for stateful functions in a pure functional
language. This library is not formalized for one language but to allow representa-
tion of many languages. In addition it is intended to complement the library with
an formalization of an object oriented programming language. Because of this
some formalization for mutable variables is added as well as functions operating
on them.

For formalization purposes the unit type is needed, which provides a solution to
the problem of no return type. Some functions don’t have return values but change
a state variable. Examples of those functions are 10 operations, variable decla-
rations, value assignment, and structural elements like loops. Even though the
types of these functions can be formalized, the underlying functionality can not.
Because of this, rewriting is no option as variant for execution. But there is a
template in MMT for the role execution. This would map onto a function written
in Scala realizing the functionality. The theories related to mutable types can be
found in the control flow and Datatypes files in the programming folder of Latin.
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6.4 Programs in MMT

In order to provide examples for how to formalize algorithms and to prove that the
presented methodology is useful, two well known sorting methods were formalized
using the library developed in this work.

Insertion sort Insertion sort is the algorithm sorting a list through sorted in-
sertion of every element into a new list. The function utilizes a helper function
which performs the sorted insertion. The algorithm iterates over every element
through pattern matching. In the case of the empty list an empty list is returned.
In the case of cons the function does the recursive step with the tail. The variable
of cons is then inserted into the result of the recursive step.

The sorted insertion is done through pattern matching on the list. In case of the
empty list a new list is created with the element to be inserted as sole element. In
case of cons the given weighting function decides which element is the matching
one. If it is the place of the inserted object it is append to the list otherwise a
recursive step is made and append to the head of the returned list.

theory Insertionsort =
include ?Lists]|
include ?Match]

insert_orderd : {a} tm a — tm List a — (tm a — tm a — prop ) — tm List a
= [a,x,1,f] 1 match_list
case nil (list/cons x nil)
case_cons [y, ys] if (f y x) then (list/cons x 1)
else( list/cons x (insert_orderd x ys f))|

insertionsort : {a} tm List a — (tm a - tm a — prop) — tm List a
= [a, 1,f] 1 match_list
case_nil nil
case_cons ([x, xs] insert_orderd x (insertionsort xs f) f )I

Figure 18: InsertionSort

Merge sort The algorithm receives two lists (x and y) and a sorting function
(f). The sorting algorithm consists of two main functions: splitting and merging.
The main method mergesort splits the list into two equal sized partial lists and
continues by recursion until all lists only contain one element. After the split, both
parts of the list are merged in a sorted fashion through the function merge. This
function uses pattern matching on the first list and then on the second. In the
simplest case one list is already empty, leading to returning the other list. Oth-
erwise both lists contain a head element (x for the fist list and y for the second).
Then the sorting function determines the new head. The tail is calculated by a
recursive call with the remaining lists.

7 Conclusion and future work

In this work, the foundation has been created for formalizing a functional pro-
gramming language in MMT. This includes the base types of Boolean, Numbers,
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theory Mergesort =
include ?List_operators]|
include ?Matchl
merge : {a} tm List a - tm List a - (tm a —» tm a —» prop)- tm List a|
= [a,firstlist,secondlist, f]
firstlist match_list
case_nil secondlist
case_cons ([x,xs] secondlist match_list
case_nil firstlist
case_cons [y,ys]if (f y x) then (list/cons x (merge xs secondlist f))
else list/cons y (merge firstlist ys f))I

firsthalf : {a} tm List a — tm List a |
= [a,1] if ((list/length 1) = ) then list/cons (hd 1) firsthalf (tl tl 1) else list/S (hd 1)]|

secondhalf : {a} tm List a - tm List a |
= [a,l: tm List a] firsthalf (tl 1)]|

mergesort : {a} tm List a —» (tm a - tm a - prop)— tm List a|
= [a,1,f] merge (mergesort (firsthalf 1) f) (mergesort (secondhalf 1) f)|

Figure 19: MergeSort

and Strings as well as the more complex collection types. Additionally some basic

monad types where introduced. Two potential realizations of recursion were de-

scribed with a preference for adding new syntax to MMT. The different ways of
exception handling were introduced with formalization of the option type for the

user and using no error handling in the formalized functions. The resulting frame-

work shows that programs written in a functional language could be formalized in

Latin.

The added formalization produced for this work can be found in https://gl.

kwarc.info/supervision/bloecher_moritz/-/tree/main/%20bachelorarbeit.

Future work In future a version of recursion needs to be introduced to the
framework. Without such a tool most programs cant be formalized. Two possible
variants were discussed.

A different aspect which should be regarded is a better idea for sub types as
mentioned for the case of numbers. The introduced formalization is usable in
programming but has some problems. With a better sub typing system these
problems could be eliminated.

Another interesting area is the execution of programs. The current formaliza-
tion does not possess a real processing ability. The formalization would need 10
functions coupled with a console and solutions for those functions which can’t be
formalized by axioms suited for role Simplify.

Another task would be to try to represent existing programming languages in
Latin. One task corresponding to this is to expand the formalized framework.
This can be done in different ways either by introducing new representation of the
present types or by adding different language designs like object oriented program-
ming.
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