
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Master Thesis in Computer Science

A Framework for Defining
Structure-Preserving Diagram

Operators

Navid Roux

Advisors: PD Dr. habil. Florian Rabe, Prof. Dr. Michael Kohlhase

Erlangen, 1st April 2022

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 1. April 2022

A Framework for Defining Structure-Preserving
Diagram Operators
Navid Roux
FAU Erlangen-Nuremberg, Germany

Abstract

Formal systems such as interactive or automated theorem provers, specification systems, and
deduction systems all enable the mechanized verification of developments and proofs in formal
sciences. Moreover, they can serve the inevitable need to represent and categorize the ever-increasing
amount of knowledge; a task that humans fail at large scales. Importantly, the utility of every
formal system hinges on the availability of a comprehensive and well-designed standard library of
concepts and reasoning techniques. Designing, creating, and maintaining such libraries is a very
labor-intensive task.

We advance the theory of meta-programming in formal systems, helping automate entire de-
velopments in libraries. We focus on the very general case given by diagrams of formalizations
consisting of theories and theory morphisms, where theories are lists of typed constants and theory
morphisms are compositional translations between theories. We identify a class of meta-level opera-
tors on such diagrams that yields a framework for library developers to easily specify & implement
operators. At the same time, these operators are still expressive enough to allow for a wide variety
of applications in practice.

Concretely, we consider functorial operators that are defined declaration-wise on input theories
and morphisms. This yields further valuable properties such as preservation of includes between
theories. Thus, it is possible to apply them to entire diagrams at once, often in a way that the
output diagram mimics any morphisms or modular structure of the input diagram.

Our results are worked out using the Mmt language for structured theories instantiated with
the Edinburgh Logical Framework LF for basic theories, but they can be easily transferred to other
languages. We give numerous examples. Logic-independent functors are applicable fairly gener-
ally to many developments, and here we present the pushout functor, some refactoring-inspired
operators, and a functor for representing certain meta theorems on theory morphisms (logical re-
lations). We compose these operators in a culminating case study to get the powerful operator
that systematically translates formalizations of type theory from intrinsic to extrinsic style. Among
logic-dependent operators, we investigate operators for universal algebra automating universal con-
structions such as homomorphisms, substructures, and congruences, among others. Applied to an
input diagram (e.g., some algebraic hierarchy), these operators yield diagrams of corresponding
theories of homomorphisms, substructures, and congruences.

We implement our framework and all logic-independent operators in the Mmt system, as part
of a larger case study that was previously published by Rabe and Roux (“Systematic Translation
of Formalizations of Type Theory from Intrinsic to Extrinsic Style”, Proceedings of the Workshop
on Logical Frameworks: Meta-Theory and Practice 2021).

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory

Keywords and phrases meta programming,formal systems,theory graphs,formalizations,functors,structure
preservation,mathematical knowledge management

Acknowledgements Submitted as a draft for personal reasons.

Submitted YYYY-MM-DD-TODO. Last updated 2022-03-23.
This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International” license.

mailto:navid.roux@fau.de
https://orcid.org/0000-0002-8348-2441
https://creativecommons.org/licenses/by-sa/4.0/deed.en

N. Roux 5

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Related Work . 9
1.3 Challenges & Objectives . 10
1.4 Contribution . 11
1.5 Incorporated Material . 12

2 Preliminaries 14
2.1 Mmt: A Module System over a Logical Framework 14

2.1.1 Flat Mmt/LF . 14
2.1.2 Structured Mmt/LF . 18

2.2 Logical Relations for a Logical Framework . 20

3 A Framework of Diagram Operators 25
3.1 Motivating Example: The Pushout Operator 25
3.2 Linear Functors . 25

3.2.1 Main Definition . 25
3.2.2 Verification Criteria . 27

3.3 Linear Connectors . 31
3.3.1 Main Definition . 31
3.3.2 Verification Criteria . 33

3.4 Structure-Preserving Lifting . 35
3.5 Related Work . 35

4 Logic-Independent Operators 36
4.1 Pushout . 36

4.1.1 Definition . 36
4.1.2 Examples . 37
4.1.3 Meta-Theoretical Properties . 39

4.2 Polymorphic Generalization . 41
4.2.1 Definition . 42
4.2.2 Application to Algebraic Hierarchy: Recovering Collection Data Types 45
4.2.3 Application to FOL Formalizations: Recovering SFOL Formalizations 47
4.2.4 Meta-Theoretical Properties . 52

4.3 Parameter Removal . 55
4.3.1 Definition . 56
4.3.2 Meta-Theoretical Properties . 57

4.4 Representing Logical Relations . 59
4.4.1 Total Logical Relations . 60
4.4.2 Examples . 61
4.4.3 Partial Logical Relations . 64
4.4.4 Related and Future Work: TODO . 68

4.5 Translating Formalizations of Type Theory from Intrinsic to Extrinsic Style . 68
4.5.1 Motivation of Case Study . 69
4.5.2 Heading Towards a Definition . 69
4.5.3 Definition . 71

6 Structure-Preserving Diagram Operators

5 Operators for Universal Algebra 75
5.1 Introduction . 75
5.2 Representing Algebra Theories and Related Work 77

5.2.1 Shallow and Deep Embeddings . 77
5.2.2 Representing Algebra Theories as Mmt Theories 81
5.2.3 Related Work . 83
5.2.4 Overarching Example: Algebraic Hiearchy in LATIN2: TODO 83

5.3 Homomorphisms . 86
5.3.1 Preliminary Definition: Hom on Definitionless SFOL 86
5.3.2 Building Towards a Generalized Definition 89
5.3.3 Final Definition: Hom on PDFOL . 91
5.3.4 Examples . 94
5.3.5 Meta-Theoretical Properties . 96

5.4 Substructures . 98
5.4.1 Preliminary Definition: Sub on Definitionless SFOL 98
5.4.2 Building Towards a Generalized Definition 100
5.4.3 Final Definition: Sub on PFOL . 102
5.4.4 Examples . 106
5.4.5 Meta-Theoretical Properties . 108

5.5 Congruences . 109
5.5.1 Cong on Definitionless SFOL . 109
5.5.2 Thoughts on a Generalized Definition 112

5.6 Images of Homomorphisms . 114
5.6.1 Img on Definitionless SFOL . 114
5.6.2 Thoughts on a Generalized Definition 117

5.7 Kernels of Homomorphisms . 119
5.7.1 Ker on Definitionless SFOL . 119
5.7.2 Thoughts on a Generalized Definition 125

5.8 Conclusion & Future Work . 126
5.8.1 Conclusion . 126
5.8.2 Future Work . 126

6 Implementation 129
6.1 Walkthrough: Using and Developing Diagram Operators 129

6.1.1 Library User’s Perspective . 129
6.1.2 Library Developer’s Perspective . 129

6.2 Class Hierarchy . 129
6.3 Design Decisions & Limitations . 129

7 Conclusion & Future Work 130
7.1 Conclusion . 130
7.2 Limitations & Future Work . 131

N. Roux 7

https://www.researchgate.net/publication/2384408_The_Tecton_Concept_Library#
read

Notation Usage
Σ signatures, i.e., lists of declarations (“anonymous theories”)
𝜎 signature morphisms, i.e., lists of defined declarations

ΔΣ(𝑐 ∶ 𝐴 [= 𝑡]) a linear functor’s action on a constant 𝑐 over signature 𝑆,Σ where 𝑆 is some theory clear from context
𝛿Σ(𝑐 ∶ 𝐴) a linear connector’s action on a constant 𝑐 over signature 𝑆,Σ where 𝑆 is some theory clear from context

Γ contexts (usually over some designated signature, mostly Σ)
Γ ⊢Σ … an LF judgement in signature Σ and context Γ
Γ ⊢𝑀

Σ … in principle same as Γ ⊢𝑀,Σ …; connotation: Σ is an 𝑀-extension
𝑓, 𝑔, ℎ,𝑚 morphisms

𝑥 variables
𝑡 terms (either MMT or SFOL ones)

𝐴,𝐵 LF types or kinds
𝑐 identifiers of constants
𝑓 𝑡 a term of function application

Π𝑥∶ 𝐴. 𝐵 dependent function type
𝜆𝑥∶ 𝐴. 𝐵 abstraction

id𝑇 identity morphism on theory 𝑇
𝜎 ∘ 𝜎′, 𝑓 ∘ 𝑔, 𝑚 ∘ 𝑛 (signature) morphism composition (in which order?)

𝜙(𝑥) LF term with one free variable, 𝜙 is a meta-level function
∀𝑥∶ tm 𝑇 . 𝜙(𝑥) ∀ 𝑇 𝜆𝑥∶ tm 𝐴. 𝜙(𝑥)

∃ analogously to forall...
𝑋,𝑌 theory identifiers
𝑣, 𝑤 morphism identifiers
𝑛 theory and morphism identifiers (when we intend to make no distinction between theories and morphisms)
𝑂 linear functors

𝑂(Σ),𝑂(𝑋),𝑂(𝑌) linear functor 𝑂 applied to flat theories Σ,𝑋, 𝑌
𝑂(𝜎) linear functor 𝑂 applied to flat morphism 𝜎
𝐶 linear connectors
𝕃𝔽 category of flat theories and morphisms, see Def. ...
𝕃𝔽𝑆 for a structured theory 𝑆 the category of flat 𝑆-extension and -extension morphisms
SFOL the SFOLMmt/LF-theory from ...

SFOL/DFOL/PFOL(-declarations/-theories) the meta concept, not referring to any specific Mmt/LF-theory,
type either LF- or SFOL-type (usually clear from context)

SFOL-extension all possible extensions of SFOL induced by Mmt/LF (i.e., theories including SFOL)
SFOL-/PFOL-/DFOL-/PDFOL-theories a subset of certain well-patterned SFOL-extensions, see Definition TODO

𝑠 ≐𝑇 , 𝑠 ≐ 𝑡 equality (type at which the equality is taken is usually omitted for readability)
make extra subtable for just sfol notations

https://www.researchgate.net/publication/2384408_The_Tecton_Concept_Library#read
https://www.researchgate.net/publication/2384408_The_Tecton_Concept_Library#read

8 Structure-Preserving Diagram Operators

1 Introduction

1.1 Motivation
There is wide variety of tools for representing and reasoning with formal knowledge on the
computer [Naw+19]:

automatic theorem provers that try to prove or refute statements (e.g., E [SCV19], Vam-
pire [RV01], LEO-III [SB18])
interactive theorem provers that let humans compose and verify proofs (e.g., Coq [BC04],
Isabelle/HOL [NPW02], Agda [Nor09])
specification systems that enable requirements analysis and system design on a high level
(e.g., OBJ [Gog+93], CASL [Ast+02])
deduction systems that allow defining logics and their proof calculi themselves (e.g.,
Mmt [RK13], Twelf [PS], IMPS [FGT93], Specware [SJ95], Beluga [PD10])

Let us call such tools formal systems whenever they are based on a logical foundation. For-
mal systems have a number of uses. Primarily, they enable the verification of developments
and proofs in formal sciences such as mathematics, logic, and computer science. Moreover,
they serve the inevitable need to represent and categorize the ever-increasing amount of
knowledge; a task that humans spectactularly fail at large scales [Car+21].

In practice, the utility of every formal system hinges on the availability of a compre-
hensive standard library of theories (i.e., concepts) and reasoning techniques. Standard
libraries allow users to focus on representing their domain problem instead of spending time
reinventing the wheel, e.g., by needing to formalize ubiquitous mathematical structures.
Even trivial domain problems quickly require standard libraries of huge sizes. Already
basic datastructures such as boolean, integers, lists, sets, trees, etc. including corresponding
operations and reasoning schemes (e.g., filtering operations and induction) make up non-
trivial portions of standard libraries. Another major source of ubiquitous theories is our
running example: the algebraic hierarchy consisting of monoids, groups, rings, etc.
And again, for those theories to be useful we almost surely need corresponding theories of
homomorphisms, substructures, congruence structures, etc., too.

Importantly, there are more metrics than mere size of a standard library determining
its quality (and the amount of manual labor needed to create and maintain it). Three qual-
ity metrics are particularly important for our endeavor. First, libraries need to feature a
consistent style, e.g., in choice of identifiers, notations, argument orders, and packaging
conventions. Only if these traits are consistently applied throughout a library, they become
predictable for users, making it actually convenient for them to write formalizations without
constantly looking up source code or documentation. In our running example, users would in
particular expect all theories of the algebraic hierarchy to be packaged in the same way (e.g.,
into a theory, class, record, struct, etc. – whatever the language of choice offers). Second,
libraries should be feature complete, i.e., all things that users might reasonably expect
to be present should actually be present. For example, if the notion of homomorphisms
is developed for the theory of groups, then by users’ expectation that notion should also
be available for monoids, rings, and all other theories of the algebraic hierarchy. Ideally,
libraries fulfill this metric even recursively, e.g., if a library formalizes notions of quotient-
and subgroups, then users might reasonably expect the notion of homomorphisms between
quotiened subgroups, too. Third, a library should offer rich interrelations, so that users
can transport knowledge or proof across theories. For example, libraries should offer convert-
ing every group homomorphism to a monoid homomorphism, and all theorems on monoid

N. Roux 9

homomorphisms should be inherited by all group homomorphisms. Again, this property
applies recursively, e.g., all homomorphisms on quotient groups should be convertible to
homomorphisms of quotient monoids.

It is very labor-intensive to design, create, and maintain a standard library
with those properties. Therefore, it is desirable to reduce the portion of the library that needs
to be humanly written and maintained in favor of parts that can be automatically
generated. A key observation motivating this research is that many theories (such as the
universal constructions of homomorphisms and substructures) are inherently automatable
in the sense that they do not require particular human intelligence to write down, but only
require a particular systematic operation to be applied consistently everywhere.

1.2 Related Work

Metaprogramming As a means of automation and library design, meta programming
has been used for decades in programming languages (see [LS19] for a recent survey). In
contrast, in the formal systems community, the technique of meta programming has mainly
been used for two independent purposes: proof automation and self-verification. Proof
automation [Rin+19] is a standard technique in interactive theorem provers to outsource
dull and repeating proof patterns into complex tactics, considerably cutting proof sizes and
making proofs more robust wrt. changes in surrounding formalizations. As such, proof
automation has substantially contributed to feasibility of fully formalizing big theorems
(e.g., the Kepler conjecture [Hal+17], the Odd Order Theorem [Gon+], or the Four-Color
Theorem [Gon08]). For Coq a number of tactic languages have been developed including
Ltac [Del00; Péd19], Mtac [Kai+18], and SSReflect [GM10]. Meta programming facilities
built into Lean [Ebn+17] and Agda [WS; Che20; KS15] have also been mainly used for proof
automation.

For self-verification the syntax and semantics of a formal system are represented in itself,
allowing the verification of meta theorems that would otherwise only be verifiable in other
formal systems or on paper. The MetaCoq project [Soz+20] is following this avenue and has
led to a correctness proof of Coq’s typechecking in Coq itself [Soz+19]. There have been
efforts in a similar direction for other systems, mostly based on dependent type theory, e.g.,
for Lean [Ebn+17] and Idris [CB16].

In contrast with these successes, both proof automation and self-verification paid rela-
tively little attention to use meta-programming to generate entire libraries. One
notable exception is Haskell – arguably closer to a programming language than formal system
– offering Template Haskell [SP02] and the deriving via mechanism [BLS18], which can both
be used to derive complete program fragments (e.g., function and datatype declarations).

Metaprogramming is not always needed. Sometimes we can circumvent it by using deep
embeddings, however, at the cost of usability and conciseness of the resulting formalizations.
For example, representing algebra theories with a deep embedding allows to give program-
matic definitions of universal constructions without any metaprogramming and has been
done in multiple settings, e.g., in Coq [Cap99; SW11] and Agda [DeM21; GGP18]. We give
a detailed account of shallow vs. deep embeddings for universal algebra in Section 5.2.

Diagrams of Theories & Theory Morphisms
To be more concrete, let us from now on understand a theory as a structured list of dec-

larations, and as theory interrelations let us use theory morphisms, i.e., compositional trans-
lations between theories. Diagrams of theories and theory morphisms have long been used

10 Structure-Preserving Diagram Operators

successfully to build large networks of theories both in algebraic specification languages [asl;
specificationarbitrary; caslmanual] and in deduction systems [imps; isabelle_locales;
RK:mmt:10; SJ95], and are the right abstraction for general research of knowledge repre-
sentation and processing [Koh14].

In parallel to the present work, [CFS20] also expands on the development of diagram
operators. That work has a similar focus and even includes some of the same examples as
ours. It focuses on programmatically generating many theories derived from the algebraic
hierarchy, whereas we focus on structure preservation.

[HR20] introduces syntactic theory functors in the setting where theories are pairs of a
signature and a set of axioms. Because signatures are kept abstract, the setting cannot be
directly compared to ours, but their treatment of axioms corresponds to ours, and several
of their concrete examples fit our framework. They also consider what we will call include-
preservation but do not consider morphisms.

Following [RS19], while our diagrams are formalized in Mmt, our diagram operators are
implemented as self-contained objects in the programming language underlying Mmt.

Our operators are defined within the framework for Mmt diagram operators developed
in [RS19]. We specialize our presentation to the LF logical framework [HHP93] as defined
inside Mmt. This choice is made for the sake of simplicity and concreteness, and our
results can be easily transferred to other formal systems. More precisely, our results are
applicable to any formal system whose syntax is described by a category of theories in which
theories consist of lists of named declarations. In fact, Mmt was introduced specifically as
an abstract definition capturing exactly those formal systems [Rab17a]. Moreover, as LF
is a logical framework designed specifically for representing the syntax and proof theory
of formal systems, even the restriction to Mmt/LF subsumes diagram operators for many
important logics and type theories (see [Cod+b] for examples). Our implementation is
already applicable to any framework defined in Mmt with LF as used here being just one
example (see [MR19] for others).

1.3 Challenges & Objectives
Meta-programming is most powerful whenever meta-programs are allowed to operate on
abstract syntax trees. And this presents our main challenge, which is to combine two
conflicting goals. On the one hand, it must be easy to define and implement new
meta-programs acting on formalizations. This is critical for scalability as we conjecture
many meta-programs to be contributed by library developers (and not developers of the
formal system itself), who may not be perfectly familiar with the overall framework and
therefore need an interface as easy as possible. Moreover, it is critical for correctness: meta-
programs tend to be very difficult to correctly specify and implement. On the other hand,
meta-programs shine when applied to large formalizations, and large formalizations are
inevitably built with complex language features. This applies both to the base logic,
e.g., adding nodes to diagrams that require more expressive logics than originally envisioned,
and to the structuring features for building larger theories out of smaller ones.

We want to develop a general framework for specifying and implementing meta-
programs that work on structured collections of formalizations. Concretely, our framework
must meet the following objectives:

i) Library Users should be able to apply translations
a) to structured diagrams with complex language features
b) to build large and interrelated structured diagrams

N. Roux 11

c) with little manual effort in writing and maintaining formalization code
d) with intuitive and predictable outcomes in structure of diagrams and contents

ii) Library Developers should be able to easily specify, verify, and implement translations
as meta-programs

iii) System Developers should be able to efficiently apply those meta-programs to large
diagrams and cache their results

1.4 Contribution
We identify a class of diagram operators, for which these conflicting objectives can largely be
achieved. The general design uses two steps. First, our diagram operators are defined and
implemented for flat theories only. In particular, complex language features remain
transparent to library developers specifying and implementing diagram operators. Second,
every such definition is automatically lifted to an operator on structured diagrams.
This lifting preserves diagram structures, and in particular it maps hierarchies of theories
built out of includes to analogous ones. We give an account of corresponding the meta
theory and, e.g., state verification criteria that are easy to apply. Overall, we work with
the Mmt language [RK13] of theories and theory morphisms, providing us a fairly general
setting. This makes our contributions applicable to many declarative and typed languages,
incl. many logics, type theories, and set theories.

Regarding structuring features, we limit attention to the three simplest and arguably
most important features: definitions, inclusions, and morphisms. This choice is made for
brevity, and our results generalize to the more complex structuring features supported by
Mmt such as qualified inclusions.

We present several important operators as exemplary uses of our framework. First, we
consider logic-independent operators, i.e., operators that are applicable to formaliza-
tions over very weak logics, thus are rather domain-agnostic and of widespread use. As a
canonical example, we show the pushout operator which allows to apply many logic trans-
lations occurring in practice to entire diagrams. For example, assuming a theory morphism
from some formalized type theory to some variant of set theory, entire developments over
that type theory, i.e., diagrams, can be translated to set theory using the pushout operator.
Moreover, we consider proofs by logical relations (i.e., certain complex meta-theorems) and
give an operator to internalize them. Thus, we also use our framework to develop operators
that extend the underlying formal system with new features. We consider two refactoring-
inspired operators: one that abstracts every theory declaration over a new type, and one
that removes parameters of function declarations. While simple in nature, these operators
occur widely and can be composed with other operators to realize powerful operators: as a
culminating case study, as a composition of previous logic-independent operators we realize
the operator that systematically translates formalizations of type theory from intrinsic to
extrinsic style (following [RR21b]).

Second, as logic-dependent operators we consider the large example base of operators
for universal algebra. We phrase common universal constructions such as homomor-
phisms, substructures, and congruence structures as operators in our framework. Thus,
when applied to a diagram 𝐷 consisting of algebra theories, these operators yield corre-
sponding diagrams Hom(𝐷), Sub(𝐷), and Cong(𝐷). For example, Hom(𝐷) contains a theory
Hom(𝑇) formalizing the theory of homomorphisms between 𝑇 -models for every theory 𝑇 in
𝐷. Even though the underlying constructions are well-known, the level of formality and
generality in our setting forces us to invest considerable effort and novelty to generalize
them.

12 Structure-Preserving Diagram Operators

We have contributed an implementation of our framework and all logic-independent oper-
ators to the Mmt system [MMTb]. We touch on and refer to an extensive case study [RR21b]
for the logic-independent operators conducted, to the LATIN atlas [LATIN2] of modular for-
malizations of formal systems and logics [Cod+a]. (The implementation in the case study
has been solely developed by the author.)

Overview As preliminaries in Section 2, we recap Mmt and logical relations for a log-
ical framework. In Section 3 we motivate and develop the heart of this thesis: a frame-
work of structure-preserving diagram operators. We then proceed to give examples of
logic-independent operators in Section 4. Concretely, we give pushout in Section 4.1, the
refactoring-inspired operators to abstract declarations and remove parameters in Sections 4.2
and 4.3, and finally the operator to represent logical relations in Section 4.4. We present our
culminating case study of logic-independent operators in Section 4.5. In Section 5 we present
our logic-dependent operators for universal algebra with an introduction in Section 5.1, an
elaborate account of approaches for representing algebra theories to begin with in Section 5.2,
the actual operators in Sections 5.3–5.7, and a conclusion in Section 5.8. We showcase our
implementation and critical design decisions in Section 6. Finally, we conclude and point to
future work in Section 7.

1.5 Incorporated Material

Large parts of the present thesis are based on previous material by the author and, sometimes,
also their thesis advisor Florian Rabe. In every case, the material has been substantially
(co-)authored by the author. With explicit permission from Florian Rabe, some text parts of
this thesis are even based verbatim on that material. But more often than not, the author
has refined those parts to match the surrounding thesis. The below table compiles that
material and lists influenced sections.

N. Roux 13

Citation Form Title Authors Sections
[RR21c] conference

paper
(pub-
lished)

Structure-Preserving Dia-
gram Operators

Navid Roux, Flo-
rian Rabe

1–3, 4.1, 4.2, 5.3,
and 5.4, and abstract

[RR21b] conference
paper
(pub-
lished)

Systematic Translation of
Formalizations of Type The-
ory from Intrinsic to Extrin-
sic Style

Florian Rabe,
Navid Roux

2.2 and 4.3–4.5

[RR20] extended
abstract
(ac-
cepted) &
talk

Diagram Operators in a Log-
ical Framework

Navid Roux, Flo-
rian Rabe

4.5

[RR21a] conference
paper
(unpub-
lished)

Modular Formalization of
Formal Systems

Florian Rabe,
Navid Roux

4.3 and 4.4

[Rou21a] seminar
paper for
Master’s
studies

A Beginner’s Guide to Log-
ical Relations for a Logical
Framework

Navid Roux 2.2 and 4.4

[Rou21b] slides and
talk for
[Rou21a]

(ditto) Navid Roux (ditto)

[Rou20] Master’s
studies
project

Structure-Preserving Dia-
gram Operators

Navid Roux 4.2.3 and all men-
tioned for [RR21c]

14 Structure-Preserving Diagram Operators

2 Preliminaries

2.1 Mmt: A Module System over a Logical Framework
The logical framework LF [HHP93] is a dependent type theory designed for defining a wide
variety of formal systems including many variants of first- and higher-order logic and set
and type theory [Cod+a]. We work with LF as realized in Mmt language [Rab17a], which
induces a language of structured theories for any such formal system defined in LF. Mmt
uses structured theories and theory morphisms akin to algebraic specification languages
like OBJ [Gog+93] and CASL [Ast+02] We contribute our theoretical results to the Mmt
system [Rabb]1, the reference implementation of the Mmt language.

2.1.1 Flat Mmt/LF
We first discuss a reduced version of Mmt/LF and its semantics. The grammar for flat the-
ories and morphisms is given below.2 Later, we extend the grammar with the exemplary
structuring features of includes in theories and morphisms. The very goal of this thesis is
to provide a framework that allows specifying certain meta programs on the flat grammar
and automatically lifts them to the structured grammar.

Σ ∶∶= {(𝑐 ∶ 𝐴 [= 𝑡])∗} flat theories
𝜎 ∶∶= Σ → Σ′ = {(𝑐 ∶ 𝐴′ = 𝑡′)∗} flat morphisms
𝑓, 𝑡, 𝐴,𝐵 ∶∶= type | kind | 𝑐 | 𝑥 | 𝑓 𝑡 | terms

Π𝑥∶ 𝐴. 𝐵 | 𝜆𝑥∶ 𝐴. 𝑡

The flat theories are inspired by LF-style languages and are anonymous lists of type-
d/kinded constant declarations 𝑐 ∶ 𝐴 [= 𝑡] where 𝐴 is the type given to 𝑐 and 𝑡 an optional
definiens of type 𝐴. In a constant declaration, if 𝑡 is given, the whole declaration of 𝑐 acts
as an abbreviation. As usual, we write 𝐴 → 𝐴 for Π𝑥 ∶ 𝐴. 𝐴 when 𝑥 does not occur freely
in 𝐴. Constant declarations subsume many variants of type, function, predicate, function,
and axiom symbols.

Correspondingly, a flat morphism 𝜎 ∶ Σ → Σ′ specifies a compositional translation
between two flat theories Σ and Σ′ by stating an anonymous list of assignments 𝑐 ∶ 𝐴′ = 𝑡′.
Here, 𝑡′ is a Σ′-expression of type 𝜎(𝐴) (𝜎 being the homomorphic extension of 𝜎), and 𝐴′ is
a Σ′-expression that is Σ′-equal to 𝜎(𝐴). These conditions guarantee that the homomorphic
extension induced by every flat morphism 𝜎 is a compositional translation from Σ- to Σ′-
syntax that preserves all judgements, in particular typing and equality. For example, if 𝑡 is
an arbitrary, possibly complex, Σ-term of type 𝐴, then 𝜎(𝑡) is a Σ′-term of type 𝜎(𝐴). We
denote the identity morphism on a flat theory Σ by idΣ.

Both our choices to allow definitions in theories and to make explicit type annotations in
morphism assignments are non-standard within the LF community. In particular, we could
omit types in morphism assignments since they can be inferred anyway. However, these
choices enable a unified treatment of constants and assignments when specifying diagram
operators. In fact, under mild assumptions they must treat defined constants in the same

1 Source code at https://github.com/UniFormal/MMT, documentation at https://uniformal.github.
io/doc/

2 In the literature, flat theories and morphisms are somtimes referred to as signatures and signature
morphisms.

https://github.com/UniFormal/MMT
https://uniformal.github.io/doc/
https://uniformal.github.io/doc/

N. Roux 15

way as assignments anyway. Thus, having a unified syntax for constants and assignments
reduces clutter when stating operators and meta theorems, and implementing operators3.

We identify terms up to 𝛼-equivalence and will repeatedly assume freshness conditions
without loss of generality.

The following examples are all folklore (e.g., see [HHP93]) with nuances inspired by [LATIN2],
a larger archive of Mmt formalizations.

▶ Example 1 (Propositional Logic in Mmt/LF). Below we give the flat theory PL formalizing
a contrived subset of the syntax of propositional logic.

PL =
⎧{{
⎨{{⎩

prop ∶ type
∧ ∶ prop → prop
∨ ∶ prop → prop → prop
¬ ∶ prop → prop

⎫}}
⎬}}⎭

Concrete theories of propositional logic, i.e., where domain-specific atoms are available,
can be represented as PL-extensions as Σ = PL, {𝐴1 ∶ prop, ... , 𝐴𝑛 ∶ prop}, where we use the
comma to denote concatenation of flat theories.

In practice, the Mmt system allows to associate complex notations [Koh+09] with every
constant, e.g., including implicit arguments that are to be inferred when using that constant.
For brevity we skip introducing notations formally and simply use them informally. For
example, we casually write 𝐴1 ∧ 𝐴2 to mean ∧ 𝐴1 𝐴2.

▶ Example 2 (Sorted First-Order Logic in Mmt/LF). In Figure 1 we give a flat theory SFOL
defining sorted first-order logic (SFOL). The constants prop and tp are the LF-types holding
the TFOL-propositions and TFOL-types, respectively. For any TFOL-type 𝐴∶ tp, the LF-type
tm 𝐴 holds the TFOL-terms of TFOL-type 𝐴. Following the judgments-as-types paradigm, the
validity of a proposition 𝐹 ∶ prop is captured by the non-emptiness of the type ⊢ 𝐹 , which
holds the proofs of 𝐹 . We only give few connectives and proof rules as examples. Again,
we implicitly use casual notation, e.g., write ∀ 𝑝 to mean ∀ 𝑇 𝑝 for 𝑝 ∶ tm 𝑇 → prop from
context. Moreover, we use notation like ∀𝑥∶ tm 𝑇 . 𝑝 𝑥 to mean...

SFOL-theories can now be represented as SFOL-extensions (i.e., flat LF-theories that
begin with SFOL), and similarly SFOL-theory morphisms as idSFOL-extensions (i.e., flat LF-
morphisms that begin with the identity morphism of SFOL). More precisely, the image of
this representation contains theories that begin with SFOL and then only add declarations
of certain shapes, namely 𝑇 ∶ tp for a type symbol, 𝑓 ∶ tm 𝑇1 → ... → tm 𝑇𝑛 → tm 𝑇 for a
function symbol, 𝑝 ∶ tm 𝑇1→ ...→tm 𝑇𝑛→propprop for a predicate symbol, and 𝑎∶ ⊩ 𝐹 for
an axiom symbol. More generally, we can allow more patterns to achieve a representation
of polymorphic and dependently-typed SFOL. We will come back to that in Section 5.2.2.

Note that in the structured grammar of Mmt, SFOL could have been stated to include
PL, thus avoiding a lot of overhead. We avoided doing so because we have not yet introduced
the structured grammar.

▶ Example 3 (Specifying Algebra Theories as SFOL-Extensions). We specify the algebra theory

3 Moreover, the Mmt system has been successfully using this unified treatment internally for years, too.

16 Structure-Preserving Diagram Operators

SFOL =

⎧{{{{{{{{{{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{{{{{{{{{{⎩

prop ∶ type
⊩ ∶ prop → type
tp ∶ type
tm ∶ tp → type

/* propositional connectives & proof rules */
¬ ∶ prop → prop
∧,∨,⇒∶ prop → prop → prop
/* example of a derived connective */
⇔ ∶ prop → prop → prop

=𝜆𝐹 𝐺. (𝐹 ⇒ 𝐺) ∧ (𝐺 ⇒ 𝐹)
∧I ∶ Π𝐹 𝐺∶ prop. ⊩ 𝐹 →⊩ 𝐺 →⊩ 𝐹 ∧ 𝐺
∧EL ∶ Π𝐹 𝐺∶ prop. ⊩ 𝐹 ∧ 𝐺 →⊩ 𝐹
∧ER ∶ Π𝐹 𝐺∶ prop. ⊩ 𝐹 ∧ 𝐺 →⊩ 𝐺
∨IL ∶ Π𝐹 𝐺∶ prop. ⊩ 𝐹 →⊩ 𝐹 ∨ 𝐺
∨IR ∶ Π𝐹 𝐺∶ prop. ⊩ 𝐺 →⊩ 𝐹 ∨ 𝐺
∨E ∶ Π𝐹 𝐺∶ prop. ⊩ 𝐹 ∨ 𝐺 → Π𝐻 ∶ prop.

(⊩ 𝐹 →⊩ 𝐻) → (⊩ 𝐺 →⊩ 𝐻) →⊩ 𝐻
/* equality & proof rules */
≐ ∶ Π𝑇 ∶ tp. tm 𝑇 → tm 𝑇 → tm 𝑇
refl ∶ Π 𝑇 ∶ tp. Π 𝑡 ∶ tm 𝑇 . ⊩ 𝑡 ≐ 𝑡
symm ∶ Π 𝑇 ∶ tp. Π 𝑡1 𝑡2 ∶ tm 𝑇 . ⊩ 𝑡1 ≐ 𝑡2 → ⊩ 𝑡2 ≐ 𝑡1
trans ∶ Π 𝑇 ∶ tp. Π 𝑡1 𝑡2 𝑡3 ∶ tm 𝑇 . ⊩ 𝑡 ≐ 𝑡2 → ⊩ 𝑡2 ≐ 𝑡3 → ⊩ 𝑡1 ≐ 𝑡3
/* quantifiers & proof rules */
∀, ∃ ∶ Π𝑇 ∶ tp. (tm 𝑇 → prop) → prop

∀I ∶ Π 𝑇 ∶ tp. Π 𝑝 ∶ tm 𝑇 → prop. (Π𝑥∶ tm 𝑇 . ⊩ 𝑝 𝑥) →⊩ ∀𝑝
∀E ∶ Π 𝑇 ∶ tp. Π 𝑝 ∶ tm 𝑇 → prop. ⊩ ∀𝑝 → Π𝑥∶ tm 𝑇 . ⊩ 𝑝 𝑥
∃I ∶ Π 𝑇 ∶ tp. Π 𝑝 ∶ tm 𝑇 → prop. Π 𝑥∶ tm 𝑇 . ⊩ 𝑝 𝑥 → ∃𝑝
∃E ∶ Π 𝑇 ∶ tp. Π 𝑝 ∶ tm 𝑇 → prop. ⊩ ∃𝑝 → Π𝐹 ∶ prop.

(Π𝑥∶ tm 𝑇 . ⊩ 𝑝 𝑥 →⊩ 𝐹) →⊩ 𝐹

⎫}}}}}}}}}}}}}}}}}}}}}}}}}}
⎬}}}}}}}}}}}}}}}}}}}}}}}}}}⎭

Figure 1 Formalization of Sorted First-Order Logic

N. Roux 17

of monoids as an SFOL-extension:

Monoid = SFOL,

⎧{{{
⎨{{{⎩

𝑈 ∶ tp
∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈
𝑒 ∶ tm 𝑈
assoc ∶ ⊩ ∀𝑥 𝑦 𝑧 ∶ tm 𝑈. (𝑥 ∘ 𝑦) ∘ 𝑧 ≐ 𝑥 ∘ (𝑦 ∘ 𝑧)
neut ∶ ⊩ ∀𝑥∶ tm 𝑈. 𝑒 ∘ 𝑥 ≐ 𝑥

⎫}}}
⎬}}}⎭

Judgements Above we already alluded to certain well-typedness conditions. We now
introduce them a bit more formally as sufficient for our purposes (e.g., proving well-typedness
of diagram operators). Below we list the most important judgements and inference rules.

sig Σ (Σ is a valid flat theory)
mor 𝜎 ∶ Σ → Σ′ (𝜎 is a valid flat morphism Σ → Σ′)
⊢Σ 𝑐1 ∶ 𝐴1 [= 𝑡1], ... , 𝑐𝑛 ∶ 𝐴𝑛 [= 𝑡𝑛] (abbr. for: Σ, 𝑐1 ∶ 𝐴1 [= 𝑡1], ... , 𝑐𝑛 ∶ 𝐴𝑛 [= 𝑡𝑛]

is a valid flat theory)
⊢𝜎 𝑐1 ∶ 𝐴1 = 𝑡1, ... , 𝑐𝑛 ∶ 𝐴𝑛 = 𝑡𝑛 (abbr. for: 𝜎, 𝑐1 ∶ 𝐴1 = 𝑡1, ... , 𝑐𝑛 ∶ 𝐴𝑛 = 𝑡𝑛

is a valid flat morphism)
⊢Σ Γ (Γ is a valid context in Σ)
Γ ⊢Σ 𝑡 ∶ 𝐴 (𝑡 has type 𝐴 in Σ,Γ)
Γ ⊢Σ 𝑡 ≡ 𝑡′ (𝑡 and 𝑡′ are equal in Σ,Γ)

sig ⋅
sig Σ 𝑐 ∉ Σ (𝐴∶ type or 𝐴∶ kind) [𝑡 ∶ 𝐴]

sig Σ, 𝑐 ∶ 𝐴 [= 𝑡]
sig Σ′

mor ⋅ ∶ ⋅ → Σ′

mor 𝜎 ∶ Σ → Σ′ sig Σ, 𝑐 ∶ 𝐴 [= 𝑡] ⊢Σ′ 𝑡′ ∶ 𝐴′ ⊢Σ′ 𝐴′ ≡ 𝜎(𝐴) [⊢Σ′ 𝑡′ ≡ 𝜎(𝑡)]
mor 𝜎, 𝑐 ∶ 𝐴′ = 𝑡′ ∶ Σ, 𝑐 ∶ 𝐴 → Σ′

⊢Σ Γ 𝑥 ∉ Γ 𝐴∶ type
⊢Σ Γ, 𝑥∶ 𝐴

sig Σ ⊢Σ Γ (𝑐 ∶ 𝐴 [= 𝑡]) ∈ Σ
Γ ⊢Σ 𝑐 ∶ 𝐴

We refer to [HHP93, Tables 1 – 3] for details. In particular, in few proofs in the present
thesis, we will need to case-analyze on all inference rules and thus will make transparent use
of those listed in these tables. Concerning the interplay of judgements with Mmt, we refer
to [Rab17a] for details.

▶ Definition 4 (Homomorphic Extension). Let 𝜎 ∶ Σ → Σ′ be a signature morphism. The
homomorphic extension 𝜎 is given by

𝜎(𝑐) = 𝑡′ if (𝑐 ∶ 𝐴′ = 𝑡′) ∈ 𝜎

𝜎(type) = type 𝜎(kind) = kind
𝜎(𝑥) = 𝑥 𝜎(𝑓 𝑡) = 𝜎(𝑓) 𝜎(𝑡)

𝜎(Π𝑥∶ 𝐴. 𝐵) = Π𝑥∶ 𝜎(𝐴). 𝜎(𝐵) 𝜎(𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑥∶ 𝜎(𝐴). 𝜎(𝑡)
In the following, we simply write 𝜎 for 𝜎.

▶ Theorem 5 (Morphisms Preserve All Judgements). For every flat morphism 𝜎 ∶ Σ → Σ′ we
have

⊢Σ 𝑡 ∶ 𝐴 ⟹ ⊢Σ′ 𝜎(𝑡) ∶ 𝜎(𝐴)
⊢Σ 𝑡 ≡ 𝑡′ ⟹ ⊢Σ′ 𝜎(𝑡) ≡ 𝜎(𝑡′)

18 Structure-Preserving Diagram Operators

Proof. By induction, see [Rab17a]. ◀

Unless otherwise noted, we assume well-typedness of all (flat) theories and morphisms
mentioned throughout the whole thesis.

Semantics We very briefly give a categorical semantics to flat theories and morphisms, and
we refer to [Rab17a] for details.

▶ Definition 6 (Category of Theories). By 𝕃𝔽 we denote the category of flat theories and
morphisms where we identify morphisms 𝜎1, 𝜎2 ∶ Σ → Σ′ if for all 𝑐 ∈ Σ and respective
assignments (𝑐 ∶ 𝐴 = 𝑡) ∈ 𝜎 and (𝑐 ∶ 𝐴′ = 𝑡′) ∈ 𝜎′ we have ⊢Σ′ 𝐴 = 𝐴′ and ⊢Σ′ 𝑡 ≡ 𝑡′.

Morphism composition is denoted 𝜎′ ∘ 𝜎 and given by (𝜎′ ∘ 𝜎)(𝑐) = 𝜎′(𝜎(𝑐)).
When beneficial for understanding, we in particular call morphisms 𝑚∶ 𝑆 → 𝑇 realiza-

tions of 𝑆 (thinking of 𝑆 as an interface theory).

▶ Lemma 7 (Criterion for Morphism Equality). Two morphisms 𝜎1, 𝜎2 ∶ Σ → Σ′ in 𝕃𝔽 are
equal if for all constants 𝑐 ∈ Σ we have ⊢Σ′ 𝜎1(𝑐) = 𝜎2(𝑐).

Proof. For constants 𝑐 ∈ Σ and assignments (𝑐 ∶ 𝐴1 = 𝑡1) ∈ 𝜎1 and (𝑐 ∶ 𝐴2 = 𝑡2) we need
to check 𝐴1 = 𝐴2 and 𝑡1 = 𝑡2 over Σ′. The latter follows by assumption. And the former
follows by a meta theorem of LF that whenever two terms are equal, then their types are
equal, too. ◀

2.1.2 Structured Mmt/LF
We show the grammar of structured Mmt/LF in Figure 2. There and in the sequel, we
use 𝑆, 𝑇 for theory identifiers, 𝑣, 𝑤 for morphism identifiers, and 𝑐 and 𝑥 for constant and
variable identifiers, respectively. The underlined parts in the grammar in Figure 2 are the
structuring principles that LF inherits from Mmt and that give rise to structured theories
and morphisms. For simplicity, we restrict attention to the two most important structuring
principles: named theories/morphisms and includes. Include declarations allow combining
theories into theories and morphisms into morphisms. We omit defining well-typedness for
structured theories, morphisms, and diagrams and instead refer to [RK13, Sec. 6.3]. When
clear from context, we simply say theory or morphism to refer to either the flat or the
structured concept (or both when irrelevant).

The Mmt system provides further structuring features, in particular for translating the-
ories and renaming constants during an include. Some of these features have emerged from
practice, and are yet experimental. Their design, syntax, semantics, and their idiomatic
usage patterns are all subject to constant change, gauging what works best in practice for
developers and users of the Mmt system. In contrast to the case of flat theories, formal
specifications of more complex structuring features are often lengthy to write down in a
self-contained way (often lengthier than to implement). Thus, in our presentation we limit
ourselves to those structuring features presented in Figure 2 even though in our implemen-
tation we support the more advanced ones, too.

Semantics Central to our framework of diagram operators will be endofunctors on 𝕃𝔽.
Often, such operators will be logic-specific, i.e., they exclusively translate flat theories and
morphisms relative to some base such as SFOL and idSFOL, respectively. Hence we define:

▶ Definition 8 (Category of Theory Extensions). Consider a structured theory 𝑆. By 𝕃𝔽𝑆

we denote the category of flat 𝑆-extensions and flat 𝑆-extension morphisms, i.e., objects are

N. Roux 19

Diag ∶∶= (Thy | Mor | install 𝐷)∗ diagrams

Thy ∶∶= theory 𝑇 = {Decl ∗} theory definition
Decl ∶∶= 𝑐 ∶ 𝐴 [= 𝑡] | include 𝑇 declarations in a theory

Mor ∶∶= mor 𝑣 ∶ 𝑆 → 𝑇 = {Ass ∗} morphism definition
Ass ∶∶= 𝑐 ∶ 𝐴 = 𝑡 | include 𝑣 assignments in a morphism

𝑓, 𝑡, 𝐴,𝐵 ∶∶= type | kind | 𝑐 | 𝑥 | 𝑓 𝑡 | terms
Π𝑥∶ 𝐴. 𝐵 | 𝜆𝑥∶ 𝐴. 𝑡
𝜆𝑥∶ 𝐴. 𝑡 | Π𝑥∶ 𝐴. 𝐵

𝐷 ∶∶= Diagram(𝑇 ∗, 𝑣∗) | 𝑂(𝐷) diagram expressions

Figure 2 Mmt/LF Grammar

theories of the form 𝑆,Σ for flat Σ and morphisms are of the form id𝑆, 𝜎 for flat 𝜎. We
apply the same identification to morphisms as done in Definition 6.

When clear from context, we often refer to an object 𝑆,Σ and morphism id𝑆, 𝜎 simply
by Σ and 𝜎, respectively.

The semantics of Mmt structuring features is given by the flattening operation −♭ that
transforms structured theories and morphisms into flat ones as sketched in Figure 3. Using
flattening, we can define the faithful functor 𝜄𝑆 ∶ 𝕃𝔽𝑆 → 𝕃𝔽 that translates theories 𝑆,Σ to
𝑆♭, Σ and morphisms id𝑆, 𝜎 to id𝑆

♭, 𝜎.
We say a flat theory 𝑆 is included into a flat theory 𝑇 if 𝑆 ⊆ 𝑇 , and a structured theory

𝑆 is included into a structured theory 𝑇 if include 𝑆 occurs in the body of 𝑇 . Both
cases induce a canonical inclusion morphism and we write 𝑆 ↪ 𝑇 . Thus, inclusion is a
transitive relation on theories.

𝑆♭ = Σ♭ if 𝑆 = {Σ}
⋅♭ = ∅

(𝑐 ∶ 𝐴 [= 𝑡], Σ)♭ = 𝑐 ∶ 𝐴 [= 𝑡], Σ♭

(include 𝑇 ,Σ)♭ = 𝑇 ♭, Σ♭

𝑣♭ = 𝜎♭ if 𝑣 ∶ 𝑆 → 𝑇 = {𝜎}
⋅♭ = ∅

(𝑐 ∶ 𝐴 = 𝑡, 𝜎)♭ = 𝑐 ∶ 𝐴 = 𝑡, 𝜎♭

(include 𝑤, 𝜎)♭ = 𝑤♭, 𝜎♭.

Figure 3 Flattening of structured theories/morphisms

Diagram expressions 𝐷 were introduced in [RS19]: they are used as the third toplevel
declaration install 𝐷 in Figure 2, whose semantics is to declare all theories and morphisms
in 𝐷 at once. For our purposes, it is sufficient to consider only two simple cases for 𝐷:
Diagram(𝑇 ∗, 𝑣∗) builds an anonymous diagram by aggregating some previously defined the-
ories and morphisms. And 𝑂(𝐷) applies a diagram operator 𝑂 to the diagram 𝐷. Here, 𝑂
is simply an identifier that Mmt binds to a user-provided computation rule implemented in
the underlying programming language.

▶ Remark 9. The exact nature of diagram expressions and the install declaration in Mmt
is still somewhat of an open question. Here, we follow [RS19] and add them to the formal
syntax of the language. Alternatively, we could relegate all diagram expressions to the meta-
level. For example, a preprocessor could be used to compute 𝑂(𝐷) and generate the theory
and morphism declarations in it.

20 Structure-Preserving Diagram Operators

One indication against the latter is that we have already identified some operators that
take more arguments than just a diagram. For example, pushout takes a morphism 𝑚 and
returns the diagram operator 𝑂 = 𝑃𝑚. Such operators can benefit from a tight integration
with the type checker.

Further work with larger case studies is necessary to identify the most convenient syntax
and work flow for utilizing diagram operators. However, large case studies are best done
with structured diagrams, which is why we have prioritized the present work. In any case,
the work presented here is independent of how that question is answered, and the current
implementation can be easily adapted to other work flows.

Limitations In order to pin down the limitations of our work more precisely, we introduce
the following definition: A formal system is called straight if

its theories consist of lists of declarations 𝑐 ∶ 𝐴,
the well-formedness of theories is checked declaration-wise, i.e., Σ, 𝑐 ∶ 𝐴 is a well-formed
theory if 𝑐 is a fresh name and 𝐴 satisfies some well-formedness condition WFΣ(𝐴)
relative to Σ, and
WFΣ(𝐴) depends only on those declarations in Σ that can be reached by following the
occurs-in relation between declarations.

Thus, in a straight language, WFΣ(𝐴) can be reduced to WFΣ0
(𝐴) where Σ0 consists of the

set of declarations in Σ whose names transitively occur in 𝐴. We call Σ0 the dependencies
of 𝑐. In a straight language, it is easy and harmless to identify theories up to reordering
of declarations, and we will do so in the sequel.

Straightness is a very natural condition and is satisfied by LF and thus any formal system
defined in it. However, there are practically relevant counterexamples. Most of those use
proof obligations as part of defining WFΣ(𝐴) and discharging them may have to make use of
all declarations in Σ. Typical examples are languages with partial functions, subtyping, or
soft typing. (Many of these can be defined in LF as well, but only by enforcing straightness
at the cost of simplicity.) Moreover, any kind of backward references such as in mutually
recursive declarations violates straightness. We expect that our results can be generalized
to such languages, but we have not investigated that question yet.

2.2 Logical Relations for a Logical Framework
Logical relations are an established proof technique for deriving meta-level theorems of
formal systems. For example, they have been used to prove strong normalization, type
safety, and correctness of compiler optimizations in the setting of various type theories and
lambda calculi. Theories of logical relations have been stated for a wide range of formal
systems, including logical frameworks and Mmt [RS13]. The instantiation for Mmt allows
fully representing, and thus mechanically verifying, proofs by logical relations in Mmt.

Importantly, we not only make use of logical relations for proof, but also of logical
relations for data and use them as a tool to specify complex translations on Mmt/LF
terms. In particular operators from universal algebra presented in Section 5 are prone to
necessitate such complex translations. We only collect main definitions and theorems below.
For an introductory guide to logical relations with a special focus on their instantiation
in Mmt, we refer to the guide [Rou21a] by the author. It is based on lectures by Amal
Ahmed [Ahm13], for which typeset notes can be found at [Sko19]. For readers familiar with
logical relations, we refer to [RS13], which introduced them first for Mmt.

From now on by, when exclusively refer to logical relation in the sense of [RS13] for the
Mmt language. Consider some morphisms 𝑚1, ... ,𝑚𝑛 ∶ 𝑅 → 𝑆 between two theories 𝑆 and 𝑇 .

N. Roux 21

𝑟(𝑐) = 𝑟(𝑐)

𝑟(𝑥) = {𝑥∗ if 𝑥∗ was declared when traversing into the binder of 𝑥
undefined otherwise

𝑟(type) = 𝜆 𝑎1∶ type. ... 𝜆𝑎𝑛∶ type. 𝑚′
1(𝑎1)→...→𝑚′

𝑛(𝑎𝑛)→type
𝑟(Π𝑥∶ 𝐴. 𝐵) = Π𝑓1 ∶ 𝑚′

1(Π𝑥∶ 𝐴. 𝐵). ... Π𝑓𝑛 ∶ 𝑚′
𝑛(Π𝑥∶ 𝐴. 𝐵).

Π 𝑟(𝑥∶ 𝐴). 𝑟(𝐵) (𝑓1 𝑥1) ... (𝑓𝑛 𝑥𝑛)
𝑟(𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑟(𝑥∶ 𝐴). 𝑟(𝑡)

𝑟(𝑓 𝑡) = {𝑟(𝑓) 𝑚′
1(𝑡) ... 𝑚′

𝑛(𝑡) 𝑟(𝑡) if 𝑟(𝑡) defined
𝑟(𝑓) 𝑚′

1(𝑡) ... 𝑚′
𝑛(𝑡) otherwise

𝑟(⋅) = ⋅

𝑟(Γ, 𝑥∶ 𝐴) = 𝑟(Γ),{𝑥1 ∶ 𝑚′
1(𝐴), ... , 𝑥𝑛 ∶ 𝑚′

𝑛(𝐴), 𝑥∗ ∶ 𝑟(𝐴) 𝑥1 ... 𝑥𝑛 if 𝑟(𝐴) defined
𝑥1 ∶ 𝑚′

1(𝐴), ... , 𝑥𝑛 ∶ 𝑚′
𝑛(𝐴) otherwise

where 𝑟(−) is undefined whenever an expression of the right-hand side is, and where the
functions 𝑚′

𝑖 are given by 𝑚′
𝑖(𝑡) = 𝑚𝑖(𝑡)[𝑥 ↦ 𝑥(𝑖)] (i.e., 𝑚𝑖 postcomposed by a substitution).

Figure 4 Map induced by a Logical Relation (generalizing [RR21b, Fig. 4])

A logical relation 𝑟 is an object on 𝑚1, ... ,𝑚𝑛, and more concretely, a function from 𝑅-syntax
to 𝑆-syntax specified by assignments of the form 𝑟(𝑐) = 𝑡 for every 𝑐 ∈ 𝑅 subject to certain
typing conditions. For every type constant ⊢𝑅 𝑇 ∶ type, we require ⊢𝑆 𝑟(𝑇) ∶ 𝑚1(𝑇)→ ...→
𝑚𝑛(𝑇)→type, i.e., 𝑟(𝑇) must be an 𝑛-ary LF relation on the types 𝑚1(𝑇), ... ,𝑚𝑛(𝑇). And
for every corresponding term constant ⊢𝑆 𝑡 ∶ 𝑇 , we require ⊢𝑆 𝑟(𝑡) ∶ 𝑟(𝑇) 𝑚1(𝑡) ... 𝑚𝑛(𝑡),
i.e., 𝑟(𝑡) must be a proof of 𝑚1(𝑡), ... ,𝑚𝑛(𝑡) being in the relation 𝑟(𝑇) prescribed by 𝑟 at 𝑡’s
type. The following definitions makes things precise and lifts these intuitions to all terms.
In our presentation, we state for the first time the combination of two orthogonal flavors of
logical relations: flexarity from [RS13] and partiality from [RR21b].

▶ Definition 10 (Partial Logical Relations (generalizing [RS13, Def. 3.5] and [RR21b, Def. 2])).
A partial logical relation on morphisms 𝑚1, ... ,𝑚𝑛 ∶ 𝑅 → 𝑆 is a partial mapping of 𝑅-
constants to 𝑆-expressions such that for every 𝑅-constant 𝑐 ∶ 𝐴, if 𝑟(𝑐) is defined, then so is
𝑟(𝐴) and ⊢𝑆 𝑟(𝑐) ∶ 𝑟(𝐴) 𝑚1(𝑐) ... 𝑚𝑛(𝑐). The partial mapping 𝑟 of 𝑅-syntax to 𝑆-syntax is
defined in Figure 4.

We call 𝑟 term-total if it is defined for a typed constant if it is for the type. And we
call it total if the map is total, i.e., 𝑟 is defined for all constants in 𝑅.

In the sequel, we write 𝑟 for 𝑟.

Much of the interest in logical relations is derived from the following meta theorem,
often referred to as the Basic Lemma (or parametricity, abstraction, fundamental, or inde-
pendence theorem). Many important theorems such as strong normalization, type safety,
and correctness of compiler optimizations for the simply-typed lambda calculus (and many
related calculi) can be cast as corollaries of Basic Lemmas.

▶ Theorem 11 (Basic Lemma (generalizing [RS13, Thm. 3.9] and [RR21b, Thm. 2])). For a
partial logical relation 𝑟 on morphisms 𝑚1, ... ,𝑚𝑛 ∶ 𝑅 → 𝑆, we have

if Γ ⊢𝑅 𝑡 ∶ 𝐴 and 𝑟 is defined for 𝑡, then 𝑟 is defined for 𝐴 and

𝑟(Γ) ⊢𝑆 𝑟(𝑡) ∶ 𝑟(𝐴) 𝑚′
1(𝑡) ... 𝑚′

𝑛(𝑡)

22 Structure-Preserving Diagram Operators

if 𝑟 is term-total, it is defined for a typed term if it is for its type

Proof. See the proof of [RR21b, Thm. 2], accounting for flexarity being a straightforward
generalization. ◀

▶ Notation 12. In the case of logical relations on a single morphism 𝑚1, we pretend for
readability that Definition 10 and Theorem 11 simply used 𝑚1 everywhere instead of 𝑚′.

We conclude this section with a number of examples:

▶ Example 13 (Representing Type Preservation (based on [RR21b])). Consider the below
theories representing the base of hard and soft typed formal systems, respectively [RR21b].
(The theory for soft typing also formalizes a unit type whose necessity becomes apparent in
a second.)

theory HTyped = {
tp ∶ type
tm ∶ tp → type

}

theory STyped = {
tp ∶ type
term ∶ type
∶∶ ∶ term → tp → type

Unit ∶ type
unit ∶ Unit

}
We represent the type erasure translation from hard to soft typing as the morphism

TypeEras shown below on the left. Now we would like to state that for every hard-typed
term

⊢HTyped 𝑡 ∶ tm 𝑎
the type-erased image TypeEras(𝑡) fulfills the typing

⊢STyped TypeEras(𝑡) ∶ TypeEras(𝑡) ∶∶ 𝑎
We can cast this desired meta theorem as the unary logical relation on TypeEras shown
below on the right.

mor TypeEras ∶ HTyped → STyped = {
= =

}

TP(tp) = Unit
TP(tm) = 𝜆𝑇 ∶ tp. 𝜆𝑇 ∗ ∶ Unit.
𝑒𝑞𝑐𝑜𝑛𝑡𝜆𝑥∶ term. 𝑥 ∶∶ 𝑇 =

Note that we could use a partial logical relation to get rid of Unit that only acts as a
placeholder. We will do so below in Example 15.

Instantiating the Basic Lemma from Theorem 11 for TP, we get: for every hard-typed
term

⊢HTyped 𝑡 ∶ tm 𝑎
we have

⊢STyped TypeEras(𝑡) ∶ TypeEras(𝑡) ∶∶ TypeEras(𝑎)
which is exactly what we wanted (except for the minor generalization to TypeEras(𝑎) –
which makes sense anyway when considering hard-typed dependent function types later on).

Even though type preservation at the level of generality of HTyped (without any concrete
type formers) is not of much use, it serves as an instructive starter, which we will extend in
Example 83.

N. Roux 23

▶ Example 14 (Extending Type Preservation to Product Types (cont. Example 13; based
on [RS13, Sec. 5] and [RR21b, Sec. 4])). Consider the following formalizations of hard- and
soft-typed product types:

theory HProd = {
include HTyped
prod ∶ tp → tp → tp
pair ∶ Π 𝑎 𝑏. tm 𝑎 → tm 𝑏 →

tm prod 𝑎 𝑏
projL ∶ Π 𝑎 𝑏. tm prod 𝑎 𝑏 → tm 𝑎
projR ∶ Π 𝑎 𝑏. tm prod 𝑎 𝑏 → tm 𝑏

}

theory SProd = {
include STyped
prod ∶ tp → tp → tp
pair ∶ term → term → term
pair∗ ∶ Π 𝑎 𝑏. Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 → Π𝑦. ⊩ 𝑦 ∶∶ 𝑏 →

⊩ (pair𝑥 𝑦) ∶∶ (prod 𝑎 𝑏)
projL ∶ term → term
projL∗ ∶ Π 𝑎 𝑏. Π𝑥. ⊩ 𝑥 ∶∶ prod 𝑎 𝑏 →

⊩ projL𝑥 ∶∶ 𝑎
projR ∶ term → term
projR∗ ∶ Π 𝑎 𝑏. Π𝑥. ⊩ 𝑥 ∶∶ prod 𝑎 𝑏 →

⊩ projR𝑥 ∶∶ 𝑎
}

We now extend Example 13 to also capture type erasure and preservation from hard- to soft-
typed products:

mor TypePresProd ∶ HProd → SProd = {
= =

}

TP×(tp) = Unit
TP×(tm) = 𝜆𝑇 ∶ tp. 𝜆𝑇 ∗ ∶ Unit.

𝜆𝑥∶ term. 𝑥 ∶∶ 𝑇

TP×(prod) = 𝜆𝑎∶ tp. 𝜆𝑎∗ ∶ Unit. 𝜆𝑏 ∶ tp. 𝜆𝑏∗ ∶ Unit. unit
TP×(pair) = 𝜆𝑎∶ tp. 𝜆𝑎∗ ∶ Unit. 𝜆𝑏 ∶ tp. 𝜆𝑏∗ ∶ Unit. pair∗ 𝑎 𝑏
TP×(projL) = 𝜆𝑎∶ tp. 𝜆𝑎∗ ∶ Unit. 𝜆𝑏 ∶ tp. 𝜆𝑏∗ ∶ Unit. projL∗ 𝑎 𝑏
TP×(projR) = 𝜆𝑎∶ tp. 𝜆𝑎∗ ∶ Unit. 𝜆𝑏 ∶ tp. 𝜆𝑏∗ ∶ Unit. projR∗ 𝑎 𝑏

▶ Example 15 (Conveniently Representing Type Preservation (cont. Examples 13 and 14)). In
Example 14 we represented the type preservation property from hard- to soft-typed product
types using a total logical relation. The totality led to a lot of awkward Unit type arguments,
which we now get rid of by modifying TPto the following partial logical relation:

TP(tp) = ⊥
TP(tm) = 𝜆𝑇 ∶ tp. 𝜆𝑥∶ term. 𝑥 ∶∶ 𝑇

24 Structure-Preserving Diagram Operators

The corresponding logical relation for product types looks as follows:

TP×(tp) = ⊥
TP×(tm) = 𝜆𝑇 ∶ tp. 𝜆𝑥∶ term. 𝑥 ∶∶ 𝑇

TP×(prod) = ⊥
TP×(pair) = 𝜆𝑎∶ tp. 𝜆𝑏 ∶ tp. pair∗ 𝑎 𝑏
TP×(projL) = 𝜆𝑎∶ tp. 𝜆𝑏 ∶ tp. projL∗ 𝑎 𝑏
TP×(projR) = 𝜆𝑎∶ tp. 𝜆𝑏 ∶ tp. projR∗ 𝑎 𝑏

We observe that all unnecessary unit type arguments have gone.

N. Roux 25

3 A Framework of Diagram Operators

3.1 Motivating Example: The Pushout Operator
3.2 Linear Functors
Above we have identified a number of abstract structural properties of operators that enable
us to apply those operators at large scales with predictable outputs. We now identify a large
class of such operators that additionally have the property of being easy to state and verify.

3.2.1 Main Definition
▶ Definition 16 (Linear Functor). Given two theories 𝑆 and 𝑇 , we call a functor from a
subcategory of 𝕃𝔽𝑆 to 𝕃𝔽𝑇 linear if there is a partial binary function Δ−(−) such that

i) 𝑂 is defined declaration-wise on 𝑆-extensions:

𝑂(𝑆) = 𝑇 𝑂(𝑆,Σ, 𝑐 ∶ 𝐴 [= 𝑡]) = 𝑂(Σ),ΔΣ(𝑐 ∶ 𝐴 [= 𝑡])
where ΔΣ(𝑐 ∶ 𝐴 [= 𝑡]) is a list of constant declarations

ii) 𝑂 is defined similarly for 𝑆-extension morphisms 𝜎 ∶ 𝑆,Σ → 𝑆,Σ′:

𝑂(id𝑆) = id𝑇 𝑂(id𝑆, 𝜎, 𝑐 ∶ 𝐴 = 𝑡) = 𝑂(id𝑆, 𝜎),ΔΣ′(𝑐 ∶ 𝐴 = 𝑡)
where ΔΣ′(𝑐 ∶ 𝐴 = 𝑡) is a list of morphism assignments

iii) every declaration in ΔΣ(𝑐 ∶ 𝐴 [= 𝑡]) possesses a definiens whenever the input declaration
does (𝐴)

iv) the definedness and result of ΔΣ(𝑐 ∶ 𝐴 [= 𝑡]) are determined by ΔΣ0
(𝑐 ∶ 𝐴 [= 𝑡]) where Σ0

are the dependencies of 𝑐, and (𝐵)

We call 𝑆 and 𝑇 the functor’s domain and codomain, respectively, and Δ its linear
action.

The above definition is constructive in the sense that it provides us a scheme of conve-
niently defining linear functors. To define one, we simply need to state domain and codomain
theory and a translation mapping declarations individually. The same holds true for imple-
menting one (see also Section 6). Thus, linear functors are much easier to give than arbitrary
functors on Mmt theories.
▶ Example 17 (Pushout Functor (Running Example)). In Section 3.1 we have given an ad-
hoc specification of the pushout functor. We now give an equivalent specification using
Definition 16. Let 𝑚∶ 𝑆 → 𝑇 be a fixed theory morphism. Then define Push to be the linear
functor from 𝑆 to 𝑇 given by

Δ(𝑐 ∶ 𝐴 [= 𝑡]) = 𝑐 ∶ 𝑚Σ(𝐴) [= 𝑚Σ(𝑡)]
where 𝑚Σ(−) is the compositional translation from 𝑆- to 𝑇 -syntax defined as follows:

𝑚Σ(𝑐) = {𝑐 if 𝑐 ∈ Σ
𝑚(𝑐) otherwise

𝑚Σ(type) = type 𝑚Σ(kind) = kind
𝑚Σ(𝑥) = 𝑥 𝑚Σ(𝑓 𝑡) = 𝑚Σ(𝑓) 𝑚Σ(𝑡)

𝑚Σ(Π𝑥∶ 𝐴. 𝐵) = Π𝑥∶ 𝑚Σ(𝐴). 𝑚Σ(𝐵) 𝑚Σ(𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑥∶ 𝑚Σ(𝐴). 𝑚Σ(𝑡)

𝑚Σ(⋅) = ⋅ 𝑚Σ(Γ, 𝑥∶ 𝐴) = 𝑚Σ(Γ), 𝑥∶ 𝑚Σ(𝐴)

26 Structure-Preserving Diagram Operators

Note that the only interesting case of 𝑚Σ(−) is the one on constants. All other cases
are determined by compositionality, and we give them solely for the sake of completeness.
Bearing that in mind, we observe that this specification is already easier to digest than the
ad-hoc one previously given. This carries over to proofs of correctness, too, as we will see
in Examples 28 and 39.

Some very general linear functors even attain the extreme case in Definition 16 of 𝑆 =
𝑇 = ∅ (e.g., see the operators in Section 4.4).

We have the following basic property that establishes linear functor to fit the abstract
structural properties identified earlier in Section 3.1:

▶ Theorem 18. Every linear functor is functorial from 𝑆 to 𝑇 and preserves includes.

Proof. Straightforward. ◀

In contrast, functorial operators that preserve includes are not necessarily linear. For
example, by setting 𝑂(Σ) = {𝑐1_𝑐2 ∶ type ∣ 𝑐1, 𝑐2 ∈ Σ} we can define an operator that
produces a single declaration for every ordered pair of declarations in Σ. This operator still
preserves includes but fails to fulfill the above third requirement on linear operators.

In Example 17 we observe that the functionΔ also satisfies the following stricter property:

▶ Definition 19 (Strongly Linear Operator). A linear functor is called strongly linear if
ΔΣ(𝑐 ∶ 𝐴 [= 𝑡]) always contains exactly one declaration (when defined), which is also named
𝑐.

Strongly linear functors are even simpler to implement because – having fixed their
domain and codomain, they are already determined by a pair (𝐸, 𝑒) of expression translation
functions by means of ΔΣ(𝑐 ∶ 𝐴 [= 𝑡]) = 𝑐 ∶ 𝐸Σ(𝐴) [= 𝑒Σ(𝑡)]. These can be seen as one
translation function for types and one for typed terms. Thus, developers of functors only
need to worry about the inductive expression translation functions, and the framework can
take over all bureaucracy for names and declarations:

▶ Example 20 (Pushout Functor (cont. Example 17)). For a morphism 𝑚∶ 𝑆 → 𝑇 , the
pushout functor is the strongly linear functor given by 𝐸Σ = 𝑒Σ = 𝑚Σ.

Moreover, it is even simpler to check that two arbitrary functions (𝐸Σ, 𝑒Σ) induce a
strongly linear operator, and we refer to the below verification criteria in Section 3.2.2.

Even though for the pushout functor we even have 𝐸Σ = 𝑒Σ, this is not common enough
to deserve its own definition. However, it is often the case that 𝐸Σ and 𝑒Σ are very similar,
e.g., they might be the same except that 𝐸 inserts a Π-binder where 𝑒 inserts a 𝜆 one. (For
an example, see the strongly linear functor described in ??).
▶ Remark 21 (Name Clashes for Pushout). When defining the pushout functor so far (in
Examples 17 and 20), we have been skipping over one subtlety of name clashes. Consequently,
we have to exclude certain 𝑆-extensions from Push𝑚’s domain. However, since we left its
domain implicit anyway, nothing changes in our previous formal definitions.

Suppose 𝑐 ∈ Σ is a constant, then due to assumed validity of Σ the identifier 𝑐 is neces-
sarily fresh wrt. 𝑆. But it may happen that 𝑇 contains a constant with the same identifier,
thus Push𝑚(Σ) would be an invalid 𝑇 -extension. Following [Rab17a, Rem. 2.28] there are
multiple ways of resolving this problem, each way possibly sacrificing one property for an-
other one in a tension triangle. The simplest way (which we choose) is to sacrifice totality
and make Push undefined on those 𝑆-extensions whose identifiers clash with declarations in

N. Roux 27

𝑇 . We continue our discussion in our section on the pushout functor in Remark 43. Im-
portantly, in practice this problem does not appear anyway since the Mmt system employs
namespaces and identifiers that are qualified with theory names, see [Rab17a, Not. 2.29]
and [MmtURI].

The problem of name clashes is not unique to the pushout functor and appears for almost
all functors. Thus we declare:

▶ Notation 22 (Partiality of Functors). Unless otherwise noted, we take all our functors to
be partial by default, i.e., whenever we mention a functor 𝐹 ∶ 𝐴 → 𝐵, this functor will only
be defined on a subcategory of 𝐴. When clear from context, we usually omit mentioning this
subcategory explicitly. Correspondingly, we implicitly extend all mathematical properties
of a functor (functoriality, composition with other functors, etc.) to the partial case.

In particular, we adopt the convention that whenever we specify a linear functor 𝑂 from
𝑆 to 𝑇 with linear action Δ, we implicitly make it partial on 𝑆-extensions Σ whenever the
constants output by the linear action applied on Σ would nameclash with constants of 𝑇 .

3.2.2 Verification Criteria
Definition 16 condenses quite a few properties in one definition (linearity, well-typedness,
functoriality). In practice we almost always want to specify operators by giving a linear
action (making linearity hold by construction) and then proving the fulfillment of well-
typedness and functoriality. Indeed, the latter two properties are often non-trivial and
merit larger proofs and verification criteria, which we give in this section.

We phrase our criteria mimicking the situation that arises when specifying operators:
let 𝑆 and 𝑇 be two theories and let Δ be a linear action, i.e., a partial binary function
fulfilling properties Items iii and iv from Definition 16. Similarly to Items i and ii from
the same definition, we induce an operator 𝑂 that maps 𝑆-extensions to arbitrary, i.e.,
possibly ill-typed 𝑇 -extensions and that maps 𝑆-extension morphisms 𝜎 ∶ Σ → Σ′ also to
arbitrary 𝑇 -extension morphisms 𝑂(𝜎)∶ 𝑂(Σ) → 𝑂(Σ′). Notably, we do not require 𝑂 to be
a functor: otherwise our verification criteria would not be needed. This operator is linear by
construction. We call it well-typed if all theories and morphisms it outputs are well-typed.
And we call a well-typed operator functorial if it actually is a functor on subcategories of
𝕃𝔽 (see ??). We are now ready to spell out our verification criteria:

▶ Definition 23. For strongly linear actions (𝐸, 𝑒), we define:

(𝐸, 𝑒) preserve typing if

⊢𝑆
Σ 𝐴∶ type/kind ⟹ ⊢𝑇

𝑂(Σ) 𝐸Σ(𝐴)∶ type/kind

⊢𝑆
Σ 𝑡 ∶ 𝐴∶ type ⟹ ⊢𝑇

𝑂(Σ) 𝑒Σ(𝑡) ∶ 𝐸Σ(𝐴)

𝐸 preserves equality if

⊢𝑆
Σ 𝐴 ≡ 𝐴′ ∶ type/kind ⟹ ⊢𝑇

𝑂(Σ) 𝐸Σ(𝐴) ≡ 𝐸Σ(𝐴′)

𝐸 commutes with morphisms if for all 𝑆-extension morphisms 𝜎 ∶ Σ → Σ′

⊢𝑆
Σ 𝐴∶ type/kind ⟹ ⊢𝑇

𝑂(Σ) 𝑂(𝜎)(𝐸Σ(𝐴)) ≡ 𝐸Σ′(𝜎(𝐴))

𝑒 commutes with morphisms if for all 𝑆-extension morphisms 𝜎 ∶ Σ → Σ′

⊢𝑆
Σ 𝑡 ∶ 𝐴∶ type ⟹ ⊢𝑇

𝑂(Σ) 𝑂(𝜎)(𝑒Σ(𝑡)) ≡ 𝑒Σ′(𝜎(𝑡))

28 Structure-Preserving Diagram Operators

𝑒 preserves constants if

𝑐 ∈ Σ ⟹ ⊢𝑇
𝑂(Σ) 𝑒Σ(𝑐) ≡ 𝑐

▶ Theorem 24 (Well-Typedness Criterion for Linear Functor). The induced operator 𝑂 is
well-typed if and only if for all 𝑆-extensions Σ and 𝑆-extension morphisms 𝜎 we have:

⊢𝑆
Σ 𝑐 ∶ 𝐴 ⟹ ⊢𝑇

𝑂(Σ) ΔΣ(𝑐 ∶ 𝐴)
⊢𝑆
𝜎 𝑐 ∶ 𝐴 = 𝑡 ⟹ ⊢𝑇

𝑂(𝜎) ΔΣ(𝑐 ∶ 𝐴 = 𝑡)

Moreover, if 𝑂 is strongly linear and given by expression translation functions (𝐸, 𝑒), it
is sufficient for well-typedness of 𝑂 that (𝐸, 𝑒) preserve typing and 𝐸 preserves equality and
commutes with morphisms.

Proof. For the first claim, the forward implication immediately follows by instantiating the
well-typedness hypothesis for the theory 𝑂(𝑆,Σ, 𝑐 ∶ 𝐴) and the morphism 𝑂(id𝑆, 𝜎, 𝑐 ∶ 𝐴 = 𝑡).
The backward implication proceeds by inductions on the length of Σ and 𝜎, respectively.

We reduce the second claim to the first one. The condition on constant declarations
follows immediately from preservation of typing by the expression translation functions. For
assignments, we consider the following situation of an 𝑆-extension morphism (on the first
line) and its image under 𝑂 (second line):

Σ, 𝑐 ∶ 𝐴 Σ′

𝑂(Σ), 𝑐 ∶ 𝐸Σ(𝐴) 𝑂(Σ′)

𝜎,𝑐 ∶ 𝐴′ =𝑡

𝑂(𝜎),𝑐 ∶ 𝐸Σ′ (𝐴′)=𝑒Σ′ (𝑡)

We need to confirm that the arrow shown on the second line is indeed a morphism. By defini-
tion, we check i) ⊢𝑇

𝑂(Σ) 𝑒Σ′(𝑡) ∶ 𝐸Σ′(𝐴′) and ii) ⊢𝑇
𝑂(Σ) 𝑂(𝜎)(𝐸Σ(𝐴)) ≡ 𝐸Σ′(𝐴′) . The former

is immediate by preservation of typing. For the latter we use the remaining hypotheses and
compute 𝑂(𝜎)(𝐸Σ(𝐴)) ≡ 𝐸Σ′(𝜎(𝐴)) ≡ 𝐸Σ′(𝐴′) as desired. ◀

▶ Lemma 25 (Functoriality Criterion for Strongly Linear Operators). If 𝑂 is given by expression
translation functions (𝐸, 𝑒) and is well-typed, then it is functorial if and only if 𝑒 preserves
constants and commutes with morphisms.

▶ Corollary 26. If 𝑂 is induced by expression translation functions (𝐸, 𝑒), then it is well-
typed and functorial if and only if (𝐸, 𝑒) preserve typing and both commute with morphisms,
𝐸 preserves equality, and 𝑒 preserves constants.

The condition in Lemma 25 of preserving constants might look surprising because we
might be tempted to think that by induction it would make the translation 𝑒 the identity on
all terms (and thus the theory of strongly linear operators a trivial theory). But that needs
not be the case for two reasons. First, 𝑒 is only required to be the identity on constants
occurring in 𝑆-extensions and not necessarily on 𝑆-constants themselves. Second, 𝑒 does
not need to be compositional, thus even if it was the identity on all base cases, it would not
need to be the identity on complex terms.

Proof of Lemma 25. ⇐: We need to show that 𝑂 preserves identities and composition of
morphisms. The former immediately follows from 𝑒 preserving constants. For the latter,
consider 𝑆-extension morphisms Σ Σ′ Σ″𝜎 𝜎′

. We show the equality 𝑂(𝜎′ ∘ 𝜎) =

N. Roux 29

𝑂(𝜎′) ∘ 𝑂(𝜎) element-wise on constants (as per Lemma 7): Let 𝑐 ∈ 𝑂(Σ) be a constant; by
strong linearity 𝑐 is also a constant in Σ. In 𝑂(Σ″) we obtain the following equality chain:

𝑂(𝜎′ ∘ 𝜎)(𝑐) = 𝑒Σ″((𝜎′ ∘ 𝜎)(𝑐)) by strong linearity of 𝑂
= 𝑒Σ″(𝜎′(𝜎(𝑐))) by def. of morphism composition
= 𝑂(𝜎′)(𝑒Σ′(𝜎(𝑐))) by 𝑒 commuting with morphisms
= 𝑂(𝜎′)(𝑂(𝜎)(𝑒Σ(𝑐))) by 𝑒 commuting with morphisms
= (𝑂(𝜎′) ∘ 𝑂(𝜎))(𝑒Σ(𝑐)) by def. of morphism composition
= (𝑂(𝜎′) ∘ 𝑂(𝜎))(𝑐) by 𝑒 preserving constants

⇒: Let 𝑂 be functorial. Preservation of constants by 𝑒 immediately follows from 𝑂
preserving identities. We recover the commutation of 𝑒 with morphisms by a clever instan-
tiation of the hypothesis that 𝑂 preserves morphism compositions. Let ⊢𝑆

Σ 𝑡 ∶ 𝐴 be a term
and 𝜎 ∶ Σ → Σ′ an 𝑆-extension morphisms. We need to show ⊢𝑇

𝑂(Σ) 𝑂(𝜎)(𝑒Σ(𝑡)) ≡ 𝑒Σ′(𝜎(𝑡)).
To invoke functoriality, first consider the morphism chain

Σ, 𝑐 ∶ 𝐴 Σ, 𝑐 ∶ 𝐴 Σ′, 𝑐′ ∶ 𝜎(𝐴)idΣ,𝑐 ∶ 𝐴=𝑡 𝜎,𝑐 ∶ 𝜎(𝐴)=𝑐′

where we picked a constant identifier 𝑐 that is fresh among Σ, Σ′, 𝐴, 𝑡, 𝜎(𝑡), and 𝑒Σ(𝑡).
Applying 𝑂 and functoriality we get the commuting diagram below. (There and in the
following we omit the type component in assignments for readability.)

𝑂(Σ, 𝑐 ∶ 𝐴) 𝑂(Σ, 𝑐 ∶ 𝐴) 𝑂(Σ′, 𝑐′ ∶ 𝜎(𝐴))𝑂(idΣ,𝑐∶=𝑡)

𝑂((𝜎,𝑐∶=𝑐′)∘(idΣ,𝑐∶=𝑡))

𝑂(𝜎,𝑐∶=𝑐′)

We instantiate the commutation for the constant 𝑐 ∈ 𝑂(Σ, 𝑐 ∶ 𝐴) (existing by strong linearity).
For the the upper two morphisms applied on 𝑐 we get

(𝑂(𝜎, 𝑐 ∶= 𝑐′) ∘ 𝑂(idΣ, 𝑐 ∶= 𝑡)) (𝑐)
= 𝑂(𝜎, 𝑐 ∶= 𝑐′)(𝑒Σ,𝑐∶ 𝐴(𝑡)) by def.
= 𝑂(𝜎, 𝑐 ∶= 𝑐′)(𝑒Σ(𝑡)) by freshness of 𝑐 wrt. 𝑡
= 𝑂(𝜎)(𝑒Σ(𝑡)) by freshness of 𝑐 wrt. 𝑒Σ(𝑡)

And for the lower morphism applied on 𝑐 we get

𝑂((𝜎, 𝑐 ∶= 𝑐′) ∘ (idΣ, 𝑐 ∶= 𝑡))(𝑐)
= 𝑒Σ′,𝑐′ ∶ 𝜎(𝐴)(((𝜎, 𝑐 ∶= 𝑐′) ∘ (idΣ, 𝑐 ∶= 𝑡))(𝑐)) by def.
= 𝑒Σ′,𝑐′ ∶ 𝜎(𝐴)((𝜎, 𝑐 ∶= 𝑐′)(𝑡)) by def.
= 𝑒Σ′,𝑐′ ∶ 𝜎(𝐴)(𝜎(𝑡)) by freshness of 𝑐 wrt. 𝑡
= 𝑒Σ′(𝜎(𝑡)) by freshness of 𝑐′ wrt. 𝜎(𝑡)

The equality of the two final results is precisely what we needed to prove. ◀

Many of the hypotheses for functoriality needed in Lemma 25 can be let go if we require
𝑒 to be compositional:

30 Structure-Preserving Diagram Operators

▶ Corollary 27. Suppose 𝑂 is induced by expression translation functions (𝐸, 𝑒) where 𝑒 is
compositional, i.e., for all 𝑆-extensions Σ and well-typed LF terms it holds

𝑒Σ(type) = type 𝑒Σ(kind) = kind
𝑒Σ(𝑐) = 𝑐 𝑒Σ(𝑥) = 𝑥
𝑒Σ(𝑓 𝑡) = 𝑒Σ(𝑓) 𝑒Σ(𝑡)

𝑒Σ(Π𝑥∶ 𝐴. 𝐵) = Π𝑥∶ 𝑒Σ(𝐴). 𝑒Σ(𝐵) 𝑒Σ(𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑥∶ 𝑒Σ(𝐴). 𝑒Σ(𝑡)

Then 𝑂 is already functorial if it is well-typed.

Proof. We use Lemma 25 and show that commutation of 𝑒 with morphisms is already
implied by compositionality. We induct on terms ⊢𝑆

Σ 𝑡:

constants 𝑡 = 𝑐 ∈ Σ: we have 𝑂(𝜎)(𝑒Σ(𝑐)) = 𝑂(𝜎)(𝑐) = 𝑒Σ′(𝜎(𝑐)) by 𝑒 preserving
constants
constants 𝑐 ∈ 𝑆 from the operator’s domain: we note that 𝑒Σ(𝑐) = 𝑒(𝑐) must be a well-
typed term already over 𝑇 . Since 𝜎 (or 𝑂(𝜎)) is the identity on 𝑆 (or 𝑇), we conclude
𝑂(𝜎)(𝑒Σ(𝑐)) = 𝑒(𝑐) = 𝑒Σ′(𝑐) = 𝑒Σ′(𝜎(𝑐)).
complex cases: they all follow immediately by compositionality. For example for function
applications 𝑓 𝑡 we have

𝑂(𝜎)(𝑒Σ(𝑓 𝑡))
= 𝑂(𝜎)(𝑒Σ(𝑓) 𝑒Σ(𝑡)) by compositionality of 𝑒
= 𝑂(𝜎)(𝑒Σ(𝑓)) 𝑂(𝜎)(𝑒Σ(𝑡)) by compositionality of morphisms
= 𝑒Σ′(𝜎(𝑓)) 𝑒Σ′(𝜎(𝑡)) by induction hypotheses
= 𝑒Σ′(𝜎(𝑓) 𝜎(𝑡)) by compositionality of 𝑒
= 𝑒Σ′(𝜎(𝑓 𝑡)) by compositionality of morphisms

◀

▶ Example 28 (Pushout is Well-Typed and Functorial (cont. Example 20)). We consider the
specification of Push𝑚 by expression translation functions 𝐸 = 𝑒 = 𝑚Σ previously given in
Example 20 and verify the properties of the putative functor defined thereby.

For well-typedness, we use the criterion for strongly linear operators given in Theorem 24.
We apply induction on the following strengthened claims (adding contexts):

Γ ⊢𝑆
Σ 𝐴∶ type/kind ⟹ 𝑚Σ(Γ) ⊢𝑇

Push𝑚(Σ) 𝑚Σ(𝐴)∶ type/kind

Γ ⊢𝑆
Σ 𝑡 ∶ 𝐴 ⟹ 𝑚Σ(Γ) ⊢𝑇

Push𝑚(Σ) 𝑚Σ(𝑡) ∶ 𝑚Σ(𝐴)
Γ ⊢𝑆

Σ 𝐴 ≡ 𝐴′ ⟹ 𝑚Σ(Γ) ⊢𝑇
Push𝑚(Σ) 𝑚Σ(𝐴) ≡ 𝑚Σ(𝐴′)

In fact, the rather lengthy proof (which we omit here) necessitates further claims, e.g., on
contexts and reduction. Almost all cases easily follow from induction hypotheses. We only
present the critical case (const-obj) for the judgement listed on the second line above.
Given the judgement

⊢𝑆
Σ Γ 𝑐 ∶ 𝐴 ∈ 𝑆,Σ

Γ ⊢𝑆
Σ 𝑐 ∶ 𝐴

we need to show 𝑚Σ(Γ) ⊢𝑇
Push𝑚(Σ) 𝑚Σ(𝑐) ∶ 𝑚Σ(𝐴). In case 𝑐 was declared in 𝑆, we have

⊢𝑆 𝑐 ∶ 𝐴 and by applying the morphism 𝑚 we have ⊢𝑇 𝑚(𝑐) ∶ 𝑚(𝐴) since morphisms preserve
all judgements [Rab17a]. By noting 𝑚Σ(𝑐) = 𝑚(𝑐) and 𝑚Σ(𝐴) = 𝑚(𝐴) (since both 𝑐 and

N. Roux 31

𝐴 are 𝑆-terms) we have ⊢𝑇 𝑚Σ(𝑐) ∶ 𝑚Σ(𝐴). The goal now follows by the weakening theorem
of LF [HHP93] stating that LF judgements are stable under such extensions of signatures
and contexts. Otherwise if 𝑐 ∈ Σ, we have 𝑚Σ(𝑐) = 𝑐. By construction of Push𝑚, we have
⊢𝑇

Push𝑚(Σ) 𝑐 ∶ 𝑚Σ(𝐴) from which the goal again follows by weakening. For well-typedness, it
remains to show that 𝐸 commutes with morphisms. But this is clear since 𝐸 is compositional,
e.g., see the proof of Corollary 27 for analogous reasoning.

Since 𝑒 is compositional and we know that Push𝑚 is well-typed, we get functoriality for
free by Corollary 27.

3.3 Linear Connectors
While a functor maps theories 𝑋 to 𝑂(𝑋) and morphisms 𝑓 to 𝑂(𝑓), a connector from
𝑂 to 𝑂′ serves to interrelate their outputs by mapping theories 𝑋 to morphisms 𝑂(𝑋) →
𝑂′(𝑋). We can intuitively think of connectors as natural transformations between functors,
although certain technicalities make this imprecise in the formal sense. Thus, connectors
allow transporting content generated by one functor application to another. This feature
is critical for our overarching goal of achieving feature-complete and highly interrelated
standard libraries.

For example, for the pushout example from Section 3.1, assuming a morphism 𝑚∶ 𝑆 → 𝑇
we have already cast the functorial action as a linear functor Push𝑚 from 𝑆 to 𝑇 . With
connectors, we will be able to cast the generation of the family of morphisms 𝑚𝑋 for all
𝑆-extensions 𝑋 as a connector PushIn𝑚 from the identity functor Id to Push𝑚.

3.3.1 Main Definition
▶ Definition 29 (Linear Connector). Let 𝑂∶ 𝕃𝔽𝑆 → 𝕃𝔽𝑇 be a linear functor and 𝑂′ ∶ 𝕃𝔽𝑆 →
𝕃𝔽𝑇 ′ a functor. By 𝜄𝑇 ∶ 𝕃𝔽𝑇 → 𝕃𝔽 and 𝜄𝑇 ′ ∶ 𝕃𝔽𝑇 ′ → 𝕃𝔽 we denote the canonical functors
defined after Definition 8.

Let 𝑚∶ 𝑇 → 𝑇 ′ be a theory morphism. We call a natural transformation 𝐶 from 𝜄𝑇 ∘ 𝑂
to 𝜄𝑇 ′ ∘ 𝑂′ linear (or: a linear connector) over 𝑚 if there is a partial binary function
𝛿(−) such that

i) 𝐶 is defined for 𝑆-extensions declaration-wise:

𝐶(𝑆) = 𝑚 𝐶(𝑆,Σ, 𝑐 ∶ 𝐴) = 𝐶(𝑆,Σ), 𝛿Σ(𝑐 ∶ 𝐴)

where by 𝐶(−) we denote the morphism of the natural transformation at the theory given
as the argument

ii) whenever defined, the declarations in 𝛿Σ(𝑐 ∶ 𝐴) all possess definienses, and also have the
same names in the same order as the declarations in ΔΣ(𝑐 ∶ 𝐴) where Δ is the linear
action of 𝑂

iii) the definedness and result of 𝛿Σ(𝑐 ∶ 𝐴) are determined by 𝛿Σ0
(𝑐 ∶ 𝐴) where Σ0 are the

dependencies of 𝑐; moreover they may depend on the identifier 𝑐
We call 𝑂 and 𝑂′ the connector’s domain and codomain, respectively, and will often

say that 𝐶 is a connector “out of 𝑂” or “into 𝑂′”.
If clear from context, we will conflate 𝐶(−) with morphism application and, e.g., write

𝐶Σ(𝑡) to mean the translation of Σ-term 𝑡 under 𝐶(𝑆,Σ).
▶ Theorem 30. Every linear connector preserves includes.

Proof. Straightforward. ◀

32 Structure-Preserving Diagram Operators

Fixing 𝑚, linear connectors are uniquely determined by 𝛿 and vice versa. It is crucial for
the linear action of connectors to be handed the input constant’s identifier, see Example 32
below.

Connectors need not be defined for defined constants since morphisms, which connectors
serve to output, also need not be defined on them. Concretely, the definition can be induced
compositionally by apply the morphism on the constant’s definition.

▶ Definition 31. A linear connector out of a strongly linear functor is called strongly
linear if 𝛿Σ(𝑐 ∶ 𝐴) always contains exactly one declaration (when defined).

Analogously to strongly linear functors, having fixed 𝑂, 𝑂′, and 𝑚, strongly linear con-
nectors are already determined by a pair (ℰ, 𝜀) of expression translation functions by means
of 𝛿Σ(𝑐 ∶ 𝐴) = 𝑐 ∶ ℰ(𝑐 ∶ 𝐴) = 𝜀(𝑐 ∶ 𝐴). (However, in contrast to strongly linear functors, here
both functions are applied on the type of 𝑐.)

▶ Example 32 (Pushout Connector (cont. Example 20)). For a fixed morphism 𝑚∶ 𝑆 → 𝑇 ,
we define the connector PushIn𝑚 from the identity functor into the pushout functor Push
as the strongly linear connector over 𝑚 given by ℰ = 𝑚Σ and 𝜀(𝑐 ∶ 𝐴) = 𝑐. Its linear action
is thus given by

𝛿Σ(𝑐 ∶ 𝐴) = 𝑐 ∶ 𝑚Σ(𝐴) = 𝑐

To see what the connector does, consider an arbitrary 𝑆-extension Σ = {𝑐1, ... , 𝑐𝑛}.
Applying the connector, we get the morphism PushIn𝑚(Σ) = 𝑚, {𝑐1 ∶= 𝑐1, ... , 𝑐𝑛 ∶= 𝑐𝑛}
(In both cases we have omitted types for readability, and we explicitly included 𝑚 in the
notation for clarity.) We see that PushIn𝑚(Σ) on Σ a no-op and on 𝑆 identical to 𝑚. By
construction this is the same behavior as 𝑚Σ(−), and by a simple induction we can show
⊢𝑇

Push𝑚(Σ) PushIn𝑚,Σ(𝑡) = 𝑚Σ(𝑡) for every term ⊢𝑆
Σ 𝑡 ∶ 𝐴.

Thus, intuitively, we should be able to get rid of 𝑚Σ and only define the connector. How-
ever, this would require circular definitions: we would need PushIn𝑚 to define Push𝑚, and
we would need Push𝑚 to define PushIn𝑚 (to serve as the domain). In the implementation,
such a circular definition is feasible, merging the responsibilities of 𝑚Σ and PushIn𝑚. In
fact, not even recursion is needed.

Closure Properties of Functors & Connectors It is typical to compose functors with
one another and to compose connectors with one another. Thus, we state the following
closure properties:

▶ Theorem 33 (Category of Theory Extensions Categories). As objects consider the class4 of
theory extensions {𝕃𝔽𝑇 ∣ 𝑇 theory} and as morphisms one of

functors
include-preserving functors
linear functors
strongly linear functors

Every choice of morphisms listed above gives rise to a category. Moreover, in the above order
they form a strictly ordered chain of subcategories.

4 We gloss over size issues here and continue to use the terminology of class and category even for their
larger-sized analogues.

N. Roux 33

▶ Theorem 34 (Category of Theory Functors). Consider the following choices of objects and
morphisms:

functors and natural transformations
include-preserving functors and include-preserving connectors
linear functors and linear connnectors
strongly linear functors and strongly linear connectors

Every choice listed above gives rise to a category. Moreover, in the above order they form a
strictly ordered chain of subcategories.

Proof. Both theorems are straightforward to prove, albeit one needs to watch out to define
things suitably since our functors and connectors must allow for partiality. ◀

3.3.2 Verification Criteria
Definition 29 condenses quite a few properties in one definition (linearity, well-typedness,
naturality). As we did for linear functors, we want to offer verification criteria that disentan-
gle these properties into separate conditions. In practice we almost always specify putative
connectors by giving a linear action. Thus, linearity will always be fulfilled by construction.
But the other two properties are often non-trivial and merit being proven separately.

We phrase our criteria mimicking the situation that arises when specifying connectors:
Let 𝑂 be a linear functor with linear actionΔ and 𝑂′ be just a partial endofunctor on 𝕃𝔽. Let
𝛿 be a partial binary function fulfilling Items ii and iii from Definition 29. Similarly to Item i
from the same definition, we induce an operator 𝐶 that maps 𝑆-extensions Σ to arbitrary, i.e.,
possibly ill-typed morphisms 𝐶Σ ∶ 𝑂(Σ) → 𝑂′(Σ). This operator is linear by construction.
We call it well-typed if all morphisms it outputs are well-typed. And we additionally call it
natural if it actually is a natural transformation in the sense of Definition 29.

▶ Theorem 35 (Well-Typedness Criterion for Linear Connectors). The induced operator 𝐶 is
well-typed if and only if and only if for all 𝑆-extensions Σ we have

⊢𝑆
Σ 𝑐 ∶ 𝐴 ⟹ ⊢𝑇

𝐶(Σ) 𝛿Σ(𝑐 ∶ 𝐴)

Moreover, if 𝐶 is strongly linear and given by (ℰ, 𝜀), then it is well-typed if and only if
for all 𝑆-extensions Σ and constants 𝑐 ∈ Σ we have:

i) ⊢𝑇 ′
𝑂′(Σ) 𝐶Σ(𝐸Σ(𝐴)) = ℰ(𝐴)

ii) ⊢𝑇 ′
𝑂′(Σ) 𝜀(𝑐 ∶ 𝐴)∶ ℰ(𝑐 ∶ 𝐴)

Proof. By definition of well-typedness for morphisms. ◀

For reference and for the sake of completeness, we explicitly spell out what it means to
be natural:

▶ Theorem 36 (Naturality). Suppose the induced operator 𝐶 is well-typed out of a linear
functor given by linear action Δ. Then it is natural if and only if for all 𝑆-extension
morphisms 𝜎 ∶ Σ → Σ′ the square below on the right commutes.

Σ 𝑂(Σ) 𝑂′(Σ)

Σ̂ 𝑂(Σ̂) 𝑂′(Σ̂)

𝜎

𝐶Σ

𝑂(𝜎) 𝑂′(𝜎)
𝐶Σ̂

34 Structure-Preserving Diagram Operators

Concretely that means for all constants 𝑐 ∈ Σ and 𝑑 ∈ 𝛿Σ(𝑐) we have:

⊢𝑇 ′

𝑂(Σ̂) 𝐶Σ̂(𝑂(𝜎)(𝑑)) = 𝑂′(𝜎)(𝐶Σ(𝑑))

Proof. By definition of naturality as in category theory. ◀

▶ Corollary 37 (Naturality of Connector out of Identity). Suppose the induced operator 𝐶 is
well-typed and goes from the identity functor to a functor 𝑂′. Then it is natural if and only
if for all 𝑆-extension morphisms 𝜎 ∶ Σ → Σ′ the square below on the right commutes.

Σ Σ 𝑂′(Σ)

Σ̂ Σ̂ 𝑂′(Σ̂)

𝜎

𝐶Σ

𝜎 𝑂′(𝜎)
𝐶Σ̂

Concretely that means that for all constants 𝑐 ∈ Σ we have:

⊢𝑇
𝑂′(Σ̂) 𝐶Σ̂(𝜎(𝑐)) = 𝑂′(𝜎)(𝐶Σ(𝑐))

An often-occurring pattern for linear functors is to copy input declarations to systemati-
cally qualified copies. The following theorem establishes that projections of those constants
are always well-typed and natural:

▶ Theorem 38. Consider a well-typed linear functor 𝑂 that as part of its linear action Δ
copies every input declaration 𝑐 to a systematically qualified copy 𝑐𝑑 (for some arbitrary but
fixed tag 𝑑). Concretely, we assume

Δ(𝑐 ∶ 𝐴 [= 𝑡]) = … , 𝑐𝑑 ∶ 𝐴𝑑 [= 𝑡𝑑],…

where −𝑑 is the compositional translation on terms given by

type𝑑 = type kind𝑑 = kind
𝑐𝑑 = 𝑐𝑑 𝑥𝑑 = 𝑥𝑑

(𝑓 𝑡)𝑑 = 𝑓𝑑 𝑡𝑑
(Π𝑥∶ 𝐴. 𝐵)𝑑 = Π𝑥𝑑 ∶ 𝐴𝑑. 𝐵𝑑 (𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑥𝑑 ∶ 𝐴𝑑. 𝑡𝑑

where the cases for constants and variables are non-recursive (despite notation suggesting
that).

Then the strongly linear connector 𝐶 into 𝑂 given by

𝛿Σ(𝑐 ∶ 𝐴) = 𝑐 ∶ 𝐴𝑑 = 𝑐𝑑

is well-typed and natural.

▶ Example 39 (Connector into Pushout is Well-Typed and Natural (cont. Examples 20, 28,
and 32)). We verify the properties of the putative pushout connector that we have previously
defined in Example 32.

For well-typedness we use Theorem 35: let 𝑐 ∈ Σ be a constant in an 𝑆-extension Σ.
Condition i amounts to showing ⊢𝑇

Push𝑚(Σ) PushIn𝑚,Σ(𝐴) = 𝑚Σ(𝐴), which we already noted
in Example 32. And Condition ii amounts to showing ⊢𝑇

Push𝑚(Σ) 𝑐 ∶ 𝑚Σ(𝐴), which holds since
(𝑐 ∶ 𝑚Σ(𝐴)) ∈ Push𝑚(Σ) is a constant in Push𝑚(Σ) by the very construction of Push.

N. Roux 35

For naturality, we use ??: let 𝜎 ∶ Σ → Σ̃ be an 𝑆-extension morphism and 𝑐 ∈ Σ. We
start with the RHS and calculate

Push𝑚(𝜎)(PushIn𝑚,Σ(𝑐)) = Push𝑚(𝜎)(𝑐) = 𝑚Σ(𝜎(𝑐)) = PushIn𝑚,Σ(𝜎(𝑐))

obtaining the desired LHS.

▶ Corollary 40 (Naturality of Strongly Linear Connector into Identity). Suppose the induced
operator 𝐶 is well-typed and strongly linear (given by (ℰ, 𝜀) and goes from a strongly linear
functor 𝑂 (given by (𝐸, 𝑒)) into the identity. Then it is natural if and only if for all
𝑆-extension morphisms 𝜎 ∶ Σ → Σ′ the square below on the right commutes.

Σ 𝑂(Σ) Σ

Σ̂ 𝑂(Σ̂) Σ̂

𝜎

𝐶Σ

𝑂(𝜎) 𝜎

𝐶Σ̂

Concretely that means that for all assignments (𝑐 ∶ 𝐴 = 𝑡) ∈ 𝜎 we have:

⊢𝑆
Σ 𝐶Σ̂(𝑒Σ̂(𝑡)) = 𝜎(𝜀(𝐴))

3.4 Structure-Preserving Lifting
3.5 Related Work

36 Structure-Preserving Diagram Operators

Figure 5 Using pushout to translate whole developments between base languages

4 Logic-Independent Operators

Logic-independent operators work on all Mmt theories in principle or on all 𝑆-extensions
for 𝑆 representing a very small, i.e., weak theory. These operators are typically very foun-
dational and granted many use cases. A prime example is the pushout functor, which we
describe in the following.

4.1 Pushout

𝑆 𝑇

𝑋 Push𝑚(𝑋)

𝑚

PushIn𝑚(𝑋)

Let 𝑚∶ 𝑆 → 𝑇 be a fixed morphism between structured theories. The linear functor Push𝑚
maps 𝑆-extensions 𝑋 to the pushout Push𝑚(𝑋) depicted above. And the linear connector
PushIn𝑚 creates morphisms PushIn𝑚(𝑋)∶ 𝑋 → Push𝑚(𝑋) that extend the initial transla-
tion 𝑚 homomorphically.

The pushout operation is typical for compositionally transporting developments relative
to a base language 𝑆 to a different base language 𝑇 . Concretely, to represent a language
𝐿 (e.g., a type theory or logic) in LF, we usually employ an LF-theory 𝑆 to represent the
syntax and possibly proof calculus of 𝐿 [HHP93]. 𝐿-theories are then represented as LF-
theories extending 𝑆, and 𝐿-morphisms between 𝐿-theories as LF-morphisms that agree
with id𝑆. Now whenever for two languages represented as 𝑆 and 𝑇 we can phrase a desired
translation as a morphism 𝑚∶ 𝑆 → 𝑇 , then whole developments for the former language
(i.e., structured diagrams) can be translated to the latter language by means of Push𝑚, see
Figure 5. Moreover, we can relate 𝑆-diagrams and resulting 𝑇 -diagrams using PushIn𝑚. We
refer to [Rab17a] for examples of important language translations occurring in practice.

The same pushout functor and connector for the very same setting of Mmt theories and
morphisms have already been given in [Rab17a, Def. 2.26]. Effectively, our contribution is
to showcase how both can be easily phrased and proven correct in our framework of diagram
operators.

4.1.1 Definition

▶ Definition 41 (Pushout Functor). Let 𝑚∶ 𝑆 → 𝑇 be a morphism between two structured
theories. The strongly linear functor Push𝑚 from 𝑆 to 𝑇 is given by

𝐸 = 𝑒 = 𝑚Σ

N. Roux 37

where 𝑚Σ(−) is the compositional translation from 𝑆- to 𝑇 -syntax and given by

𝑚Σ(𝑐) = {𝑐 if 𝑐 ∈ Σ
𝑚(𝑐) otherwise

𝑚Σ(type) = type 𝑚Σ(kind) = kind
𝑚Σ(𝑥) = 𝑥 𝑚Σ(𝑓 𝑡) = 𝑚Σ(𝑓) 𝑚Σ(𝑡)

𝑚Σ(Π𝑥∶ 𝐴. 𝐵) = Π𝑥∶ 𝑚Σ(𝐴). 𝑚Σ(𝐵) 𝑚Σ(𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑥∶ 𝑚Σ(𝐴). 𝑚Σ(𝑡)

𝑚Σ(⋅) = ⋅ 𝑚Σ(Γ, 𝑥∶ 𝐴) = 𝑚Σ(Γ), 𝑥∶ 𝑚Σ(𝐴)

We only define Push𝑚 on those 𝑆-extensions whose constant identifier are fresh wrt.
those in 𝑇 .

▶ Definition 42 (Pushout Connector). For a morphism 𝑚∶ 𝑆 → 𝑇 , the strongly linear
connector PushIn𝑚 ∶ Id → Push𝑚 over 𝑚 is given by

PushIn𝑚,Σ(𝑐 ∶ 𝐴) = 𝑐

▶ Remark 43 (Partiality (cont. Remark 21)). In Remark 21 we already explained the subtlety
of name clashes, and Definition 41 now makes explicit our way of avoiding them by sacrificing
totality while still retaining natural identifiers. Following [Rab17a, Rem. 2.28], there are
multiple ways of resolving this problem, and sacrificing totality is just one way. Other
ways include either giving up on coherence properties or on choice of natural identifiers.
Here, coherence properties refers to functorial properties of Push along compositions of
morphisms [Rab17a, Def. 2.4], and natural identifiers refer to keeping input identifiers as
well as possible (at best the same, at worst prefixing/suffixing). We will prove some coherence
properties in Section 4.1.3.

Generally, in the setting of specification languages computing some colimit is usually easy
(provided one exists), but actually selecting a good representative of all possible colimits (the
one that the user works with) is non-trivial. We refer to [CMR16] (superseding [Rab17a]
in this regard), where this problem has been extensively studied. (However, we recommend
first consulting [Rab17a] as its setting closely matches ours).

4.1.2 Examples
▶ Example 44 (Pushouts for the Algebraic Hierarchy). Consider the following base theo-
ries for a formalization of the algebraic hierarchy:

theory Set = {
include SFOL
𝑈 ∶ tp

}

theory Magma = {
include Set
𝑈 ∶ tp
∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈

}

On top of those theories, we can formalize several

38 Structure-Preserving Diagram Operators

dozens of important algebra theories, e.g., monoids, groups, modules, fields, and vectorspaces.
Now for each algebra theory, we would also like to have formalized the corresponding finite
and commutative version. We can easily achieve this using pushout. First, we formalize the
respective commutative and finite base theories shown below.

theory FinSet = {
include Set
fin ∶ ⊩ ...

}

theory CommMagma = {
include Magma
comm ∶ ⊩ ∀𝑥 𝑦. tm 𝑈𝑥 ∘ 𝑦 ≐ 𝑦 ∘ 𝑥

}
Let us give the names 𝑖fin ∶ Set ↪ FinSet and 𝑖comm ∶ Magma ↪ CommMagma to the inclusion
morphisms. Then, we aggregate our algebraic hierarchy in two diagrams

𝐷Set = Diagram(Magma, Monoid, Group, ...)
𝐷Magma = Diagram(Monoid, Group, ...)

and obtain the finite and commutative versions in one liners, respectively:

install Push𝑖fin
(𝐷Set)

install Push𝑖comm
(𝐷Magma)

Pictorially, these statements issue the following theory-wise pushouts:

Set FinSet Magma CommMagma

𝑋 Push𝑖(𝑋) 𝑋 Push𝑗(𝑋)

𝑖 𝑗

Thus, the pushout functor allows to conveniently adjoin constants to whole developments.
See also Section 4.2.2 for a further example.

We have not introduced notations formally in the present thesis, but in practice pushout
can also be used to realize notation changes across whole developments. For example, con-
sider a development of group theory using a multiplicative notation (i.e., using ∘, −−1, and
1). Using a single pushout similar to above we can change it to an additive notation (i.e.,
using +, −, and 0).

Pushouts and colimits play a central role in identifying, translating, and combining logics
represented in Mmt [Rab17a]. We refer to the cited work for extensive examples.

We also refer to [Koh+] (coauthored by the author) for a user-practical application of
Mmt pushouts. There, pushouts are used for an educational 3D game to instantiate abstract
theorems, e.g., on trigonometry with concrete lengths and angles as measured by the player
in the game world.

N. Roux 39

4.1.3 Meta-Theoretical Properties
In Example 32 we already noted the result below and explained why, despite this result, we
needed to define both PushIn and 𝑚 instead of one merged definition.

▶ Proposition 45. For all terms ⊢𝑆
Σ 𝑡 we have

PushIn𝑚,Σ(𝑡) = 𝑚Σ(𝑡)

Proof. Straightforward by induction. ◀

▶ Theorem 46. Push𝑚 is well-typed and functorial.

Proof. Already proven in Example 28. ◀

▶ Theorem 47. PushIn𝑚 is well-typed and natural.

Proof. Already proven in Example 39. ◀

Many meta-theoretical properties of our pushout functor can be recovered from its cate-
gorical foundations, where it emerges as a special case. Consider a category 𝒞 with pushouts,
and for objects 𝑐 ∈ 𝒞 write 𝑐/𝒞 for the corresponding coslice category5. For every morphism
𝑚∶ 𝑐 → 𝑐′ we can define the functor 𝐹 ∶ 𝑐/𝒞 → 𝑐′/𝒞 that on objects 𝑢∶ 𝑐 → 𝑥 computes
some pushout along 𝑢 and 𝑚, and on morphisms (𝑢∶ 𝑐 → 𝑥) → (𝑣 ∶ 𝑐 → 𝑥′) computes some
universal morphism 𝐹𝑢 → 𝐹𝑣 out of the pushout 𝐹𝑢. General properties of such functors
are well-known and we refer to standard texts on category theory.

After all, we are more interested in properties that depend on our specific choice of
pushout because that choice matters to human end users. Accordingly, we present several
such results next.

Coherence Properties For varying morphisms 𝑚, we obtain varying pushout functors
Push𝑚. Coherence properties relate members of this family of functors. Consider Figure 6
for two exemplary properties that we will prove below. At the top, we illustrate that pushouts
of theories 𝑋 along identity morphisms yield 𝑋 again. And at the bottom, we illustrate
how the pushout functor distributes over morphism composition. Our results are strongly
guided by and do extend the results of Rabe [Rab17a, Defs. 2.4 and 2.26] who defines the
very same pushout functor in the very same setting of flat Mmt theories and morphisms
(modulo different notation).

We will phrase all coherence properties with two important caveats in mind. First, we
state all results only on flat theories and morphisms. In particular whenever we write Push𝑚
or PushIn𝑚 we mean the functor or connector and never their lifting to structured theories.
(Indeed, we leave supporting coherence properties on structured theories to future work, see
Section 7.2.) Second, we recall that we follow Notation 22 by which all of our functors and
natural transformations are assumed to be partial, and thus equalities are only required to
hold whenever both sides are defined.

▶ Theorem 48. Push− is a functor from 𝕃𝔽 to the category of theory extension categories
and strongly linear functors (see Theorem 33) where

on objects we set Push𝑆 = 𝕃𝔽𝑆

5 Objects of 𝑐/𝒞 are 𝒞-morphisms 𝑢∶ 𝑐 → 𝑥, and morphisms (𝑢∶ 𝑐 → 𝑥) → (𝑣 ∶ 𝑐 → 𝑥′) are 𝒞-morphisms
𝑥 → 𝑥′ that form a commuting triangle with 𝑢 and 𝑣.

40 Structure-Preserving Diagram Operators

𝑅 𝑅

𝑋 Pushid𝑅
(𝑋) = 𝑋

id𝑅

𝑅 𝑆 𝑇

𝑋 Push𝑚(𝑋) Push𝑛(Push𝑚(𝑋)) = Push𝑛∘𝑚(𝑋)

𝑚 𝑛

Figure 6 Exemplary Coherence Properties of Push on Flat Theories

on morphisms 𝑚∶ 𝑆 → 𝑇 we take Push𝑚 from Definition 41

Moreover, for a morphism 𝑚∶ 𝑆 → 𝑇 and two 𝑆-extensions 𝑋 and 𝑌 with 𝑋 ↪ 𝑌 we
have:

Push𝑚(𝑌) = PushPushIn𝑚(𝑋)(𝑌)

▶ Theorem 49. For two structured morphisms 𝑅 𝑚→ 𝑆 𝑛→ 𝑇 , the family of connectors
PushIn fulfills

PushInid𝑅
(𝑋) = id𝑋

PushIn𝑛∘𝑚(𝑋) = PushIn𝑛(Push𝑚(𝑋)) ∘ PushIn𝑚(𝑋)

and for two 𝑆-extensions 𝑋 and 𝑌 with 𝑋 ↪ 𝑌 we have

PushIn𝑚(𝑌) = PushInPushIn𝑚(𝑋)(𝑌)

We recommend looking at Figure 6 while perusing Theorem 49.
Theorem 48 subsumes the identities in [Rab17a, Def. 2.4] given there on the left side

in the first display math. Our theorem is stronger since it also encodes functoriality on
morphisms, namely Pushid𝑅

(𝜎) = 𝜎 and Push𝑛∘𝑚(𝜎) = Push𝑛(Push𝑚(𝜎)). And Theorem 49
amounts to exactly the identities in [Rab17a, Def. 2.4] given there on the right side. (In
fact, we simply copied Rabe’s identities into our notation since we have been unable to find
a concise categorical way to phrase Theorem 49, which would somehow nicely encode the
family of connectors given by PushIn.)

Proof of Theorem 48. To see that Pushid𝑆
is equal to the identity functor on 𝕃𝔽𝑆, note

that in Definition 41 the function 𝑚Σ collapses to the identity function on 𝑆-syntax.
For functoriality, consider two morphisms 𝑚∶ 𝑅 → 𝑆 and 𝑛∶ 𝑆 → 𝑇 . We prove that

Push𝑛 ∘ Push𝑚 and Push𝑛∘𝑚 are the same functors by showing 𝑛Push𝑚(Σ)(𝑚Σ(−)) = (𝑛 ∘
𝑚)Σ(−), i.e., equality of their expression translation functions. Since both functions are
compositional, it suffices to show equality on constants. For constants 𝑐 ∈ Σ we have
𝑛Push𝑚(Σ)(𝑚Σ(𝑐)) = 𝑛Push𝑚(Σ)(𝑐) = 𝑐 = (𝑛 ∘ 𝑚)Σ(𝑐), noting that for 𝑐 ∈ Σ we also have
𝑐 ∈ Push𝑚(Σ) by construction. And for constants 𝑐 ∈ 𝑅 we have

𝑛Push𝑚(Σ)(𝑚Σ(𝑐))
= 𝑛Push𝑚(Σ)(𝑚(𝑐)) since 𝑐 ∉ Σ
= 𝑛(𝑚(𝑐)) since 𝑚(𝑐) is an 𝑆-term
= (𝑛 ∘ 𝑚)(𝑐) by definition
= 𝑛 ∘ 𝑚Σ(𝑐) since 𝑐 ∈ 𝑅

N. Roux 41

◀

Proof of Theorem 49. We use Lemma 7 for all claims. For the first equality, we verify

PushInid𝑅
(𝑋)(𝑐) = {id𝑅(𝑐) 𝑐 ∈ 𝑅

𝑐 otherwise
} = 𝑐 = id𝑋(𝑐)

Similarly, for the second equality we verify (starting from the RHS)

(PushIn𝑛(Push𝑚(𝑋)) ∘ PushIn𝑚(𝑋))(𝑐)

={PushIn𝑛(Push𝑚(𝑋))(𝑚(𝑐)) 𝑐 ∈ 𝑅
PushIn𝑛(Push𝑚(𝑋)(𝑐)) otherwise

={𝑛(𝑚(𝑐)) 𝑐 ∈ 𝑅
𝑐

=PushIn𝑛∘𝑚(𝑋)(𝑐)

where in the third line we used that 𝑚(𝑐) is an 𝑆-term. Finally, for the third equality let
𝑐 ∈ 𝑌 be a constant and verify (starting from the RHS)

PushInPushIn𝑚(𝑋)(𝑌)(𝑐)

={PushIn𝑚(𝑋)(𝑐) if 𝑐 ∈ 𝑋
𝑐 otherwise

=
⎧{
⎨{⎩

{𝑚(𝑐) if 𝑐 ∈ 𝑆
𝑐 otherwise

if 𝑐 ∈ 𝑋

𝑐 otherwise

=PushIn𝑚(𝑌)(𝑐)

◀

4.2 Polymorphic Generalization

Typed Typed

𝑇 Poly(𝑇)

(Sel𝕋(𝑇))𝕋∶ tp

⋮

For(𝑇)

theory Typed = {
tp ∶ type

}

The strongly linear functor Poly on Typed abstracts every constant declaration over a new
type parameter 𝑢∶ tp. Every constant 𝑐 ∶ 𝐴 over a signature Σ is mapped to 𝑐 ∶ Π𝑢∶ tp. 𝐴Σ,𝑢,
where −Σ,𝑢 is the function that replaces every reference to a constant 𝑐′ ∈ Σ by 𝑐′ 𝑢. Thus,
all concepts represented in a theory 𝑇 become polymorphified in PolyΣ(𝑇). This is similar
to how in Kripke semantics the inference rules for all logic connectives but the modalities are
pointwise defined for every world, i.e., polymorphic in the world. The connector For maps
every 𝑇 -model to the Poly(𝑇)-model with constant polymorphism, i.e., where polymorphic

42 Structure-Preserving Diagram Operators

parameters are forgotten, making every polymorphic constant effectively monomorphic. And
for every 𝕋∶ tp, the connector Sel𝕋 maps every Poly(𝑇)-model to the monomorphic 𝑇 -model
by selecting the monomorphism at type 𝕋∶ tp.

To the best of our knowledge, the polymorphify operator, while folklore in principle, is
formalized here for the first time (except of course the original publication [RR21c] on which
this thesis is based).

Let us look at an example before spelling out formal details. We can obtain a large class
of examples by special-casing to SPoly, the strongly linear functor on SFOL that acts like
Poly except that it is the identity on SFOL. Applying the preliminary definition above, we
see that SPoly maps SFOL-declarations6 as follows:

Every type symbol 𝑇 ∶ tp yields a unary type operator 𝑇 ∶ Π𝑢∶ tp. tp (i.e., 𝑇 ∶ tp → tp).
Every function symbol 𝑓 ∶ tm 𝑇1 → ... → tm 𝑇𝑛 → tm 𝑇 yields a polymorphic function
symbol.
Every predicate symbol is mapped in esentially the same way as function symbols.
Every axiom symbol ax ∶ ⊩ 𝐹 yields an axiom ax ∶ ⊩ Π𝑢 ∶ tp. 𝐹Σ,𝑢 where the operation
−Σ,𝑢 now affects all type, function, and predicate symbols occuring in 𝐹 .

▶ Example 50 (SPoly(Monoid) is the Theory of Lists). Recall the SFOL-theory Monoid from
Example 3. Applying SPoly yields:

theory SPoly(Monoid) = {
include SFOL
𝑈 ∶ Π𝑢. tp
∘ ∶ Π𝑢. tm 𝑈 𝑢 → tm 𝑈 𝑢 → tm 𝑈 𝑢
𝑒 ∶ Π𝑢. tm 𝑈 𝑢
assoc ∶ Π 𝑢. ⊩ ∀𝑥 𝑦 𝑧 ∶ tm 𝑈 𝑢. (𝑥 ∘𝑢 𝑦) ∘𝑢 𝑧 ≐ 𝑥 ∘𝑢 (𝑦 ∘𝑢 𝑧)
neut ∶ Π 𝑢. ⊩ ∀𝑥∶ tm 𝑈 𝑢. 𝑒𝑢 ∘𝑢 𝑥 ≐ 𝑥

}

Above, we denoted application of function symbols (such as ∘ and 𝑒) to 𝑢 by superscripts
to enhance readability, e.g., we write 𝑒𝑢 to mean 𝑒 𝑢.

The theory SPoly(Monoid) looks close to the theory of polymorphic lists with 𝑈 𝑢 for
the type of lists over 𝑢 and ∘ and 𝑒 for concatenation and empty list. Similarly, magmas,
commutative monoids, and commutative-idempotent monoids yield theories close to the
collection data types for trees, multisets, and sets. In all of these cases, the only thing missing
to complete the specification of the collection data types is an operator single ∶ Π 𝑢. tm 𝑢 →
tm 𝑈 𝑢 for creating singleton trees, lists, and sets. We can easily adjoin such a constant using
the pushout functor from Section 4.1, and we come back to this in Section 4.2.2.

4.2.1 Definition
We now head to formally defining Poly. Above, we carelessly said to map every 𝑐 ∶ 𝐴 to
𝑐 ∶ Π𝑢∶ tp. 𝑐Σ,𝑢 where 𝑐Σ,𝑢 emerges from 𝑐 by replacing every reference to 𝑐′ ∈ Σ by 𝑐′ 𝑢. In
reality, we have to ensure that the 𝑢 in 𝑐′ 𝑢 really refers to the 𝑢 as bound by the outermost
Π𝑢∶ tp that we introduced. To prevent otherwise occurring nameclashes, we have to choose
the identifier 𝑢 such that it is fresh among all free and bound variables. Therefore, we define:

6 See Definition 98 for details on SFOL patterns.

N. Roux 43

▶ Definition 51 (All Variables). Define the set-valued function AV(⋅) on Mmt syntax (terms
and contexts):

AV(𝑐) = AV(type) = AV(kind) = ∅
AV(𝑥) = {𝑥} AV(𝑓 𝑡) = AV(𝑓) ∪AV(𝑡)

AV(Π𝑥∶ 𝐴. 𝐵) = {𝑥} ∪AV(𝐴) ∪AV(𝐵) AV(𝜆𝑥∶ 𝐴. 𝑡) = {𝑥} ∪AV(𝐴) ∪AV(𝑡)

AV(⋅) = ∅ AV(Γ, 𝑥∶ 𝐴) = AV(Γ) ∪ {𝑥} ∪AV(𝐴)

We call a term 𝑡 (analouglsy: a context Γ) AV-fresh wrt. an identifier 𝑢 if 𝑢 ∉ AV(𝑡).

▶ Definition 52 (Constant Indexing). Let Σ be a flat theory and 𝑢 an identifier. We define
the function −Σ,𝑢 on terms and contexts that are AV-fresh wrt. 𝑢 as follows:

𝑐Σ,𝑢 = {𝑐 𝑢 if 𝑐 ∈ Σ
𝑐 else

typeΣ,𝑢 = type kindΣ,𝑢 = kind
𝑥Σ,𝑢 = 𝑥 (𝑓 𝑡)Σ,𝑢 = 𝑓Σ,𝑢 𝑡Σ,𝑢

(𝜆𝑥∶ 𝐴. 𝑡)Σ,𝑢 = 𝜆𝑥∶ 𝐴Σ,𝑢. 𝑡Σ,𝑢 (Π𝑥∶ 𝐴. 𝐵)Σ,𝑢 = Π𝑥∶ 𝐴Σ,𝑢. 𝐵Σ,𝑢

⋅Σ,𝑢 = ⋅ (Γ, 𝑥∶ 𝐴)Σ,𝑢 = ΓΣ,𝑢, 𝑥 ∶ 𝐴Σ,𝑢

▶ Definition 53 (Poly). The strongly linear functor Poly on Typed is given by expression
translation functions

𝐸Σ(𝐴) = Π𝑢∶ tp. 𝐴Σ,𝑢 𝑒Σ(𝑡) = 𝜆𝑢∶ tp. 𝑡Σ,𝑢

where in both definitions, respectively, the identifier 𝑢 is chosen adaptively such that 𝐴 and
𝑡 are AV-fresh wrt. 𝑢.

We might be tempted to think that the adaptive choice of the identifier 𝑢 introduces
some kind of “non-uniformity” and thus breaks key properties of Poly such as well-typedness
or functoriality, or works unpredicatbly from a user’s perspective. Importantly, this is not
the case. By 𝛼-equivalence built into the Mmt/LF calculus, choices of variable identifiers
(such as 𝑢) are completely transparent to formalism and end users. The only way variable
identifiers can be observed is by inspection of syntax trees output by applications of Poly;
in particular when humans read generated source code. Moreover, note that even the occur-
rence of 𝑢 as a constant identifier in Σ is harmless since the Mmt/LF syntax distinguishes
between references to constants and variables anyway.

We now define the connectors into and out of Poly illustrated in Figure 7.

▶ Definition 54 (Forgetful Connector out of Poly). The strongly linear connector For ∶ Poly →
Id is given by

ForΣ(𝑐 ∶ 𝐴) = 𝜆_ ∶ tp. 𝑐

▶ Definition 55 (Selective Connectors into Poly). For a fixed type ⊢Typed 𝕋∶ tp, the strongly
linear connector Sel𝕋 ∶ Id → Poly is given by

Sel𝕋
Σ(𝑐 ∶ 𝐴) = 𝑐 𝕋

44 Structure-Preserving Diagram Operators

Typed Typed

𝑇 Poly(𝑇)

(Sel𝕋(𝑇))𝕋∶ tp

⋮

For(𝑇)

Figure 7 Connectors into and out of Poly

Set Magma Monoid CommIdemMonoid

SPoly(Set) SPoly(Magma) SPoly(Monoid) SPoly(CommIdemMonoid)

Singleton Trees Lists Sets

Figure 8 Recovering collection data types: diagrams Magmas and results of applying SPoly and
Push

To get a feel for Definitions 54 and 55, consider a Typed-extension 𝑆 and a constant 𝑐 ∶ 𝐴
declared in 𝑆. By means of Poly this constant is mapped to 𝑐 ∶ Π𝑢 ∶ tp. 𝐴Σ,𝑢 in Poly(𝑆).
And the morphism For(𝑆) ∶ Poly(𝑆) → 𝑆 forgets the polymorphism and interprets the
family of constructors represented by 𝑐 in Poly(𝑆) as the constant family 𝜆_ ∶ tp. 𝑐 in 𝑆.
This way, For maps every 𝑆-model to the Poly(𝑆)-model with constant polymorphism, i.e.,
where polymorphic parameters are forgotten, making every polymorphic constant effectively
monomorphic.

In the other direction, consider additionally a fixed type ⊢Typed
𝑆 𝕋∶ tp. The morphism

Sel𝕋(𝑆) ∶ 𝑆 → PolyΣ(𝑆) maps the constant 𝑐 in 𝑆 to the family member 𝑐 𝕋 at index 𝕋 of
the family of constructors represented by 𝑐 in PolyΣ(𝑆) at index 𝕋. This way, Sel𝕋 maps
every Poly(𝑆)-model to the monomorphic 𝑆-model by selecting the monomorphism at type
𝕋∶ tp.

Note that formally there is not even a single type ⊢Typed
Σ 𝕋∶ tp that one can construct.

However, as stated below, all results of Poly that we later collect in Section 4.2.4 carry
over to the case of functors that act like Poly, but are the identity on some fixed 𝐸 for all
Typed-extensions 𝐸.

▶ Theorem 56. Consider a Typed-extension 𝐸. All results collected in Section 4.2.4 seam-
lessly carry over to the functor 𝐸PolyΣ that acts like Poly, but is the identity on 𝐸.

Proof. The only assumption that all proofs in Section 4.2.4 make is the existence of the
constant tp ∶ type in Typed. Thus, enlarging the functor’s (co)domain to a Typed-extension
𝐸 preserves the validity of all proofs. ◀

N. Roux 45

4.2.2 Application to Algebraic Hierarchy: Recovering Collection Data
Types

SFOL SFOL

𝑇 SPoly(𝑇)

(Sel𝕋(𝑇))𝕋∶ tp

⋮

For(𝑇)

Recall Example 50, where we applied SPoly to the theory Monoid and obtained a theory
close to the theory of polymorphic lists. We now continue this example and recover formal-
izations of collection data types by applying functors SPoly and the pushout functor Push
(from Section 4.1) to the algebraic hierarchy. In principle, the similarity that we exploit
between well-known algebra theories within mathematics and well-known data structures
within computer science is folklore [Bun93]. However, to the best of our knowledge, our
methodology of transforming the former for obtaining the latter is novel, and the closest
work we are aware of is an unpublished draft [CAK17, Part IV], where this transformation
is carried out manually (i.e., without applying meta-programs as we do).

Consider the diagram Magmas depicted in the first row of Figure 8, which modifies and
extends the previous example to a small hierarchy of algebra theories. To be self-contained,
we show the complete source in Figure 9. Applying SPoly to Magmas yields the diagram in the
second row of Figure 8, whose source is shown in Figure 10. We observe that SPoly(Magma)
is a formalization close to the one of trees, SPoly(Monoid) to the one of lists (as discussed
in Example 50), and SPoly(CommIdemMonoid) to the one of sets.

In every case, the missing ingredient to SPoly(𝑇) for 𝑇 ∈ {Magma, Monoid, CommIdemMonoid}
to become a complete specification of the collection datatype of trees, lists, and sets, respec-
tively, is an operator for creating singleton trees, lists, and sets. We can uniformly inject it
into all theories in the diagram by defining the theory

theory Singleton = {include SPoly(Set), singleton ∶ Π𝑢∶ tp. tm 𝑢 → tm 𝑈 𝑢}

and then applying the pushout functor Push𝑖 along the inclusion morphism 𝑖 ∶ SPoly(Set) ↪
Singleton. The result is shown in the third row of Figure 8.

Boom Hierarchy So far, we have only looked at a small, fixed part of the algebraic
hierarchy. We now extend our picture and systematically apply our methodology to a
much more fine-grained algebraic hierarchy. Thereby, we will be able to cherry-pick data
structures by combining abstract mathematical properties. For a theory 𝑆 extending Magma
(given in Figure 9) consider the following mathematical properties and corresponding Mmt
formalizations:

Property Representation as constants extending Magma
unital 𝑒 ∶ tm 𝑈

neut ∶ ⊩ ∀𝑥. (𝑒 ∘ 𝑥 ≐ 𝑥) ∧ (𝑥 ∘ 𝑒 ≐ 𝑥)
commutativity comm ∶ ∀ 𝑥 𝑦. 𝑥 ∘ 𝑦 ≐ 𝑦 ∘ 𝑥
associativity assoc ∶ ⊩ ∀𝑥 𝑦 𝑧. (𝑥 ∘ 𝑦) ∘ 𝑧 ≐ 𝑥 ∘ (𝑦 ∘ 𝑧)
idempotence idem ∶ ⊩ ∀𝑥. 𝑥 ∘ 𝑥 ≐ 𝑥
invertibility (extending unital) inv ∶ tm 𝑈 → tm 𝑈

invax ∶ ⊩ ∀𝑥. (𝑥 ∘ 𝑥−1 ≐ 𝑒) ∧ (𝑥−1 ∘ 𝑥 ≐ 𝑒)

46 Structure-Preserving Diagram Operators

theory Set = {
include SFOL
𝑈 ∶ tp

}

theory Magma = {
include Set
∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈

}

theory Monoid = {
include Set
𝑒 ∶ tm 𝑈
assoc ∶ ⊩ ∀𝑥 𝑦 𝑧 ∶ tm 𝑈. (𝑥 ∘ 𝑦) ∘ 𝑧 ≐ 𝑥 ∘ (𝑦 ∘ 𝑧)
neut ∶ ⊩ ∀𝑥∶ tm 𝑈. 𝑒 ∘ 𝑥 ≐ 𝑥

}

theory CommIdemMonoid = {
include Monoid
comm ∶ ⊩ ∀𝑥 𝑦 ∶ tm 𝑈. 𝑥 ∘ 𝑦 ≐ 𝑦 ∘ 𝑥
idem ∶ ⊩ ∀𝑥. 𝑥 ∘ 𝑥 ≐ 𝑥

}
Magmas = diag(Set, Magma, Monoid, CommIdemMonoid)

Figure 9 Source of small algebraic hierarchy for Figure 8

theory SPoly(Set) = {
𝑈 ∶ tp → tp

}

theory SPoly(Magma) = {
include SPoly(Set)
∘ ∶ Π𝑢∶ tp. tm 𝑈 𝑢 → tm 𝑈 𝑢 → tm 𝑈 𝑢

}

theory SPoly(Monoid) = {
include SPoly(Magma)
𝑒 ∶ Π𝑢. tm 𝑈 𝑢
assoc ∶ Π 𝑢. ⊩ ∀𝑥 𝑦 𝑧 ∶ tm 𝑈 𝑢.

(𝑥 ∘𝑢 𝑦) ∘𝑢 𝑧 ≐ 𝑥 ∘𝑢 (𝑦 ∘𝑢 𝑧)
neut ∶ Π 𝑢. ⊩ ∀𝑥∶ tm 𝑈 𝑢. 𝑒𝑢 ∘𝑢 𝑥 ≐ 𝑥

}

theory SPoly(CommIdemMonoid) = {
include SPoly(Monoid)
comm ∶ Π 𝑢. ⊩ ∀𝑥 𝑦 ∶ tm 𝑈 𝑢. 𝑥 ∘𝑢 𝑦 ≐ 𝑦 ∘𝑢 𝑥
idem ∶ Π 𝑢. ⊩ ∀𝑥∶ tm 𝑈 𝑢. 𝑥 ∘𝑢 𝑥 ≐ 𝑥

}

Figure 10 Theories of SPoly(Magmas), the diagram shown in the second row of ??

N. Roux 47

Combinations of those properties spawn a systematic algebraic hierarchy extending Magma.
And every combination, qua our methodology of applying SPoly and Push, directly corre-
sponds to a data structure. We show this correspondence in Figure 11. Note that while
some of the terminology for the properties on the data structure (e.g., empty, (un)ordered,
or sequential) are standard, we also had to make up some new terminology (all other ones
in Figure 11). The hierarchy that is spawned with the first four properties is known as the
Boom Hierarchy [Bun93].

Datastructure property
Property 𝜙 on Binary operation in presence of 𝜙 in absence of 𝜙
unital possibly empty non-empty
commutativity unordered ordered
associativity sequential branched
idempotence single countable multi countable
invertibility positive & negative countable positive countable

Figure 11 Correspondence between abstract properties on a binary operation and properties on
data structure

For example, we can obtain the more or lesser known data structures compiled in the
table below. We only list few examples of the larger space of data structures induced by our
five properties.

Data structure un
ita

l

co
m

m
ut

at
iv

ity

as
so

cia
tiv

ity

id
em

po
te

nc
e

in
ve

rt
ib

ili
ty

lists x
non-empty lists x x
trees
non-empty unordered trees x x
sets x x x
multisets w/ multiplicities in ℕ≥0 x x x
multisets w/ multiplicities in ℤ x x x
multisets w/ multiplicities in {−1, 0, 1} x x x x
non-empty multisets w/ multiplicities in {−1, 0, 1} x x x x x

4.2.3 Application to FOL Formalizations: Recovering SFOL
Formalizations

48 Structure-Preserving Diagram Operators

UntypedLogic TypedLogic

𝑇 Typify(𝑇)

(Sel𝕋(𝑇))𝕋∶ tp

⋮

For(𝑇)

theory UntypedLogic = {
include PL
term ∶ type

}

theory TypedLogic = {
include PL
tp ∶ type
tm ∶ tp → type

}
We suitably modify Poly to a functor Typify that applied to formalizations of (not in)

first-order logic, such as quantifiers and proof rules, yields corresponding formalizations of
sorted first-order logic. For example, to represent the universal quantifier of FOL, we extend
UntypedLogic shown above with the constant ∀∶ (term → prop) → prop. Correspondingly,
to represent the same concept in SFOL, we extend TypedLogic shown above with the con-
stant ∀∶ Π𝑇 ∶ tp. (tm 𝑇 → prop) → prop. We observe that the latter emerges from the
former by i) abstracting over a type 𝑇 ∶ tp and ii) rewriting occurrences of term to tm 𝑇
. By consistently extending these rules to structured diagrams qua our framework, we can
recover large parts of usual formalizations of SFOL from the untyped case, In practice this
means we can save those formalizations and thus maintenance effort, and also eliminate
redundancy.

▶ Definition 57 (Typify). The strongly linear functor Typify from UntypedLogic to
TypedLogic is given by expression translation functions

𝐸Σ(𝐴) = Π𝑢∶ tp. 𝐴Σ,𝑢 𝑒Σ(𝑡) = 𝜆𝑢∶ tp. 𝑡Σ,𝑢

where in both definitions, respectively, the identifier 𝑢 is chosen adaptively such that 𝐴 and
𝑡 are AV-fresh wrt. 𝑢, and where −Σ,𝑢 is the function taken from Definition 52 modified at
the case for constants by

𝑐Σ,𝑢 =
⎧{
⎨{⎩

𝑐 𝑢 if 𝑐 ∈ Σ
tm 𝑢 if 𝑐 = term
𝑐 else

Within this Section 4.2.3, the notation −Σ,𝑢 will always refer to the function above.

As an example, consider the modular formalization hierarchies of quantifiers and natural
deduction rules shown in Figure 12. On the left, we show the hierarchy for FOL, and on the
right we show it for SFOL. For ease of readability, we choose short names including greek
characters for theories, and use primed names to denote corresponding SFOL concepts.7 We
show excerpts of the formalizations in Figure 13. There, we observe that applying Typify
on the universal quantifier and its natural deduction rules indeed yields the corresponding
ones for SFOL. This holds true for all of Figure 12

diagram FOLDiag = Diagram(∀, ∀𝐼, ∀𝐸,∀ND, FOLND)

7 In contrast, e.g. LATIN2 in practice uses names like UniversalQuantifierND for FOL and
TypedUniversalQuantifierND for SFOL.

N. Roux 49

PL

UntypedLogic

∀ ∃

∀𝐼 ∀𝐸 ∃𝐼 ∃𝐸

∀ND ∃ND

FOLND

PL

TypedLogic

∀′ ∃′

∀𝐼′ ∀𝐸′ ∃𝐼′ ∃𝐸′

∀ND′ ∃ND′

SFOLND

Figure 12 Formalization Hierarchy of FOL quantifiers and proof rules (left) and analogously for
SFOL (right)

theory UniversalQuantifier = {
include UntypedLogic
∀∶ (term → prop) → prop

}

theory UniversalQuantifierND = {
include UniversalQuantifier
∀I ∶ Π𝑃 ∶ term → prop.

(Π𝑥∶ term. ⊩ 𝑃 𝑥) →⊩ ∀𝑃
∀E ∶ Π𝑃 ∶ term → prop.

⊩ ∀𝑃 → Π𝑥∶ term. ⊩ 𝑃 𝑥
}

theory UniversalQuantifier′ = {
include TypedLogic
∀∶ Π𝑇 ∶ tp. (tm 𝑇 → prop) → prop

}

theory UniversalQuantifierND′ = {
include UniversalQuantifier′

∀I ∶ Π 𝑇 ∶ tp. Π𝑃 ∶ tm 𝑇 → prop.
(Π𝑥∶ tm 𝑇 . ⊩ 𝑃 𝑥) →⊩ ∀ 𝑇 𝑃

∀E ∶ Π 𝑇 ∶ tp. Π𝑃 ∶ tm 𝑇 → prop.
⊩ ∀ 𝑇 𝑃 → Π𝑥∶ tm 𝑇 . ⊩ 𝑃 𝑥

}

Figure 13 Exemplary Formalizations of the Universal Quantifier for FOL and SFOL

to then replace the entire right diagram in Figure 12 by a single line invoking our functor:

install TypifyΣ ∗ (FOLDiag)

The previous example was deliberately small to get across the idea of how Typify works
on diagrams. As a real-world example, we now consider LATIN2 [LATIN], the successor of
the LATIN Logic Atlas and Integrator project [Cod+a]. We have verified Typify to work
as intended on all FOL concepts listed below, which were all taken from LATIN2 (with

50 Structure-Preserving Diagram Operators

notation adapted)8

universal quantifier
∀ ∶ (term → prop) → prop
∀I ∶ Π 𝑝 ∶ term → prop. (Π𝑥∶ term. ⊩ 𝑝 𝑥) →⊩ ∀𝑝
∀E ∶ Π 𝑝 ∶ term → prop. ⊩ ∀𝑝 → Π𝑥∶ term. ⊩ 𝑝 𝑥

existential quantifier
∃ ∶ (term → prop) → prop
∃𝐼 ∶ Π 𝑝 ∶ term → prop. Π 𝑥∶ term. ⊩ 𝑝 𝑥 →⊩ ∃𝑝
∃𝐸 ∶ Π 𝑝 ∶ term → prop. Π𝐹 ∶ prop. ⊩ ∃𝑝 →

(Π𝑥∶ term. ⊩ 𝑝 𝑥 →⊩ 𝐹) →⊩ 𝐹
unique existential quantifier

∃! ∶ (term → prop) → prop
∃!𝐼 ∶ Π 𝑝 ∶ term → prop. Π 𝑥∶ term. ⊩ 𝑝 𝑥 → (Π𝑦 ∶ term. ⊩ 𝑝 𝑦 →⊩ 𝑥 ≐ 𝑦) → ∃! 𝑝
∃!𝐸 ∶ Π 𝑝 ∶ term → prop. Π𝐹 ∶ prop. ⊩ ∃𝑝 →

(Π𝑥∶ term. ⊩ 𝑝 𝑥 → (Π𝑦 ∶ term. ⊩ 𝑝 𝑦 →⊩ 𝑥 ≐ 𝑦) →⊩ 𝐹) →⊩ 𝐹
equality

≐ ∶ term → term → prop
refl ∶ Π 𝑥∶ term. ⊩ 𝑥 ≐ 𝑥
cong ∶ Π 𝑥 𝑦 ∶ term. ⊩ 𝑥 ≐ 𝑦 → Π𝑝∶ term → prop. ⊩ 𝑝 𝑥 →⊩ 𝑝 𝑦

description operator
the ∶ Π 𝑝 ∶ term → prop. ∃! 𝑝 → term
the_ax ∶ Π 𝑝 ∶ term → prop. Π pf ∶ ⊩ ∃! 𝑝. ⊩ 𝑝 (the 𝑝 pf)

choice operator
some ∶ Π 𝑝 ∶ term → prop. ∃𝑝 → term
some_ax ∶ Π 𝑝 ∶ term → prop. Π pf ∶ ⊩ ∃𝑝. ⊩ 𝑝 (some 𝑝 pf)

Limitations Typify introduces exactly one type variable 𝑢∶ tp and rewrites all occurrences
of term to tm 𝑢 with that very type variable. This is not always the right choice. Consider
the constants below, taken from LATIN2’s FOL formalization.9 They serve as shorthands
for universally quantified binary predicates and their corresponding proof rules.

∀2 ∶ (term → term → prop) → prop
= 𝜆𝑝. ∀𝑥. ∀ 𝑦. 𝑝 𝑥 𝑦

∀2𝐼 ∶ Π 𝑝 ∶ term → prop. (Π𝑥 𝑦 ∶ term. ⊩ 𝑝 𝑥 𝑦) →⊩ ∀2𝑝
= 𝜆𝑝 pf. ∀I𝑥 ∀I𝑦 pf 𝑥 𝑦

∀2𝐸 ∶ Π𝑝∶ term → prop. Π 𝑥 𝑦 ∶ term. ⊩ ∀2𝑝 →⊩ 𝑝 𝑥 𝑦
= 𝜆𝑝 𝑥 𝑦 pf. (pf ∀E 𝑥) ∀E 𝑦

While those declarations look rather innocent, Typify fails to translate them to constants
representing the corresponding SFOL concepts. The desired formalization of ∀′

2 is:

∀′
2 ∶ Π 𝑢 𝑣 ∶ tp. (tm 𝑢 → tm 𝑣 → prop) → prop

8 The concrete sources are https://gl.mathhub.info/MMT/LATIN2/-/blob/
39dc7046f457ff02f695387a8ebd80366789a465/source/logic/fol_like/fol.mmt and https:
//gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/
fundamentals/equality.mmt#L13-15.

9 https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/
source/logic/fol_like/fol_derived.mmt#L10-18

https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/logic/fol_like/fol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/logic/fol_like/fol.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/fundamentals/equality.mmt#L13-15
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/fundamentals/equality.mmt#L13-15
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/fundamentals/equality.mmt#L13-15
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/logic/fol_like/fol_derived.mmt#L10-18
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/logic/fol_like/fol_derived.mmt#L10-18

N. Roux 51

Importantly, it takes two type parameters 𝑢 and 𝑣, while Typify would have only introduced
one type paramter.

It is non-trivial to detect when different occurrences of term are semantically independent
and should consequently be translated to occurences of tm 𝑢 for different type variables 𝑢.
For example, in the following theorem the occurrences are syntactically independent, yet not
semantically so. Thus the SFOL variant must use one type variable only.

𝑐 in FOL ∶ ⊩ ∀𝑥∶ term. false ⇒ ¬∃𝑥∶ term. true
𝑐 in SFOL ∶ Π 𝑢∶ tp. ⊩ ∀𝑥∶ tm 𝑢. false ⇒ ¬∃𝑥∶ tm 𝑢. true

Even if there was a clever way for detecting such dependencies between occurrences of
term (via syntax or typing), this would constitute a non-local operation; and non-local op-
erations are generally incompatiable with the notion of a functor. To see this, suppose we
had a theory 𝑆 with a constant 𝑐 ∶ 𝐴. Even if we reliably detected dependencies between
occurences of term within 𝐴, any morphism out of 𝑆 could post-hoc introduce such depen-
dencies in the assignment to 𝑐. Hence, the diagram operator would either need to scan
a-priori the input diagram for such dependencies (which is incompatible with the notion of
a functor), or the functor would need to be left undefined on such morphisms.

Overall, while Typify automates large parts of formalizing SFOL concepts, there remain
certain concepts that still need to be given by hand for both FOL and SFOL.

Meta-Theoretical Properties We conclude our case study of Typify with its meta-
theoretical properties, much of which it inherits from Poly.

▶ Lemma 58. The function −Σ,𝑢 commutes with substitution:

𝑠Σ,𝑢[𝑥 ↦ 𝑡Σ,𝑢] = (𝑠[𝑥 ↦ 𝑡])Σ,𝑢

Proof. Analogous to Lemma 61 for Poly. ◀

▶ Theorem 59 (Well-Typedness of Constant Indexing). Let 𝑢 be an identifier. Then we have
for all terms 𝑡 and 𝐴 and contexts Γ that are AV-fresh wrt. 𝑢:

Γ ⊢Untyped
Σ 𝐴∶ kind ⟹ 𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Typify(Σ) 𝐴Σ,𝑢 ∶ kind

Γ ⊢Untyped
Σ 𝐴∶ type ⟹ 𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Typify(Σ) 𝐴Σ,𝑢 ∶ type

Γ ⊢Untyped
Σ 𝑡 ∶ 𝐴 ⟹ 𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Typify(Σ) 𝑡Σ,𝑢 ∶ 𝐴Σ,𝑢

Proof. Analogous to Theorem 62 with one case added in the induction corresponding to
the claim on the second line: for Γ ⊢Untyped

Σ term ∶ type we note termΣ,𝑢 = tm 𝑢 and thus
𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Σ tm 𝑢∶ type as desired. ◀

▶ Theorem 60. Typify is well-typed and in LF + 𝜂 functorial.

Proof. Using Lemma 58 and Theorem 59, the proof proceeds analogously to the one for
Poly in Theorem 63 with one critical addition:

In the induction proof for functoriality, there is one subcase where we need to show
𝑂(𝜎)(𝑡Σ,𝑢) = 𝜎(𝑡)Σ′,𝑢 for 𝑡 ∶ 𝐴∶ type and 𝑐 ∈ Untyped. For Poly we needed to show this for
𝑐 ∈ Typed instead and concluded that there is no such 𝑐 such that the typing holds. But for
Typify and 𝑐 ∈ Untyped, there is such a 𝑐. Namely, we need to consider the case 𝑡 = term.
But then by definition of −Σ,𝑢 (with our modification for Typify) from ?? we can reason
𝑂(𝜎)(termΣ,𝑢) = 𝑂(𝜎)(tm 𝑢) = tm 𝑢 = 𝜎(tm 𝑢)Σ′,𝑢 as desired. ◀

52 Structure-Preserving Diagram Operators

4.2.4 Meta-Theoretical Properties
▶ Lemma 61. The function −Σ,𝑢 commutes with substitution:

𝑠Σ,𝑢[𝑥 ↦ 𝑡Σ,𝑢] = (𝑠[𝑥 ↦ 𝑡])Σ,𝑢

Proof. By induction on 𝑠. The most interesting case is 𝜆-abstraction (analogously Π-
abstraction) spelled out below.

(𝜆𝑥∶ 𝐴. 𝑠)Σ,𝑢[𝑦 ↦ 𝑡Σ,𝑢] =(𝜆𝑥∶ 𝐴Σ,𝑢. 𝑠Σ,𝑢)[𝑦 ↦ 𝑡Σ,𝑢]
=𝜆𝑥∶ 𝐴Σ,𝑢[𝑦 ↦ 𝑡Σ,𝑢]. 𝑠Σ,𝑢[𝑦 ↦ 𝑡Σ,𝑢]
=𝜆𝑥∶ (𝐴[𝑦 ↦ 𝑡])Σ,𝑢. (𝑠[𝑦 ↦ 𝑡])Σ,𝑢

=(𝜆𝑥∶ 𝐴[𝑦 ↦ 𝑡]. 𝑠[𝑦 ↦ 𝑡])Σ,𝑢

=((𝜆𝑥∶ 𝐴. 𝑠)[𝑦 ↦ 𝑡])Σ,𝑢

We assume names 𝑥 and 𝑦 to be disjoint without loss of generality. And in the third line we
exploit induction hypotheses on 𝐴 and 𝑠. ◀

▶ Theorem 62 (Well-Typedness of Constant Indexing). Let 𝑢 be an identifier. Then we have
for all terms 𝑡 and 𝐴 and contexts Γ that are AV-fresh wrt. 𝑢:

Γ ⊢Typed
Σ 𝐴∶ kind ⟹ 𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Poly(Σ) 𝐴Σ,𝑢 ∶ kind

Γ ⊢Typed
Σ 𝐴∶ type ⟹ 𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Poly(Σ) 𝐴Σ,𝑢 ∶ type

Γ ⊢Typed
Σ 𝑡 ∶ 𝐴 ⟹ 𝑢∶ tp, ΓΣ,𝑢 ⊢Typed

Poly(Σ) 𝑡Σ,𝑢 ∶ 𝐴Σ,𝑢

Proof. By mutual induction on derivation trees of the antecedences. The full proof is
rather lengthy and dull (and requires straightforwardly strengthening the claims, e.g., to
judgements on context validity and equality). Below, we only show the most interesting
cases for the induction on typing judgements (corresponding to the last line shown in the
theorem statement). We abbreviate Γ′ ∶= 𝑢∶ tp, ΓΣ,𝑢.

case (const-obj) (analogously (const-fam)):

⊢Typed
Σ Γ 𝑐 ∶ 𝐴 ∈ Typed, Σ

Γ ⊢Typed
Σ 𝑐 ∶ 𝐴

case 𝑐 declared in Typed: This implies ⊢Typed 𝑐 ∶ 𝐴. And by weakening we have
Γ′ ⊢Typed

Poly(Σ) 𝑐 ∶ 𝐴 as desired.
case 𝑐 declared in Σ: We need to show Γ′ ⊢Typed

Poly(Σ) 𝑐 𝑢∶ 𝐴Σ,𝑢. We deduce the desired
claim by application of (app-obj):

Γ′ ⊢Typed
Poly(Σ) 𝑐 ∶ (Π𝑢∶ tp. 𝐴Σ,𝑢) Γ′ ⊢Typed

Poly(Σ) 𝑢∶ tp

Γ′ ⊢Typed
Poly(Σ) 𝑐 𝑢∶ 𝐴Σ,𝑢

Here, the first premise above the line follows by construction of Poly(Σ). And the sec-
ond premise follows by construction of Γ′ (and some induction hypothesis on contexts
that would emerge from strengthening the claims as noted above).

N. Roux 53

case (app-obj) (analogously (app-fam)):

Γ ⊢Typed
Σ 𝑓 ∶ Π𝑥∶ 𝐴. 𝐵 Γ ⊢Typed

Σ 𝑡 ∶ 𝐴
Γ ⊢Typed

Σ 𝑓 𝑡 ∶ 𝐵[𝑥 ↦ 𝐴]

Our goal is Γ′ ⊢Typed
Poly(Σ) (𝑓 𝑡)Σ,𝑢 ∶ (𝐵[𝑥 ↦ 𝐴])Σ,𝑢. We first apply (app-obj) on our

induction hypotheses:

Γ′ ⊢Typed
Poly(Σ) 𝑓Σ,𝑢 ∶ Π 𝑥∶ 𝐴Σ,𝑢. 𝐵Σ,𝑢 Γ′ ⊢Typed

Poly(Σ) 𝑡Σ,𝑢 ∶ 𝐴Σ,𝑢

Γ′ ⊢Typed
Poly(Σ) 𝑓Σ,𝑢 𝑡Σ,𝑢 ∶ 𝐵Σ,𝑢[𝑥 ↦ 𝐴Σ,𝑢]

The conclusion below the line is syntactically identical to our goal, noting that i) 𝑓Σ,𝑢 𝑡Σ,𝑢 =
(𝑓 𝑡)Σ,𝑢 (commutation with function application; by definition) and ii) 𝐵Σ,𝑢[𝑥 ↦ 𝐴Σ,𝑢] =
(𝐵[𝑥 ↦ 𝐴])Σ,𝑢 (commutation with substitution; by Lemma 61) .

◀

▶ Theorem 63. Poly is well-typed and in LF + 𝜂 functorial.

Proof. For well-typedness we apply Theorem 24, for which we obtain the prerequisites by
instantiating Theorem 62 with Γ = ∅ and closing the judgements with Π and 𝜆:

⊢Typed
Σ 𝐴∶ kind ⟹ ⊢Typed

Poly(Σ) Π𝑢∶ tp. 𝐴Σ,𝑢⏟⏟⏟⏟⏟⏟⏟∶ kind

⊢Typed
Σ 𝐴∶ type ⟹ ⊢Typed

Poly(Σ)

=𝐸Σ(𝐴)
⏞⏞⏞⏞⏞⏞⏞Π𝑢∶ tp. 𝐴Σ,𝑢 ∶ type

⊢Typed
Σ 𝑡 ∶ 𝐴 ⟹ ⊢Typed

Poly(Σ) (𝜆𝑢∶ tp. 𝑡Σ,𝑢)⏟⏟⏟⏟⏟⏟⏟
=𝑒Σ(𝑡)

∶ Π 𝑢∶ tp. 𝐴Σ,𝑢⏟⏟⏟⏟⏟⏟⏟
=𝐸Σ(𝐴)

For functoriality we apply Lemma 25. First, for 𝑐 ∈ Σ we have 𝑒Σ(𝑐) = 𝜆𝑢 . 𝑐Σ,𝑢 =
𝜆𝑢. 𝑐 𝑢 = 𝑐 by 𝜂-reduction as desired. Second, we compute

𝑂(𝜎)(𝑒Σ(𝑡))
= 𝑂(𝜎)(𝜆𝑢∶ tp. 𝑡Σ,𝑢) by definition of 𝑒
= 𝜆𝑢∶ tp. 𝑂(𝜎)(𝑡Σ,𝑢) since 𝑂(𝜎) is the identity on Typed
= 𝜆𝑢∶ tp. 𝜎(𝑡)Σ′,𝑢 by induction on 𝑡
= 𝑒Σ′(𝜎(𝑡)) by definition of 𝑒

where we show 𝑂(𝜎)(𝑡Σ,𝑢) = 𝜎(𝑡)Σ′,𝑢 for all terms ⊢Typed
Σ 𝑡 ∶ 𝐴∶ type that are AV-fresh wrt.

𝑢 by induction:

case constant 𝑐 ∈ Σ:

𝑂(𝜎)(𝑐Σ,𝑢) = 𝑂(𝜎)(𝑐 𝑢) by definition of −Σ,𝑢

= 𝑂(𝜎)(𝑐) 𝑢 by definition of morphisms
= 𝑒Σ′(𝜎(𝑐)) 𝑢 by definition of Typify
= (𝜆𝑢. 𝜎(𝑐)Σ′,𝑢) 𝑢 by definition of 𝑒
= 𝜎(𝑐)Σ′,𝑢 by 𝛽-reduction

cases 𝑡 = 𝑐 (for 𝑐 ∈ Typed), 𝑡 = type, and 𝑡 = kind: vacuously true since there is no LF
type 𝐴 to begin with such that ⊢Typed

Σ 𝑡 ∶ 𝐴∶ type.

54 Structure-Preserving Diagram Operators

case function application 𝑓 𝑡:

𝑂(𝜎)((𝑓 𝑡)Σ,𝑢) = 𝑂(𝜎)(𝑓Σ,𝑢) 𝑂(𝜎)(𝑡Σ,𝑢) by definition of −Σ,𝑢 and morphisms
= 𝜎(𝑓)Σ′,𝑢 𝜎(𝑡)Σ′,𝑢 by induction hypotheses
= 𝜎(𝑓 𝑡)Σ′,𝑢 by definition of −Σ′,𝑢 and morphisms

case function abstraction 𝜆𝑥∶ 𝐴. 𝑡 (analgously for Π𝑥∶ 𝐴. 𝐵):

𝑂(𝜎)((𝜆𝑥∶ 𝐴. 𝑡)Σ,𝑢) = 𝜆𝑥∶ 𝑂(𝜎)(𝐴Σ,𝑢). 𝑂(𝜎)(𝑡Σ,𝑢) by definition of −Σ,𝑢 and morphisms
= 𝜆𝑥∶ 𝜎(𝐴)Σ′,𝑢. 𝜎(𝑡)Σ′,𝑢 by induction hypotheses
= 𝜎(𝜆𝑥∶ 𝐴. 𝑡)Σ′,𝑢 by definition of −Σ′,𝑢 and morphisms

◀

▶ Lemma 64. The connectors and −Σ,𝑢 are related via

⊢𝑆
Σ ForΣ(𝑡Σ,𝑢) = 𝑡

⊢Typed
Poly(Σ) Sel𝕋

Σ(𝑡) = 𝑡Σ,𝕋

for all 𝑡-terms that are AV-fresh wrt. 𝑢.

Proof. Both claims are proven by induction on 𝑡, and we only show the case for constants
𝑐 ∈ Σ. All other cases are either trivial (𝑐 ∉ Σ or 𝑐 ∈ {type, kind}) or follow immediately
by compositionality of involved morphisms and −Σ,𝑢. For the first claim, we compute
ForΣ(𝑐Σ,𝑢) = ForΣ(𝑐 𝑢) = (𝜆_ ∶ tp. 𝑐) 𝑢 = 𝑐 by 𝛽-reduction. And for the second claim, we
compute Sel𝕋

Σ(𝑐) = 𝑐 𝕋 = 𝑐Σ,𝕋. ◀

▶ Theorem 65. The connector For ∶ Poly → Id is well-typed and natural.

Proof. For well-typedness we use Theorem 35 and note for all constants ⊢𝑆
Σ 𝑐 ∶ 𝐴

⊢𝑆
Σ ForΣ(𝑐 ∶ 𝐴)∶ ForΣ(Π𝑢∶ tp. 𝐴Σ,𝑢)

⇔ ⊢𝑆
Σ (𝜆_ ∶ tp. 𝑐) ∶ ForΣ((Π𝑢∶ tp. 𝐴)Σ,𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟

=Π𝑢∶ tp. 𝐴 by Lemma 64

And for naturality we use Corollary 40 and show

⊢𝑆
Σ ForΣ̂(𝑒Σ̂ ∘ 𝜎(𝑐)) = 𝜎(ForΣ(𝑐))

The left-hand side simplifies via

ForΣ̂(𝑒Σ̂ ∘ 𝜎(𝑐)) = ForΣ̂(𝜆𝑢∶ tp. 𝜎(𝑐)Σ̂,𝑢)
= 𝜆𝑢∶ tp. ForΣ̂(𝜎(𝑐)Σ̂,𝑢)
= 𝜆𝑢∶ tp. 𝜎(𝑐)
= 𝜆_ ∶ tp. 𝜎(𝑐) by 𝑢 ∉ AV(𝜎(𝑐))

The right-hand side simplifies to the same via 𝜎(ForΣ(𝑐)) = 𝜎(𝜆_ ∶ tp. 𝑐) = 𝜆_ ∶ tp. 𝜎(𝑐).
◀

▶ Theorem 66. The connectors Sel𝕋 ∶ Id → Poly are well-typed and natural.

N. Roux 55

Proof. For well-typedness, we use Theorem 35, we need to show

⊢Typed
Σ 𝑐 ∶ 𝐴 ⟹ ⊢Typed

Poly(Σ) 𝑐 𝕋∶ Sel𝕋
Σ(𝐴)⏟

=𝐴Σ,𝕋 by Lemma 64

Indeed by construction we have ⊢Typed
Poly(Σ) 𝑐 ∶ (Π𝑢∶ tp. 𝐴Σ,𝑢) and thus ⊢Typed

Poly(Σ) 𝑐 𝕋∶ 𝐴Σ,𝕋.
For naturality, we use ?? and need to show

⊢Typed
Poly(Σ̂) Sel𝕋

Σ̂(𝜎(𝑐)) = PolyΣ̂(𝜎)(Sel𝕋
Σ(𝑐))

for all constants 𝑐 ∈ Σ. Let (𝑐 ∶= 𝑡) be the assignment to 𝑐 in 𝜎. For the right-hand side we
have

PolyΣ̂(𝜎)(Sel𝕋
Σ(𝑐)) = PolyΣ̂(𝜎)(𝑐 𝕋)

= PolyΣ̂(𝜎)(𝑐) PolyΣ̂(𝜎)(𝕋)
= (𝜆𝑢∶ tp. 𝑡Σ̂,𝑢) 𝕋
= 𝑡Σ̂,𝕋

And the left-hand side simplifies to the same via Sel𝕋
Σ̂(𝜎(𝑐)) = Sel𝕋

Σ̂(𝑡) = 𝑡Σ̂,𝕋. ◀

▶ Theorem 67. For is the left-inverse of Sel𝕋 in the sense that for any theory 𝑇 we have

For(𝑇) ∘ Sel𝕋(𝑇) = id𝑇

Proof. Immediately follows from Lemma 64 ◀

4.3 Parameter Removal

𝑋 Clean𝑓(𝑋)CleanIn𝑓(𝑋)

The linear functor Clean𝑓 removes parameters of constants within theories it is applied
to, guided by a parameter keep heuristic 𝑓 . For example, if the constant 𝑐 ∶ 𝐴 → 𝐵 → 𝐶
in some theory declares a ternary function and the heuristic, given the whole constant
declaration, instructs us to remove the second parameter, then the functor maps this constant
to 𝑐 ∶ 𝐴 → 𝐶. The practical signifiance stems from understanding the functor as a refactoring
operation [roux:bsc], which can be useful for different reasons. For example, the functor
could be built into a graphical editor for Mmt formalizations, such that users can then
apply the refactorings to their formalization. () Moreover, having functors that perform
syntax-oriented refactorings eases the specification of complex functors as those can then
emerge as the composition of some easily, but slightly off on the syntax side functors 𝑂 and
a refactoring op, see ??.

Related Work parameter removal is a standard refactoring techniques
supported by enterprise IDEs, e.g., intellij, visual studio.
how about formal systems IDEs?
cite to my bsc thesis

56 Structure-Preserving Diagram Operators

4.3.1 Definition
▶ Notation 68. We assume 𝜂-conversion in the whole section.

W.l.o.g. after suitable 𝛼𝛽𝜂 normalization we make the following assumption: First, for
every constant 𝑐 ∶ 𝐴 we assume 𝐴 starts with a (possibly empty) sequence of 𝑛 Π-bindings,
and any definition of 𝑐 (direct or morphism) starts with the same variable sequence 𝜆-bound.
Second, we assume that every occurrence of 𝑐 in a term is applied to exactly 𝑛 terms. In
proofs below that induct on typing derivations, we also effectively assume that the typing
rule for constants reads as follows:

Γ ⊢Σ 𝑡1 ∶ 𝐴1 Γ ⊢Σ 𝑡2 ∶ 𝐴2[𝑥1 ↦ 𝑡1] ⋯
Γ ⊢Σ 𝑡𝑛 ∶ 𝐴𝑛[𝑥𝑖 ↦ 𝑡𝑖]𝑖=1,...,𝑛−1 Γ ⊢Σ (𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵) ∈ Σ

Γ ⊢Σ 𝑐 𝑡1 ... 𝑡𝑛 ∶ 𝐵[𝑥𝑖 ↦ 𝑡𝑖]𝑖=1,...,𝑛
(const-eta)

Sometimes we also write short

Γ ⊢Σ 𝑡𝑖 ∶ 𝐴𝑖[𝑥𝑘 ↦ 𝑡𝑘]𝑘=1,...,𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛
Γ ⊢Σ (𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵) ∈ Σ

Γ ⊢Σ 𝑐 𝑡1 ... 𝑡𝑛 ∶ 𝐵[𝑥𝑖 ↦ 𝑡𝑖]𝑖=1,...,𝑛
(const-eta)

▶ Definition 69 (Parameter Keep Heuristic). A parameter keep heuristic is a function 𝑓
that maps constant declarations in context of flat theories Σ to subsets 𝑓Σ(𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵 [=
𝜆𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑡]) ⊆ {1, ... , 𝑛} of parameter indices. If clear from context, we simply
write 𝑓Σ(𝑐) and leave out type and definiens component.

We call a heuristic well-typed if for all constants 𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵 [=
𝜆𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑡]
i) if 𝑥𝑖 is mentioned in clΣ𝑓 (𝐴𝑗) (𝑖 < 𝑗), then if 𝑥𝑗 is kept, so is 𝑥𝑖 (in formulae: 𝑥𝑗 ∈ 𝑓Σ(𝑐)

implies 𝑥𝑖 ∈ 𝑓Σ(𝑐))
ii) if clΣ𝑓 (𝐵) or clΣ𝑓 (𝑡) mentions 𝑥𝑖, then 𝑥𝑖 is kept (𝑥𝑖 ∈ 𝑓Σ(𝑐))
▶ Definition 70 (Parameter Removal on Terms, Contexts, Substitutions). Every heuristic 𝑓
induces a parameter-removing function cl𝑓 on terms, contexts, and substitutions given by

clΣ𝑓 (𝑐 𝑡1 ... 𝑡𝑛) = 𝑐 clΣ𝑓 (𝑡𝑘1
) ... clΣ𝑓 (𝑡𝑘𝑚

) where {𝑘1, ... , 𝑘𝑚} = 𝑓Σ(𝑐)
clΣ𝑓 (type) = type clΣ𝑓 (kind) = kind clΣ𝑓 (𝑥) = 𝑥

clΣ𝑓 (𝑓 𝑡) = clΣ𝑓 (𝑓) 𝑓(𝑡)
clΣ𝑓 (Π𝑥∶ 𝐴. 𝐵) = Π𝑥∶ clΣ𝑓 (𝐴). clΣ𝑓 (𝐵) clΣ𝑓 (𝜆𝑥∶ 𝐴. 𝑡) = 𝜆𝑥∶ clΣ𝑓 (𝐴). clΣ𝑓 (𝑡)

clΣ𝑓 (⋅) = ⋅ clΣ𝑓 (Γ, 𝑥∶ 𝐴) = clΣ𝑓 (Γ), 𝑥∶ clΣ𝑓 (𝐴)

clΣ𝑓 (⋅) = ⋅ clΣ𝑓 (𝜌, 𝑥 = 𝑡) = clΣ𝑓 (𝜌), 𝑥 = clΣ𝑓 (𝑡)

▶ Definition 71 (Parameter Removal). Every heuristic 𝑓 induces a linear functor Clean𝑓
and a strongly linear connector CleanIn𝑓 into Clean𝑓 by

CleanΣ
𝑓
⎛⎜⎜⎜
⎝
𝑐∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵
[= 𝜆𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑡]

⎞⎟⎟⎟
⎠

= 𝑐 ∶ Π𝑥𝑘1
∶ clΣ𝑓 (𝐴𝑘1

). ... Π𝑥𝑘𝑚
∶ clΣ𝑓 (𝐴𝑘𝑚

). clΣ𝑓 (𝐵)
[= 𝜆𝑥𝑘1

∶ clΣ𝑓 (𝐴𝑘1
). ... 𝜆𝑥𝑘𝑚

∶ clΣ𝑓 (𝐴𝑘𝑚
). clΣ𝑓 (𝑡)]

CleanInΣ
𝑓 (𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵) = 𝑐 ∶ Π𝑥𝑘1

∶ clΣ𝑓 (𝐴𝑘1
). ... Π𝑥𝑘𝑚

∶ clΣ𝑓 (𝐴𝑘𝑚
). clΣ𝑓 (𝐵)

= 𝜆𝑥1∶ clΣ𝑓 (𝐴1). ... 𝜆𝑥𝑛∶ clΣ𝑓 (𝐴𝑛). 𝑐 𝑥𝑘1
... 𝑥𝑘𝑚

N. Roux 57

where {𝑘1, ... , 𝑘𝑚} = 𝑓Σ(𝑐), and whenever some removed variable 𝑥𝑘 is still mentioned in
some 𝐴𝑙 (𝑙 > 𝑘) or in 𝐵 or in 𝑡, we leave the whole result undefined.

The only thing preventing Clean𝑓 from being strongly linear is the dependence on the
constant identifier 𝑐 in the translation functions for the type and definiens components.

4.3.2 Meta-Theoretical Properties
▶ Lemma 72. We have CleanInΣ

𝑓 (−) = clΣ𝑓 (−) as functions on Σ-syntax (terms, contexts,
substitutions).

Proof. Since both functions are compositional on syntax, it suffices to show equality on
constants 𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵 which follows by

CleanInΣ
𝑓 (𝑐)

= 𝜆𝑥1∶ clΣ𝑓 (𝐴1). ... 𝜆𝑥𝑛∶ clΣ𝑓 (𝐴𝑛). 𝑐 𝑥𝑘1
... 𝑥𝑘𝑚

by def. of CleanIn𝑓
= 𝜆𝑥1∶ clΣ𝑓 (𝐴1). ... 𝜆𝑥𝑛∶ clΣ𝑓 (𝐴𝑛). clΣ𝑓 (𝑐 𝑥1 ... 𝑥𝑛) by def. of cl𝑓
= clΣ𝑓 (𝜆 𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑐 𝑥1 ... 𝑥𝑛) by def. of cl𝑓
= clΣ𝑓 (𝑐) by 𝜂-conversion

◀

▶ Corollary 73 (cl𝑓 commutes with substitution). For all terms ⊢Σ 𝑡 and substitutions 𝜌 we
have

clΣ𝑓 (𝑡𝜌) = clΣ𝑓 (𝑡) clΣ𝑓 (𝜌)

where the notation on the RHS denotes application of the substituion clΣ𝑓 (𝜌) to term clΣ𝑓 (𝑡).

Proof. By Lemma 72 since the claim is known to be true for morphisms. ◀

▶ Lemma 74. Under the conditions in ?? we have:

Γ ⊢Σ 𝐴∶ type ⟹ clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) clΣ𝑓 (𝐴)∶ type

Γ ⊢Σ 𝐴∶ kind ⟹ clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) clΣ𝑓 (𝐴)∶ kind

Γ ⊢Σ 𝑡 ∶ 𝐴 ⟹ clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) clΣ𝑓 (𝑡) ∶ clΣ𝑓 (𝐴)
Γ ⊢Σ 𝑡 ≡ 𝑡′ ⟹ clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) clΣ𝑓 (𝑡) ≡ clΣ𝑓 (𝑡′)

Proof. By induction on typing derivations (possibly strengthened with further claims about
judgements on contexts, substitutions, etc.). We only show the critical case for typing of
constants (following Notation 68). There we have

Γ ⊢Σ 𝑡𝑖 ∶ 𝐴𝑖[𝑥𝑗 ↦ 𝑡𝑗]𝑗=1,...,𝑖−1 for 1 ≤ 𝑖 ≤ 𝑛 Γ ⊢Σ (𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵) ∈ Σ
Γ ⊢Σ 𝑐 𝑡1 ... 𝑡𝑛 ∶ 𝐵[𝑥𝑖 ↦ 𝑡𝑖]𝑖=1,...,𝑛

and, noting Corollary 73, as induction hypotheses may assume

clΣ𝑓 (Γ) ⊢Σ clΣ𝑓 (𝑡𝑖) ∶ clΣ𝑓 (𝐴𝑖)[𝑥𝑗 ↦ clΣ𝑓 (𝑡𝑗)]𝑗=1,...,𝑖−1) for every 1 ≤ 𝑖 ≤ 𝑛

We need to show clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) clΣ𝑓 (𝑐 𝑡1 ... 𝑡𝑛) ∶ clΣ𝑓 (𝐵[𝑥𝑖 ↦ 𝑡𝑖]𝑖=1,...,𝑛), which by definition
of cl𝑓 and Corollary 73 is equivalent to

clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) 𝑐 clΣ𝑓 (𝑡𝑘1
) ... clΣ𝑓 (𝑡𝑘𝑚

) ∶ clΣ𝑓 (𝐵)[𝑥𝑖 ↦ clΣ𝑓 (𝑡𝑖)]𝑖=1,...,𝑛

58 Structure-Preserving Diagram Operators

To prove this, we first set {𝑘1,… , 𝑘𝑚} = 𝑓Σ(𝑐) to the set of parameter indices that are kept.
Then we apply (const-eta) from Notation 68 within Clean𝑓(Σ) on 𝑐:

clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) clΣ𝑓 (𝑡𝑘𝑖
) ∶ clΣ𝑓 (𝐴𝑘𝑖

)[𝑥𝑘𝑖
↦ clΣ𝑓 (𝑡𝑘𝑖

)]𝑖=1,...,𝑘−1 for 1 ≤ 𝑘 ≤ 𝑚
clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) (𝑐 ∶ Π𝑥𝑘1

∶ clΣ𝑓 (𝐴𝑘1
). ... Π𝑥𝑘𝑚

∶ clΣ𝑓 (𝐴𝑘𝑚
). clΣ𝑓 (𝐵)) ∈ Σ

clΣ𝑓 (Γ) ⊢Clean𝑓(Σ) 𝑐 clΣ𝑓 (𝑡𝑘1
) ... clΣ𝑓 (𝑡𝑘𝑚

) ∶ clΣ𝑓 (𝐵)[𝑥𝑘𝑖
↦ clΣ𝑓 (𝑡𝑘𝑖

)]𝑖=1,...,𝑚

Here, the premises are already close to (some of) our induction hypotheses and the
consequence close to our proof goal. Concretely, we argue the following synctactic equalities.

clΣ𝑓 (𝐴𝑘𝑖
)[𝑥𝑗 ↦ clΣ𝑓 (𝑡𝑗)]𝑗=1,...,𝑘𝑖−1

?= clΣ𝑓 (𝐴𝑘𝑖
)[𝑥𝑘𝑖

↦ clΣ𝑓 (𝑡𝑘𝑖
)]𝑖=1,...,𝑘−1 for 1 ≤ 𝑖 ≤ 𝑚

clΣ𝑓 (𝐵)[𝑥𝑖 ↦ clΣ𝑓 (𝑡𝑖)]𝑖=1,...,𝑛
?= clΣ𝑓 (𝐵)[𝑥𝑘𝑖

↦ clΣ𝑓 (𝑡𝑘𝑖
)]𝑖=1,...,𝑚

(It may help to consider a concrete example: suppose (𝑐 ∶ Π𝑥1 ∶ 𝐴1. Π 𝑥2 ∶ 𝐴2. Π 𝑥3 ∶ 𝐴3. 𝐵) ∈
Σ declares a ternary function and the the heuristic 𝑓 determined we should keep the second
and third parameters and remove the first one. Then the first line above asks whether
clΣ𝑓 (𝐴3)[𝑥1 ↦ clΣ𝑓 (𝑡1), 𝑥2 ↦ clΣ𝑓 (𝑡2)]

?= clΣ𝑓 (𝐴3)[𝑥2 ↦ clΣ𝑓 (𝑡2)]. And the second line asks
whether clΣ𝑓 (𝐵)[𝑥1 ↦ clΣ𝑓 (𝑡1), 𝑥2 ↦ clΣ𝑓 (𝑡2), 𝑥3 ↦ clΣ𝑓 (𝑡3)]

?= clΣ𝑓 (𝐵)[𝑥2 ↦ clΣ𝑓 (𝑡2), 𝑥3 ↦
clΣ𝑓 (𝑡3)].)

For the family of claims on the first line, let us pick some fixed 𝑖 and consider for every
variable 𝑥𝑗 ∈ {𝑥1, ... , 𝑥𝑘𝑖−1} we argue that it either is kept (thus appears in the substitution
on LHS and RHS) or is irrelevant. If 𝑥𝑗 is not mentioned in 𝐴𝑖, then neither is it in clΣ𝑓 (𝐴𝑖),
thus any substitution at 𝑥𝑗 is irrelevant. If 𝑥𝑗 is mentioned in 𝐴𝑖 (and 𝑥𝑗𝑖 kept – otherwise
we could ignore the claim anyway for that specific 𝑖), then 𝑥𝑗 must be kept according to
Condition i in Definition 69.

For the claim on the second line, we argue similarly: if 𝑥𝑗 ∈ {𝑥1, ... , 𝑥𝑛} is not mentioned
in 𝐵, then neither is it in clΣ𝑓 (𝐵) and it is irrelevant; if 𝑥𝑗 is mentioned in 𝐵, then 𝑥𝑗 must
be kept according to Condition ii in Definition 69, and thus it appears in the substitution
on LHS and RHS. ◀

▶ Theorem 75. If 𝑓 is a well-typed heuristic, then Clean𝑓 is well-typed and functorial.

Proof. Well-typedness on theories immediately follows from Lemma 74. For morphisms,
consider two flat theories Σ and Σ′, a constant (𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵) ∈ Σ, and
an assignment (𝑐 ∶ Π𝑥1 ∶ 𝐴′

1. ... Π𝑥𝑛 ∶ 𝐴′
𝑛. 𝐵′ = 𝜆𝑥1∶ 𝐴′

1. ... 𝜆𝑥𝑛∶ 𝐴′
𝑛. 𝑡) ∈ 𝜎. Our functor

Clean𝑓 maps the constant and the assignment to:

constant in Clean𝑓(Σ): 𝑐 ∶ Π𝑥𝑘1
∶ clΣ𝑓 (𝐴𝑘1

). ... Π𝑥𝑘𝑚
∶ clΣ𝑓 (𝐴𝑘𝑚

). clΣ𝑓 (𝐵)
assignment in Clean𝑓(𝜎): 𝑐 ∶ Π𝑥𝑘1

∶ clΣ𝑓 (𝐴′
𝑘1
). ... Π𝑥𝑘𝑚

∶ clΣ𝑓 (𝐴′
𝑘𝑚

). clΣ
′

𝑓 (𝐵′)
= 𝜆𝑥𝑘1

∶ clΣ
′

𝑓 (𝐴′
𝑘1
). ... 𝜆𝑥𝑘𝑚

∶ clΣ
′

𝑓 (𝐴′
𝑘𝑚

). clΣ
′

𝑓 (𝑡)

For the generated assignment to be well-typed, we need to check two things. First, the
assigned term must have the given type. This again follows from Lemma 74. Second, we
need to prove

⊢Σ′ Clean𝑓(𝜎)(Π𝑥𝑘1
∶ clΣ𝑓 (𝐴𝑘1

). ... Π𝑥𝑘𝑚
∶ clΣ𝑓 (𝐴𝑘𝑚

). clΣ𝑓 (𝐵)) ≡ Π𝑥𝑘1
∶ clΣ𝑓 (𝐴′

𝑘1
). ... Π𝑥𝑘𝑚

∶ clΣ𝑓 (𝐴′
𝑘𝑚

). clΣ
′

𝑓 (𝐵′)

N. Roux 59

Starting from the LHS, we derive the equality as follows:

Clean𝑓(𝜎)(Π𝑥𝑘1
∶ clΣ𝑓 (𝐴𝑘1

). ... Π𝑥𝑘𝑚
∶ clΣ𝑓 (𝐴𝑘𝑚

). clΣ𝑓 (𝐵))
≡ Π𝑥𝑘1

∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴𝑘1
)). ... Π𝑥𝑘𝑚

∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴𝑘𝑚
)). Clean𝑓(𝜎)(clΣ𝑓 (𝐵))

≡ Π𝑥𝑘1
∶ clΣ

′

𝑓 (𝜎(𝐴𝑘1
)). ... Π𝑥𝑘𝑚

∶ clΣ
′

𝑓 (𝜎(𝐴𝑘𝑚
)). clΣ

′

𝑓 (𝜎(𝐵))
≡ Π𝑥𝑘1

∶ clΣ𝑓 (𝐴′
𝑘1
). ... Π𝑥𝑘𝑚

∶ clΣ𝑓 (𝐴′
𝑘𝑚

). clΣ
′

𝑓 (𝐵′)

Above, the second line follows by definition of morphism application, the third line by
rewriting cl𝑓 to CleanIn𝑓 and noting naturality as per Theorem 76, and the fourth line
noting ⊢Σ 𝜎(𝐴𝑖) ≡ 𝐴′

𝑖 and ⊢Σ 𝜎(𝐵) ≡ 𝐵′ by the assumption of the original assignment in 𝜎
being well-typed.

Functoriality: ◀

▶ Theorem 76. If 𝑓 is a well-typed heuristic, then CleanIn𝑓 is well-typed and natural.

Proof. We use ?? and induct on arity of constants. Consider (𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵) ∈
Σ and (𝑐 = 𝜆𝑥1∶ 𝐴′

1. ... 𝜆𝑥𝑛∶ 𝐴′
𝑛. 𝑡) ∈ 𝜎. We unify the base case (which occurs for

𝑛 = 0) and the induction step in the computation below, proving Clean𝑓(𝜎)(CleanInΣ
𝑓 (𝑐)) =

CleanInΣ′
𝑓 (𝜎(𝑐)). As induction hypotheses we assume Clean𝑓(𝜎)(CleanInΣ

𝑓 (𝐴𝑖)) = CleanInΣ′
𝑓 (𝜎(𝐴𝑖))

for all 1 ≤ 𝑖 ≤ 𝑛.

Clean𝑓(𝜎)(CleanInΣ
𝑓 (𝑐))

= Clean𝑓(𝜎)(𝜆 𝑥1∶ clΣ𝑓 (𝐴1). ... 𝜆𝑥𝑛∶ clΣ𝑓 (𝐴𝑛). 𝑐 𝑥𝑘1
... 𝑥𝑘𝑚

) by def. of CleanIn𝑓
= 𝜆𝑥1∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴1)). ... 𝜆𝑥𝑛∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴𝑛)). by def. of CleanIn𝑓

Clean𝑓(𝜎)(𝑐 𝑥𝑘1
... 𝑥𝑘𝑚

= 𝜆𝑥1∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴1)). ... 𝜆𝑥𝑛∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴𝑛)). by def. of Clean𝑓
(𝜆 𝑥𝑘1

∶ clΣ
′

𝑓 (𝐴′
1). ... 𝜆𝑥𝑘𝑚

∶ clΣ
′

𝑓 (𝐴′
𝑛). clΣ

′

𝑓 (𝑡)) 𝑥𝑘1
... 𝑥𝑘𝑚

= 𝜆𝑥1∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴1)). ... 𝜆𝑥𝑛∶ Clean𝑓(𝜎)(clΣ𝑓 (𝐴𝑛)). clΣ
′

𝑓 (𝑡) by 𝛽-reduction
= 𝜆𝑥1∶ CleanInΣ′

𝑓 (𝜎(𝐴1)). ... 𝜆𝑥𝑛∶ CleanInΣ′
𝑓 (𝜎(𝐴𝑛)). CleanInΣ′

𝑓 (𝑡) by induction hypotheses on 𝐴𝑖
and Lemma 72

= CleanInΣ′
𝑓 (𝜎(𝜆 𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑡)) by morphism property

⊢Σ′ 𝜎(𝐴𝑖) ≡ 𝐴′
𝑖

= CleanInΣ′
𝑓 (𝜎(𝑐)) by def. of 𝜎(𝑐)

◀

4.4 Representing Logical Relations

𝑅 Logrel𝑛(𝑅) 𝑆
LogrelIn(1)

𝑛

LogrelIn(𝑛)
𝑛

⋮ 𝑟

Logical relations are an established proof technique for deriving meta-level theorems of
formal systems, such as strong normalization, type safety, and correctness of compiler
optimizations. In [RS13] Rabe and Sojakova concretize this technique to the setting of
formal systems represented by Mmt theories and morphisms. Let 𝑚1, ... ,𝑚𝑛 ∶ 𝑅 → 𝑆
be morphisms between two theories 𝑆 and 𝑇 . In the sense of these authors, a logical
relation 𝑟 on 𝑚1, ... ,𝑚𝑛 is a mathematical function that specifies an 𝑛-ary LF relation
⊢𝑆 𝑟(𝑇) ∶ 𝑚1(𝑇) → ... → 𝑚𝑛(𝑇) → type for every LF type ⊢𝑅 𝑇 ∶ type. And for every cor-
responding term ⊢𝑅 𝑡 ∶ 𝑇 it gives a witness (proof) ⊢𝑆 𝑟(𝑡) ∶ 𝑟(𝑇) 𝑚1(𝑡) ... 𝑚𝑛(𝑡). Overall,

60 Structure-Preserving Diagram Operators

these logical relations capture mechanically verifiable meta theorems that relate images of
terms under arbitrarily many, but fixed morphisms, where such relations are expressible as
LF relations. We refer to Section 2.2 for details.

For an arity 𝑛 ≥ 1, the linear functor Logrel𝑛 enables the representation of 𝑛-ary logical
relations. It maps every theory 𝑅 to the theory Logrel𝑛(𝑅) whose realizations (i.e., outgoing
morphisms) correspond precisely to all possible 𝑛-ary total logical relations on morphisms
with domain 𝑅. By construction, every morphism Logrel𝑛(𝑅) → 𝑆 will uniquely encode
𝑛-many morphisms 𝑚1,… ,𝑚𝑛 ∶ 𝑅 → 𝑆 and a corresponding logical relation on them. And
conversely, every 𝑛-ary logical relation on morphisms 𝑚1,… ,𝑚𝑛 ∶ 𝑅 → 𝑆 will be represented
by a unique morphism Logrel𝑛(𝑅) → 𝑆.

Our main contribution is adding support for representing logical relations to the Mmt
system. While logical relations have been a standard tool for verifying logic translations
in Mmt or Mmt-near settings [Rab17a; Soj10; SS08], this is the first time they can actu-
ally be represented in Mmt. This means that several important meta theorems – such as
strong normalization of the simply-typed lambda calculus – can now be represented and
mechanically verified for the first time in Mmt. Note that the predecessor of Mmt [RS09]
(which was based on Twelf) had built-in primitives for representing logical relations [RS13,
Sec. 5], but they had never been implemented for the Mmt system for lack of development
resources. However, the groundwork of our framework allowed a reconsideration. Instead of
implementing a primitive – which would be a daunting task, touching many parts of Mmt’s
trusted core – we defer to implementing a linear functor. We continue discussing related
work in ??.

4.4.1 Total Logical Relations
Section 2.2, [RR21b] We give a linear functor that enables representing the total logical
relations from ??.

▶ Definition 77 (Total Logical Relation Operators). For an arity 𝑛 ≥ 1 the linear functor
Logrel𝑛 is given on all theories and morphisms by

Logrel𝑛,Σ(𝑐 ∶ 𝐴 [= 𝑡]) =

⎧{{
⎨{{⎩

𝑐(1) ∶ 𝐴(1) [= 𝑡(1)]
⋮
𝑐(𝑛) ∶ 𝐴(𝑛) [= 𝑡(𝑛)]
𝑐∗ ∶ 𝑟𝑛,Σ(𝐴) 𝑐(1) … 𝑐(𝑛) [= 𝑟𝑛,Σ(𝑡)]

and for every 1 ≤ 𝑖 ≤ 𝑛 the strongly linear connector LogrelIn(𝑖)
𝑛 into Logrel𝑛 is given by

LogrelIn(𝑖)
𝑛,Σ(𝑐 ∶ 𝐴) = 𝑐(𝑖)

Above, the function −(𝑖)
Σ (abbreviated as −(𝑖)) replaces every occurrence of a constant 𝑐 ∈ Σ

by 𝑐(𝑖), and 𝑟𝑛,Σ is the 𝑛-ary logical relation on LogrelIn(1)
𝑛,Σ,… , LogrelIn(𝑛)

𝑛,Σ induced by
𝑟𝑛,Σ(𝑐) = 𝑐∗ for every 𝑐 ∈ Σ.

▶ Theorem 78. Logrel𝑛 is well-typed.

Proof of Theorem 78. We use Theorem 24 and show for all constants ⊢𝑆
Σ 𝑐 ∶ 𝐴 [= 𝑡] the

following validity judgements on constant declarations:

⊢Logrel𝑛(Σ) 𝑐(𝑖) ∶ 𝐴(𝑖) [= 𝑡(𝑖)] for 1 ≤ 𝑖 ≤ 𝑛
⊢Logrel𝑛(Σ),𝑐(1),...,𝑐(𝑛) 𝑐∗ ∶ 𝑟𝑛,Σ(𝐴) 𝑐(1) … 𝑐(𝑛) [= 𝑟𝑛,Σ(𝑡)]

N. Roux 61

The family of judgements shown on the first line clearly holds since the function −(𝑖) is just
a systematic renaming of identifiers. And the judgement on the second line immediately
follows from 𝑟𝑛,Σ being a logical relation on LogrelIn(1)

𝑛,Σ,… , LogrelIn(𝑛)
𝑛,Σ. ◀

▶ Theorem 79. The connectors LogrelIn(𝑖)
𝑛 are well-typed and natural.

Proof. By Theorem 38 in conjunction with Theorem 78. ◀

The following proof of adequacy is quite instructive to understand in detail how our
functor enables the representation of logical relations.

▶ Theorem 80 (Adequacy). For 𝑛 ≥ 1 and any flat theory 𝑅, we have the bijection of sets

realizations of Logrel𝑛(𝑅) ≅ 𝑛-ary total logical relations on 𝑅

Proof. We exhibit two functions between the LHS and RHS that are inverses of each other
by construction.

For the forward direction, suppose we have a realization 𝑣 ∶ Logrel𝑛(𝑆) → 𝑇 for some
theory 𝑇 . We decode it to the logical relation 𝑟 = 𝑣 ∘ 𝑟𝑛,𝑆 on morphisms

𝑚1 = 𝑣 ∘ LogrelIn(1)
𝑛 (𝑆)

⋮
𝑚𝑛 = 𝑣 ∘ LogrelIn(𝑛)

𝑛 (𝑆)

Clearly, these morphisms are well-typed as compositions of well-typed morphisms. And 𝑟 is a
logical relation on𝑚1,… ,𝑚𝑛 because 𝑟𝑛,𝑅 already was a logical relation on LogrelIn(1)

𝑛 (𝑅), ... , LogrelIn(𝑛)
𝑛 (𝑅)

and logical relations are closed under composition with morphisms [RS13, Thm. 5.2].
For the backward direction, we encode every logical relation 𝑟 on morphisms𝑚1,… ,𝑚𝑛 ∶ 𝑅 →

𝑆 as the realization 𝑣 ∶ Logrel𝑛(𝑆) → 𝑇 that contains assignments 𝑣(𝑐(𝑖)) = 𝑚𝑖(𝑐) and
𝑣(𝑐∗) = 𝑟(𝑐) for every 𝑐 ∈ 𝑅. Clearly, well-typedness at assignments to constants 𝑐(𝑖) is
inherited from well-typedness of morphisms 𝑚𝑖. And at assignments to constants 𝑐∗ well-
typedness follows from 𝑟 being a logical relation. ◀

As a consequence of Theorem 80, we can think of Logrel𝑛(𝑅) as the interface
theory for logical relations on 𝑅. In the bigger picture, we circumvented introducing a
new primitive to Mmt’s syntax (incl. corresponding formation, introduction, elimination,
and typing rules) by specifying a functor that simply creates appropriate interface theories.
Not all primitives can be offloaded this way, but when it can be done, it offers a fast way of
prototyping new features.

▶ Notation 81. In the special case of Logrel1, i.e., the functor representing unary logical
relations, we pretend for readability that it did not use any suffices, i.e., applied on a constant
𝑐 we pretend that it output constants with identifiers 𝑐 and 𝑐∗ (instead of 𝑐(1) and 𝑐∗). In
practice, this is what users desire anyway.

4.4.2 Examples
▶ Example 82 (Representing Type Preservation (cont. Example 13; based on [RR21b])). In
Example 13 we started with formalizations HTyped and STyped of base theories for hard- and
soft-typed formal systems and phrased the type erasure translation as a morphism TypeEras.
For convenience, we copy them below once again.

62 Structure-Preserving Diagram Operators

theory Logrel1(HTyped) = {
tp ∶ type
tp∗ ∶ tp → type
tm ∶ tp → type
tm∗ ∶ Π 𝑇 ∶ tp. Π 𝑇 ∗ ∶ tp∗ 𝑇 . tm 𝑇 → type

}

mor LogrelIn(1)
1 (HTyped) ∶ HTyped → Logrel1(HTyped) = {

= =
}

Figure 14 Interface Theory of Unary Logical Relations on HTyped and Projection

theory HTyped = {
tp ∶ type
tm ∶ tp → type

}

theory STyped = {
tp ∶ type
term ∶ type
∶∶ ∶ term → tp → type

Unit ∶ type
unit ∶ Unit

}

mor TypeEras ∶ HTyped → STyped = {
= =

}

Then, we defined a logical relation TP on TypeEras, i.e., a mathematical function from
HTyped- to STyped-syntax. Together with its Basic Lemma, we thus expressed type preserva-
tion as a meta theorem on TypeEras. Using our functor, we can now internalize the logical
relation (albeit not the meta theorem itself). First, we apply Logrel1 on HTyped to get
the theory shown in Figure 14 (for completeness we also show the output of LogrelIn(1)

1).
Second, we define the realization of Logrel1(HTyped) shown below.

mor TypePres ∶ Logrel1(HTyped) → STyped = {
= =

}

Importantly, this realization represents in one morphism what was previously two entities:
the assignments to tp(1) and tm(1) represent the type erasure morphism TypeEras, and the
assignments to tp∗ and tm∗ represent the type preservation logical relation TP.

Linearity and include preservation of our functor imply the same properties for our rep-
resentation method: given a structured diagram of theories, Logrel𝑛 allows to structure

N. Roux 63

logical relations (i.e., meta theorems of certain shape) over those theories in the
very same structure. We give an example in the following:

▶ Example 83 (Extending Type Preservation to Product Types (cont. Example 13 and Ex-
ample 82; based on [RR21b, Sec. 4] and [RR21b, Sec. 4])). In Example 14 we considered
hard- and soft-typed product types and expressed the type preservation property of the
corresponding type erasure as a logical relation. We now extend Example 82 to internalize
said logical relation as well. Importantly, the mechanics of Mmt and our functor go hand
in hand and allow the inclusion of TypePres in TypePresProd. This is valid because the
(co)domain of TypePresProd is an extension of the (co)domain of TypePres.

mor TypePresProd ∶ Logrel1(HProd) → SProd = {
= =

}

(For readability, we put the unstarred constants first.)
Qua the morphism above and its well-typedness, we have successfully represented and

mechanically verified a proof of the type preservation meta theorem from hard- to soft-typed
product types using a logical relation. Still, we are missing a way of representing the theorem
itself, which would emerge from the logical relation’s Basic Lemma. This is tricky and we
discuss it as part of future work in Section 4.4.4.

▶ Remark 84 (Peculiarities of Representing Type Preservation (cont. Example 83)). Looking at
the morphism in Example 83 representing the logical relation, we can observe two peculiar-
ities.

First, all parameters of type Unit are never used. The only reason for this boilerplate is
that our representation approach so far only supports total logical relations. This forces us
to state relations even at LF types for that we do not desire to prove anything. We extend
our approach to partial logical relations in Section 4.4.3. This will allow a considerably
cleaner representation of type preservation (see Example 88).

Second, the morphism is almost a renaming, i.e., a mapping from constants to constants,
if we forget about all parameters that we bind and not use afterwards. This suggests that
SProd shares a lot of structure with Logrel1(HProd). Consider a hard-typed type-theoretical
feature formalized in a theory 𝐻𝑋 over HTyped, and the corresponding soft-typed one in
𝑆𝑋 over STyped. Indeed, for many such features it is generally the case that Logrel1(𝐻𝑋)
is structurally very similar to 𝑆𝑋. Concretely, 𝑆𝑋 tends to be very similar to the pushout
of Logrel1(𝐻𝑋) over TypePres ∶ HTyped → STyped. In [RR21b] and the very same setting
of HTyped and STyped, Florian Rabe and the author pursue the underlying observation that
logical relations play a central role in this structure similarity, and ultimately they define a
functor to automatically derive 𝑆𝑋 from just 𝐻𝑋. In Section 4.5 we will retell their results
in our framework.

We bring one last example unrelated to the previous ones:

▶ Example 85 (Representing Meta Theorems of Propositional Logic (based on [RS13, Ex. 4.1]
and [Rou21a, Sec. 4.2])). Consider the abridged formalization of intuitionistic propositional
logic shown below on the left. And on the right, we show the result of Logrel1.

64 Structure-Preserving Diagram Operators

theory PL = {
prop ∶ type
¬ ∶ prop → prop
∧ ∶ prop → prop → prop

⊩ ∶ prop → type
/* /* intuitionistic proof rules */ */

}

theory Logrel1(PL) = {
prop ∶ type
prop∗ ∶ prop → type
¬ ∶ prop → prop
¬∗ ∶ Π 𝑝 ∶ prop. Π 𝑝∗ ∶ prop∗ 𝑝.

prop∗ (¬𝑝)
∧ ∶ prop → prop → prop

∧∗ ∶ Π 𝑝 ∶ prop. Π 𝑝∗ ∶ prop∗ 𝑝.
Π 𝑞 ∶ prop. Π 𝑞∗ ∶ prop∗ 𝑞.
prop∗(𝑝 ∧ 𝑞)

⊩ ∶ prop → type
/* /* output for proof rules */ */

}
We now represent the meta theorem of tertium non datur following [RS13, Ex. 4.1]: in

PL 𝑝 ∨¬𝑝 is provable for every, possibly complex, proposition 𝑝 ∶ prop if it is for every atom.
To do so, we give the realization TND of Logrel1(PL) shown below, which encodes a unary
logical relation on idPL. For readability, we i) reordered the identity assignments to come
first and ii) omitted concrete proofs terms (and we refer to [RS13, Ex. 4.1]) .

mor TND ∶ Logrel1(PL) → PL = {
= =

}

The Basic Lemma for the logical relation represented by TND yields that the LF type ⊩ 𝑝∨¬𝑝
is inhabited for every, possibly complex, LF term 𝑝 ∶ prop. In other words, TND represents
that excluded middle is an admissible rule for the theory PL, i.e., in the special case without
atomic formulae. Indeed, suppose we had a theory PL′ = {include PL, 𝐴∶ prop} which
extended PL with one atomic formula. Then, corresponding realizations of Logrel1(PL′)
would have expect assignments of types 𝐴∶ prop and 𝐴∗ ∶ ⊩ 𝐴 ∨ ¬𝐴. Thus, from TND “it
follows that excluded middle is admissible if it is admissible for all atoms.” ([RS13, Ex. 4.1])

As another example, we represent the meta theorem of double negation elimination fol-
lowing [Rou21a, Sec. 4.2]: in PL the formula 𝑝 ⇔ ¬¬𝑝 is provable for every, possibly complex,
proposition 𝑝 ∶ prop if it is for every atom. The realization DNE given below accomplishes
this and is analogous to TND.

mor DNE ∶ Logrel1(PL) → PL = {
= =

}

Analogously to before, it follows that double negation elimination is admissible if it is
admissible for all atoms.

4.4.3 Partial Logical Relations
Motivated by Remark 84, we now generalize our functor from Definition 77 to allow for
representing partial logical relations as well.

N. Roux 65

▶ Definition 86 (Partial Logical Relation Operators). For an arity 𝑛 ≥ 1 and a set Θ of
constant identifiers, the linear functor Logrel𝑛,Θ is given on all theories and morphisms by

Logrel𝑛,Θ,Σ(𝑐 ∶ 𝐴 [= 𝑡]) =

⎧{{{{{
⎨{{{{{⎩

𝑐(1) ∶ 𝐴(1) [= 𝑡(1)]
⋮
𝑐(𝑛) ∶ 𝐴(𝑛) [= 𝑡(𝑛)]

𝑐∗ ∶ 𝑟𝑛,Θ,Σ(𝐴) 𝑐(1) … 𝑐(𝑛) [= 𝑟𝑛,Θ,Σ(𝑡)]
only if 𝑐 ∉ Θ and 𝑟𝑛,Θ,Σ(𝐴) ≠ ⊥

and for every 1 ≤ 𝑖 ≤ 𝑛 the strongly linear connector LogrelIn(𝑖)
𝑛,Θ into Logrel𝑛 is given by

LogrelIn(𝑖)
𝑛,Σ(𝑐 ∶ 𝐴) = 𝑐(𝑖)

Here, 𝑟𝑛,Θ,Σ is the 𝑛-ary partial logical relation on LogrelIn(1)
𝑛,Θ,Σ,… , LogrelIn(𝑛)

𝑛,Θ,Σ induced
by

𝑟𝑛,Θ,Σ(𝑐) = {⊥ if 𝑐 ∈ Θ or 𝑟𝑛,Σ(𝐴) = ⊥ for (𝑐 ∶ 𝐴) ∈ Σ
𝑐∗ otherwise

for every 𝑐 ∈ Σ.
We make Logrel𝑛,Θ partial on those constant declarations 𝑐 ∶ 𝐴 = 𝑡 where 𝑡 is given,

𝑟𝑛,Θ,Σ(𝐴) is defined, but 𝑟𝑛,Θ,Σ(𝑡) is not.

We parametrize our functor with a set of identifiers Θ on which the logical relations to
be represented will be undefined for sure. Note that the effective set of partialities may grow
as the functor traverses linearly through theories:

▶ Example 87 (Basic Mechanics of Logrel1,Θ). Consider the following contrived theory:

theory 𝑇 = {
𝐴∶ type
𝑥 ∶ 𝐴
𝑦 ∶ 𝐴

}

Below we show results of applying Logrel1,Θ with various parametrizations of partiality:

theory Logrel1,{𝐴}(𝑇) = Logrel1,{𝐴,𝑥}(𝑇) = Logrel1,{𝐴,𝑦}(𝑇) = Logrel1,{𝐴,𝑥,𝑦}(𝑇) = {
𝐴∶ type
𝑥 ∶ 𝐴
𝑦 ∶ 𝐴

}

66 Structure-Preserving Diagram Operators

theory Logrel1,{𝑥}(𝑇) = {
𝐴 ∶ type
𝐴∗ ∶ 𝐴 → type
𝑥 ∶ 𝐴
𝑦 ∶ 𝐴
𝑦∗ ∶ 𝐴∗ 𝑥

}

theory Logrel1,{𝑦}(𝑇) = {
𝐴 ∶ type
𝐴∗ ∶ 𝐴 → type
𝑥 ∶ 𝐴
𝑦 ∶ 𝐴
𝑦∗ ∶ 𝐴∗ 𝑦

}
We observe that once 𝐴 is put onto the partiality list Θ, then none of 𝐴, 𝑥, or 𝑦 receive
starred constants that witness them being in the relation at their respective type. In those
cases, according to Definition 86 emission of 𝐴∗ is skipped because 𝐴 ∈ Θ, and emission
of 𝑥∗ and 𝑦∗ is skipped because 𝑟𝑛,Θ,Σ(𝐴) = ⊥. In particular, for the fixed theory 𝑇
the parametrizations Θ = {𝐴}, {𝐴, 𝑥}, {𝐴, 𝑦}, {𝐴, 𝑥, 𝑦} all yield effectively equal functors
Logrel1,Θ.

Limitations Our way of representing partial logical relations using a parametrized linear
functor allowed for an easy specification in Definition 86, which is also reflected in the im-
plementation. However, it is by no means ideal in terms of user experience. For example,
users are forced to specify the parametrization a-priori representing their desired logical
relations, namely at time of invoking the functor. Moreover, users could apply differently
parametrized functors to obtain theories with equal contents (but different theory identi-
fiers, see Example 87) and have no way of identifying or relating those results. Even though
connectors could solve this issue, the inherent design simply fails to scale. Instead, a repre-
sentation measure for logical relations could offer syntax such as 𝑐∗ = ⊥ to allow users to
specify partiality ad-hoc.

▶ Example 88 (Conveniently Representing Type Preservation (cont. Example 83 and Ex-
ample 15)). In Example 83 we represented the type preservation property from hard- to
soft-typed product types using a total logical relation. The totality led to a lot of awk-
ward Unit type arguments, which we can now get rid of. We set Θ = {tp} and compute
Logrel1,Θ(HTyped) and Logrel1,Θ(HProd) as shown in Figure 15. We now formalize type
preservation on HTyped and HProd as shown below, choosing the same morphism identifiers
as in Example 83 for convenience.

mor TypePres ∶ Logrel1,Θ(HTyped) → STyped = {
= =

}

mor TypePresProd ∶ Logrel1,Θ(HProd) → SProd = {
= =

}
The structural similarity between SProd and Logrel1,Θ(HProd) is now even more visi-

ble than before. The morphism TypePresProd suggests that the only thing distinguishing
SProd and PushTypePres(Logrel1,Θ(HProd)) is that pair, projL, and projR do not take type
arguments in the former, but do in the latter. We come back to this observation in ??.

N. Roux 67

theory Logrel1,Θ(HTyped) = {
tp ∶ type
tm ∶ tp → type
tm∗ ∶ Π 𝑇 ∶ tp. tm 𝑇 → type

}

theory Logrel1,Θ(HProd) = {
include Logrel1,Θ(HTyped)
prod ∶ tp → tp → tp
pair ∶ Π 𝑎 𝑏 ∶ tp. tm 𝑎 → tm 𝑏 → tm prod 𝑎 𝑏
pair∗ ∶ Π 𝑎 𝑏 ∶ tp. Π 𝑥∶ tm 𝑎. Π𝑥∗ ∶ tm∗ 𝑎 𝑥.

Π 𝑦 ∶ tm 𝑏. Π 𝑦∗ ∶ tm∗ 𝑏 𝑦.
tm∗ (prod 𝑎 𝑏) (pair 𝑎 𝑏 𝑥 𝑦)

projL ∶ Π 𝑎 𝑏 ∶ tp. tm prod 𝑎 𝑏 → tm 𝑎
projL∗ ∶ Π 𝑎 𝑏 ∶ tp. Π 𝑝 ∶ tm prod 𝑎 𝑏.

Π 𝑝∗ ∶ tm∗ (prod 𝑎 𝑏) 𝑝. tm∗ 𝑎 (projL 𝑎 𝑏 𝑝)
projR ∶ Π 𝑎 𝑏 ∶ tp. tm prod 𝑎 𝑏 → tm 𝑏
projR∗ ∶ Π 𝑎 𝑏 ∶ tp. Π 𝑝 ∶ tm prod 𝑎 𝑏.

Π 𝑝∗ ∶ tm∗ (prod 𝑎 𝑏) 𝑝. tm∗ 𝑎 (projR 𝑎 𝑏 𝑝)
}

mor LogrelIn(1)
1,Θ(HProd) ∶ HProd → Logrel1,Θ(HProd) = {

= =
}

Figure 15 Interface theories for logical relations on HProd that are partial on Θ = {tp}

We prove meta-theoretical of the functor and connectors as before. The only critical
step hides in the last sentence of Definition 86, which guarantees term-totality of 𝑟𝑛,Θ,Σ∗
whenever Logrel𝑛,Θ is defined.

▶ Theorem 89. Logrel𝑛,Θ is well-typed and functorial.

Proof. Similar to the total case outlined in the proof of Theorem 78. ◀

▶ Theorem 90. The connectors LogrelIn(𝑖)
𝑛,Θ are well-typed and natural.

Proof. By Theorem 38 in conjunction with Theorem 89. ◀

▶ Theorem 91 (Adequacy). For 𝑛 ≥ 1, identifier set Θ, and any flat theory 𝑅, we have the
bijection of sets

realizations of Logrel𝑛,Θ(𝑅) ≅
𝑛-ary term-total logical relations on 𝑅
that are partial at least on Θ and otherwise
maximally total

Proof. Similar to the total case outlined in the proof of Theorem 80. ◀

The last theorem statement reads a bit awkwardly precisely due to the remarks mentioned
after Definition 86.

68 Structure-Preserving Diagram Operators

4.4.4 Related and Future Work: TODO

Related Work We outline and compare three different approaches of representing logical
relations in Mmt or Mmt-near systems:

A a new module kind next to theories and morphisms [RS13]

rel 𝑟 ∶ 𝑚1 × ...×𝑚𝑛 ∶ 𝑅 → 𝑆 = {…}

B realizations of LogrelAlong𝑚1,…,𝑚𝑛 ∶ 𝑅→𝑆(𝑋) [Rou21a]
C realizations of Logrel𝑛(𝑋) (this thesis)

The first approach by Rabe and Sojakova adds support for logical relations by extending
the module system with a new kind of module. Every rel module takes an identifier (here:
𝑟), a list of morphisms with common domain and codomain, and, akin to morphisms, a
body that for every constant 𝑐 ∈ 𝑆 declares an assignment to 𝑐. The second approach, first
sketched by the author in [Rou21a], uses a functor that is parametrized by a list of morphisms.
It maps every theory 𝑋 ↪ 𝑅 to the theory LogrelAlong𝑚1,…,𝑚𝑛

(𝑋) whose realizations are
precisely the 𝑛-ary logical relations on the restricted morphisms 𝑚1|𝑋,… ,𝑚𝑛|𝑋 ∶ 𝑋 → 𝑆.
Concretely, for every undefined constant 𝑐 ∈ 𝑋 this theory contains an undefined constant
declaration 𝑐∗ whose type is exactly the type that would have been expected in an assignment
to 𝑐 in an 𝑛-ary logical relation on 𝑚1|𝑋,… ,𝑚𝑛|𝑋. For this reason, LogrelAlong𝑚1,…,𝑚𝑛

(𝑋)
acts as an interface theory and any morphism out of it encodes precisely the assignments
necessary for a logical relation on 𝑚1,… ,𝑚𝑛. Finally, the third approach generalizes the
second one by getting rid of the morphisms as a parameter. It does so by creating even more
constants in the interface theory. For every 𝑐 ∈ 𝑋 the interface theory Logrel𝑛(𝑋) contains
undefined constants 𝑐1,… , 𝑐𝑛, 𝑐∗. Here, the first 𝑛 constants are just qualified copies of 𝑐
forcing realizations 𝑟 ∶ Logrel𝑛(𝑋) → 𝑆 to encode 𝑛 morphisms 𝑚1,… ,𝑚𝑛 ∶ 𝑋 → 𝑆. And
the constant 𝑐∗ has the same purpose as in the second approach.

The considerable advantage of approaches B and C is that they forgo the need to add
anything to Mmt’s syntax (except syntax for diagram operators – which is useful anyway as
the present thesis hopefully makes clear). Moreover, these approaches nicely interplay with
the presence of other functors without having to implement any additional business logic.
For example, we can directly apply the pushout operator to realizations in approaches B
and C. See Section 4.5 for a larger case study on that.

Future Work All approaches listed above, incl. ours, only represent logical relations, i.e.,
proofs of meta theorems of certain shape. None of them allows the user to actually use the
Basic Lemmas resulting from logical relations represented in those ways, something that is
desired in practice. Adding support for that is a non-trivial task, as it may lead to all the
usual issues that appear when adding reflection capabilities to a formal system.

Our representation approach for partial logical relation forces users to awkwardly and
explicitly state the constants on which logical relations should be undefined. We already
dicussed this right after Example 87.

4.5 Translating Formalizations of Type Theory from Intrinsic to
Extrinsic Style

Soften = Clean𝑓 ∘ PushTypePres ∘ Logrel1,Θ

N. Roux 69

HTyped Logrel1,Θ(HTyped) STyped STyped

𝐻𝑋 Logrel1,Θ(𝐻𝑋) PushTypePres(Logrel1,Θ(𝐻𝑋)) 𝑆𝑋

TypePres idSTyped

The linear functor Soften translates formalizations of type-theoretical features from intrinsic
(hard-typed) to extrinsic (soft-typed) style. The underlying translation is based on joint work
of Florian Rabe and the author in [RR21b]. We define it as the composition of three previous
functors: logical relation Logrel1,Θ from Section 4.4.3, pushout Push from Section 4.1, and
parameter removal Clean𝑓 from Section 4.3.

4.5.1 Motivation of Case Study
This case study is interesting for the present work for two reasons. First, we are able to
phrase the translation from [RR21b] as a functor composed modularly out of three reusable
functors from our framework: logical relation Logrel1,Θ from Section 4.4.3, pushout Push
from Section 4.1, and parameter removal Clean𝑓 from Section 4.3. Thus, this case study
shows that we can modularly build powerful functors from a basic set of reusable
functors. Second, we use logical relations for data, in contrast to them being conven-
tionally used just for proof. And our way of representing logical relations as morphisms
naturally blurs the dinstiction between logical relations for proof and for data,
which is an interesting phenomenon on its own. By postcomposing Logrel1,Θ with Push,
we effectively transport data along a logical relation. This can be seen as a generalization of
“conventional” pushouts that transport data along morphisms (without any other functors at
play). Translating from intrinsic to extrinsic style is precisely a case where such morphisms
are too inexpressive of a translation for the desired transport of data, necessating logical
relations.10 We refer to [RR21b] for an explanation why logical relations are a good fit for
the translation occurring here.

4.5.2 Heading Towards a Definition
In Examples 82, 83, and 88 we have shown, given formalizations of hard-typed and soft-
typed type-theoretical features (e.g., product types), how we can represent the type era-
sure and preservation property from hard-typed to soft-typed using the functors developed
in this section. Our presentation culminated in Example 88 where we gave morphisms
TypePres ∶ Logrel1,Θ(HTyped) → STyped and TypePresProd ∶ Logrel1,Θ(HProd) → SProd,
both representing logical relations. We critically observed how the latter is pretty dull: ex-
cept for specialties regarding superfluous parameters, the morphism is a renaming. This
motivated seeing SProd (and every other soft-typed feature) to be systematically derivable
from the corresponding hard-typed feature. In the this section, we retell parts of these re-
sults from Florian Rabe and the author [RR21b] in light of the framework developed in the
present thesis.

The procedure is roughly as follows, see the diagram below (unlabeled arrows denote the
canonical connectors into the respective functors). Let HTyped and STyped be the base theo-
ries of hard- and soft-typed features from Example 82. Initially, compute Logrel1,Θ(HTyped)

10 In fact, logical relations can be seen as second-order morphisms (an idea communicated by Florian
Rabe). And in general, we can spawn an entire hierarchy of higher-order compositional translations,
for all of which we may formulate pushouts.

70 Structure-Preserving Diagram Operators

with Θ = {tp} and represent type preservation as a logical relation in form of the morphism
TypePres from Example 88. Now consider any hard-typed feature 𝐻𝑋. To translate it
to a corresponding soft-typed feature, we first compute Logrel1,Θ(𝐻𝑋) then compute the
pushout along TypePres, and finally take care of removing superfluous parameters using the
functor Clean from Section 4.3. This way we obtain the intended representation 𝑆𝑋 of the
soft-typed feature.

Except for parameter removal, the procedure should already be clear from Example 88.
We now explain the missing piece. Let us abbreviate LP = Logrel1,Θ ; PushTypePres, a linear
functor from HTyped to STyped. To see what goes wrong when just trying to use LP for
softening, consider the theory LP(HProd) shown below. The source theory HProd together
with SProd were presented in Example 83.

theory LP(HProd) = {
include STyped
prod ∶ tp → tp → tp
pair ∶ Π 𝑎 𝑏 ∶ tp. term → term → term
pair∗ ∶ Π 𝑎 𝑏 ∶ tp. Π 𝑥∶ term. Π 𝑥∗ ∶ 𝑥 ∶∶ 𝑎.

Π 𝑦 ∶ term. Π 𝑦∗ ∶ 𝑦 ∶∶ 𝑏.
(pair 𝑎 𝑏 𝑥 𝑦) ∶∶ (prod 𝑎 𝑏)

projL ∶ Π 𝑎 𝑏 ∶ tp. term → term
projL∗ ∶ Π 𝑎 𝑏 ∶ tp. Π 𝑝 ∶ term.

Π 𝑥∗ ∶ 𝑝 ∶∶ prod 𝑎 𝑏. (projL 𝑎 𝑏 𝑝) ∶∶ 𝑎
projR ∶ Π 𝑎 𝑏 ∶ tp. term → term
projR∗ ∶ Π 𝑎 𝑏 ∶ tp. Π 𝑝 ∶ term.

Π 𝑥∗ ∶ 𝑝 ∶∶ prod 𝑎 𝑏. (projR 𝑎 𝑏 𝑝) ∶∶ 𝑏
}

The above theory is almost equal to the desired formalization SProd except that some
translated constants (pair, projL, projR) feature undesired type parameters. This issue is
not unique to product types. Consider Figure 16, where we collect an exemplary diagram
HDiag of hard-typed features. Figure 17 shows the corresponding soft-typed variants in a
diagram SDiag that we intend to obtain by applying our functor. Let us compare every
constant 𝑐 in HDiag with its equinamed constant in SDiag. Concerning type parameters we
can distinguish the following cases:

removal desired: pair ∶ Π 𝑎 𝑏. tm 𝑎 → tm 𝑏 → tm prod 𝑎 𝑏 should go to pair ∶ term →
term → term; analogously for app
removal optional depending on the intended result, e.g., eq ∶ Π 𝑎. tm 𝑎 → tm 𝑎 → prop
can go to eq ∶ term → term → prop or to eq ∶ Π 𝑎. term → term → prop; analogously
lam ∶ Π 𝑎 𝑏 . (tm 𝑎 → tm 𝑏) → tm fun 𝑎 𝑏 can go to lam ∶ (term → term) → term or to
lam ∶ Π 𝑎. (term → term) → term
removal undesired, e.g., dfun ∶ Π 𝑎∶ tp. (tm 𝑎 → tp) → tp should go to dfun ∶ Π 𝑎. (term →
tp) → tp; consequently the analogous parameter must be kept in dlam and dapp

Removing selected type parameters by post-composing LP with the Clean functor from
Section 4.3 is straightforward and presented in the following. As the list above may suggest,
the major problem is identifying these parameters in the first place, and thus the definition
of a suitable parameter keep heuristic.

Much to our surprise and frustration, automatically choosing an appropriate heuristic 𝑓
turned out to be difficult:

N. Roux 71

▶ Example 92. The undesired argument positions in LP(HProd) are exactly the named
variables in HProd that do not occur in their scopes in LP(HProd) anymore. This includes
the positions pair1 and pair2, and removing them yields the desired declaration of pair in
SProd.

However, that does not hold for HDepFun. Here the argument dfun1 is named in HDepFun
and unused in the declaration dfun ∶ Π 𝑎∶ tp. (term → tp) → tp that occurs in LP(HDepFun).
However, that is in fact the desired formalization of the soft-typed dependent function
type. Removing dfun1 would yield the undesired dfun ∶ (term → tp) → tp. While we do
not mention Mmt’s implicit arguments in this paper, note also that dfun1 is an implicit
argument in HDepFun that must become explicit in SDepFun.

This is trickier than it sounds because some argument positions may only be removable
if they are removed at the same time; so a fixpoint iteration might be necessary. Moreover,
picking the smallest possible 𝑓 (i.e., 𝑓Σ(𝑐) ≡ ∅) is entirely wrong as it would remove all
argument positions. At the very least, we should only remove named argument positions,
i.e., those that are bound by a named variable (as opposed to the anonymous variables
introduced by parsing, e.g., prod ∶ tp → tp → tp). A smarter choice is to remove all named
argument positions that become redundant through the pushout along the type erasure
morphism (as part of TypePres), i.e., positions for constants 𝑐 that are named and used
in HProd but unused in the equinamed declaration in LP(HProd). (Note that in general
pushouts of constants have at least the argument positions that they previously had. They
may have more if the morphism over which pushouts are computed maps an atomic type to
a function type.) That is the right choice almost all the time but not always.

After several failed attempts, we have been unable to find a good heuristic for choosing 𝑓 .
For now, we aim to remove all named variables that after pushout no longer occur in their
scope, and we allow users to annotate constants like @keep(dfun1) where the system should
deviate from that heuristic (see Figure 16). Formally, we have to extend our category
of theories and morphisms suitably to allow constants declarations to be annotated. We
anticipate finding better solutions after collecting more data in the future.

4.5.3 Definition

We omitted one technicality in the last section. Namely, to remove all named variables that
after pushout no longer occur in their scope, it is necessary for the translation to look back at
what the original constant was. This is easily accomplished when softening is phrased as one
self-contained translation (as in [RR21b]), but is a minor technical hurdle when softening
is built up modularly as the composition of multiple functors (as in the present thesis). To
solve this problem, we make again clever use of annotations. First, we modify Logrel1,Θ to
preserve a snapshot of the original constants in form of annotations in the output constants
(see first downwards arrow in Figure 18). Second, we modify Push𝑚 to preserve annotations
of input constants (see second downwards arrow in Figure 18). Third, we specify a heuristic
for Clean𝑓 that makes use of the annotations preserved this way (see definition below).

▶ Definition 93 (Softening). The linear functor Soften from HTyped to STyped is given by

Soften = Logrel1,Θ ; PushTypePres ; Clean𝑓

where ; denotes composition in diagrammatic order and where the heuristic 𝑓 for Clean𝑓 is

72 Structure-Preserving Diagram Operators

theory HEqual =
include HTyped
@keep(eq1)
eq ∶ Π 𝑎. tm 𝑎 → tm 𝑎 → prop
refl ∶ Π 𝑎 𝑥. ⊩ eq 𝑎 𝑥𝑥
eqsub ∶ Π 𝑎 𝑥 𝑦. ⊩ eq 𝑎 𝑥 𝑦 →

Π𝐹 ∶ tm 𝑎 → prop. ⊩ 𝐹 𝑥 →⊩ 𝐹 𝑦
theory HFun =

include HEqual
fun ∶ tp → tp → tp
@keep(lam1)
lam ∶ Π 𝑎 𝑏. (tm 𝑎 → tm 𝑏) → tm fun 𝑎 𝑏
app ∶ Π 𝑎 𝑏. tm fun 𝑎 𝑏 → tm 𝑎 → tm 𝑏

theory HDepFun =
include HEqual
@keep(dfun1)
dfun ∶ Π 𝑎. (tm 𝑎 → tp) → tp
@keep(dlam1)
dlam ∶ Π 𝑎. Π 𝑏 ∶ tm 𝑎 → tp. (Π𝑥∶ tm 𝑎. tm 𝑏 𝑥)

→ tm dfun 𝑎 𝑏
dapp ∶ Π 𝑎 𝑏. tm dfun 𝑎 𝑏 → Π𝑥∶ tm 𝑎. tm 𝑏 𝑥

theory HBeta =
include HFun
beta ∶ Π 𝑎 𝑏. Π𝐹 ∶ tm 𝑎 → tm 𝑏. Π𝑥.

⊩ eq 𝑏 (app 𝑎 𝑏 (lam 𝑎 𝑏 𝐹) 𝑥) (𝐹 𝑥)
theory HEta =

include HFun
eta ∶ Π 𝑎 𝑏. Π 𝑓 ∶ tm fun 𝑎 𝑏.

⊩ eq (fun 𝑎 𝑏) 𝑓 (lam 𝑎 𝑏 𝜆𝑥. app 𝑓 𝑥)

theory HExten =
include HFun
exten ∶ Π 𝑎 𝑏. Π 𝑓 𝑔 ∶ tm fun 𝑎 𝑏.

(Π𝑥. ⊩ eq 𝑏 (app 𝑎 𝑏 𝑓 𝑥)
(app 𝑎 𝑏 𝑔 𝑥)) →⊩ eq (fun 𝑎 𝑏) 𝑓 𝑔

theory HDepBeta =
include HDepFun
dbeta ∶ Π 𝑎 𝑏. Π𝐹 ∶ (Π𝑥∶ tm 𝑎. tm 𝑏 𝑥). Π𝑥.

⊩ eq (𝑏 𝑥) (dapp 𝑎 𝑏 (dlam 𝑎 𝑏 𝐹) 𝑥) (𝐹 𝑥)

Figure 16 Theories for Function Types with Annotations for Needed Parameters

N. Roux 73

theory SEqual =
include STyped
eq ∶ Π 𝑎. term → term → prop
refl∗ ∶ Π 𝑎 𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ eq 𝑎 𝑥𝑥
eqsub∗ ∶ Π 𝑎. Π𝑥. Π𝑥∗ ∶ ⊩ 𝑥 ∶∶ 𝑎.

Π 𝑦. Π 𝑦∗ ∶ ⊩ 𝑦 ∶∶ 𝑎.
⊩ eq 𝑎 𝑥 𝑦 →
Π𝐹 ∶ term → prop.
⊩ 𝐹 𝑥 →⊩ 𝐹 𝑦

theory SFun =
include SEqual
fun ∶ tp → tp → tp
lam ∶ Π 𝑎. (term → term) → term
lam∗ ∶ Π 𝑎 𝑏. Π𝐹 ∶ term → term.

(Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ (𝐹 𝑥) ∶∶ 𝑏)
→⊩ (lam 𝑎𝐹) ∶∶ (fun 𝑎 𝑏)

app ∶ term → term → term
app∗ ∶ Π 𝑎 𝑏. Π 𝑓. ⊩ 𝑓 ∶∶ (fun 𝑎 𝑏) →

Π𝑥. ⊩ ∶∶𝑥 𝑎 →⊩ (app 𝑓 𝑥) ∶∶ 𝑏

theory SDepFun =
include SEqual
dfun ∶ Π 𝑎. (term → tp) → tp
dlam ∶ Π 𝑎. (term → term) → term
dlam∗ ∶ Π 𝑎. Π 𝑏 ∶ term → tp. Π𝐹 ∶ term → term.

(Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ (𝐹 𝑥) ∶∶ (𝑏 𝑥))
→⊩ (dlam 𝑎 𝑏 𝐹) ∶∶ (dfun 𝑎 𝑏)

dapp ∶ term → term → term
dapp∗ ∶ Π 𝑎 𝑏. Π 𝑓. ⊩ 𝑓 ∶∶ (dfun 𝑎 𝑏) →

Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ (dapp 𝑓 𝑥) ∶∶ (𝑏 𝑥)

theory SBeta =
include SFun
beta∗ ∶ Π 𝑎 𝑏. Π𝐹 ∶ term → term.

(Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ (𝐹 𝑥) ∶∶ 𝑏)
→ Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →
⊩ eq 𝑏 (app (lam 𝑎𝐹) 𝑥) (𝐹 𝑥)

theory SEta =
include SFun
eta∗ ∶ Π 𝑎 𝑏. Π 𝑓 ∶ term. ⊩ 𝑓 ∶∶ (fun 𝑎 𝑏)

⊩ eq (fun 𝑎 𝑏) 𝑓 (lam 𝑎𝜆𝑥. app 𝑓 𝑥)

theory SExten =
include SFun
exten∗ ∶ Π 𝑎 𝑏. Π 𝑓 ∶ term. ⊩ 𝑓 ∶∶ (fun 𝑎 𝑏) →

Π𝑔 ∶ term. ⊩ 𝑔 ∶∶ (fun 𝑎 𝑏) →
(Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ eq 𝑏 (app 𝑓 𝑥) (app 𝑔 𝑥))
→⊩ eq (fun 𝑎 𝑏) 𝑓 𝑔

theory SDepBeta =
include SDepFun
dbeta∗ ∶ Π 𝑎 𝑏. Π𝐹 ∶ term → term.

(Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →⊩ (𝐹 𝑥) ∶∶ (𝑏 𝑥)) →
Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 →
⊩ eq (𝑏 𝑥) (dapp (dlam 𝑎𝐹) 𝑥) (𝐹 𝑥)

Figure 17 Intended Result of Softening the Theories from Figure 16

74 Structure-Preserving Diagram Operators

@keep(lam1)
lam ∶ Π 𝑎 𝑏. (tm 𝑎 → tm 𝑏) → tm fun 𝑎 𝑏
↓ Logrel1,Θ

@original(@keep(lam1) lam ∶ Π 𝑎 𝑏. (tm 𝐴 → tm 𝑏) → tm fun 𝑎 𝑏)
lam ∶ Π 𝑎 𝑏. (tm 𝑎 → tm 𝑏) → tm fun 𝑎 𝑏
lam∗ ∶ Π 𝑎 𝑏. Π𝐹 ∶ tm 𝑎 → tm 𝑏. (Π𝑥. ⊩ tm∗ 𝑎 𝑥 → tm∗ 𝑏 (𝐹 𝑥) → tm∗ (fun 𝑎 𝑏) (𝜆 . 𝑎 𝐹)
↓ PushTypePres

@original(@keep(lam1) lam ∶ Π 𝑎 𝑏. (tm 𝐴 → tm 𝑏) → tm fun 𝑎 𝑏)
lam ∶ Π 𝑎 𝑏. (term → term) → term
lam∗ ∶ Π 𝑎 𝑏. Π𝐹 ∶ term → term. (Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 → (𝐹 𝑥) ∶∶ 𝑏 → (𝜆 . 𝑎 𝑏 𝐹) ∶∶ (fun 𝑎 𝑏)
↓ Clean𝑓
lam ∶ Π 𝑎. (term → term) → term
lam∗ ∶ Π 𝑎 𝑏. Π𝐹 ∶ term → term. (Π𝑥. ⊩ 𝑥 ∶∶ 𝑎 → (𝐹 𝑥) ∶∶ 𝑏 → (𝜆 . 𝑎𝐹) ∶∶ (fun 𝑎 𝑏)

Figure 18 Annotations over the course of functor application

defined by

𝑓 ⎛⎜⎜⎜
⎝
@original(@keep(𝑈) 𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵 [= 𝜆𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑡])
𝑐 ∶ Π𝑥1 ∶ 𝐴1. ... Π𝑥𝑛 ∶ 𝐴𝑛. 𝐵 [= 𝜆𝑥1∶ 𝐴1. ... 𝜆𝑥𝑛∶ 𝐴𝑛. 𝑡]

⎞⎟⎟⎟
⎠

= {1, ... , 𝑛} {𝑥𝑖 ∣ 𝑥𝑖 used in original type or def., but not in current one}

Correspondingly, the connector SoftenIn ∶ Id → Soften is given by

SoftenIn = LogrelIn(1)
1,Θ ; PushInTypePres ; CleanIn𝑓

Since Soften and SoftenIn are defined by composition of well-typed functors and well-
typed natural connectors, respectively, they immediately inherit the same properties:

▶ Theorem 94. Soften is well-typed and functorial.

▶ Theorem 95. SoftenIn is well-typed and natural.

Limitation: Translating Proof Rules Applied to Figure 16, Definition 93 yields the
intended result for all constants except those representing proof rules (e.g., constants refl,
eqsub, beta). Intuitively, this can be easily fixed and we refer to [RR21b, Sec. 3.4] for the
idea. But formally, it would require giving a novel definition generalizing even partial logical
relations, being outside the scope of the present thesis.

N. Roux 75

5 Operators for Universal Algebra

5.1 Introduction
INTEGRATE FEEDBACK FOUND IN “2021-10-25-FEEDBACK-THESIS-DRAFT.txt”!

The mathematical field of algebra describes mathematical structures – such as monoids,
groups, and vectorspaces, etc., – that are ubiquitous throughout all formal sciences includ-
ing mathematics and all its subfields, computer science, physics, and chemistry. Thus,
formalizations of algebra are inevitable for even the most basic formalization endeavours in
any of these fields, making it an integral part of every standard library for formal systems.

Algebra equips all these structures with various corresponding constructions, such as ho-
momorphisms, substructures, congruence structures, kernels and images of homomorphisms,
submodels, and quotient models, etc. Typically, all these notions are given for each and ev-
ery structure separately, e.g., they are given for monoids, groups, vectorspaces, etc. Thanks
to Universal Algebra we know that many of these notions can be systematically derived
from a syntactic description of the algebra structure itself. For example, monoid homo-
morphisms are functions between two monoids that preserve all of the domain monoid’s
operations, being the binary operation and the neutral element; similarly group homomor-
phisms additionally preserve the inverse operation; and vector space homomorphisms are
functions between two vector spaces that preserve the operations of scalar multiplication and
vector addition. Universal algebra classifies mathematical structures into signatures, making
explicit a syntax to describe, e.g., the concept of monoids, groups, etc. And then it defines
universal constructions (e.g., of homomorphisms, etc.) that for every signature induce
exactly the ones mentioned above (e.g., of monoid, group and vectorspace homomorphisms).

These induced constructions and their properties are both universal and constructive.
Thus they are ripe for being automated by meta-programming in standard libraries.
([carette:diagops])

However, many formalization libraries still handcraft these constructions for lack of suit-
able meta-programming support. We hope to address this with our framework of diagram
operators.

Contribution Our contribution is two-fold. First, we conduct the case study of phrasing
universal constructions as linear operators. Using a shallow embedding, we represent
algebra theories and their signatures as Mmt theories and organize them into the large
structured diagram Alg shown in ??. Then, we phrase constructions such as homomorphisms,
substructures, and congruences as linear functors, and constructions such as kernels and
images of homomorphisms as linear connectors. For every theory 𝑇 , we systematically

76 Structure-Preserving Diagram Operators

obtain the following diagram:

Sub(𝑇)

Hom(𝑇)

Cong(𝑇)

Img

Ker

Applying these diagram operators to Alg as a whole, we obtain large, structured, and inter-
related diagrams Hom(Alg), Sub(Alg), Cong(Alg), and interrelations Ker(Alg) and Img(Alg).
We can also nest these functors, e.g., to acquire the theory Hom(Sub(Group)) representing
the theory of homomorphisms between subgroups.

Second, our way of defining these constructions is novel and generalizes the
setting in which universal algebra is typically developed. Typically, these constructions are
given for signatures over first-order logic with just function and predicate symbols because
that is sufficient to represent typical algebra theories. Using the machinery of logical
relations (see Section 4.4, [RS13]), we generalize this setting in two directions: First, we
extend some constructions to signatures over sorted, polymorphic, and dependently-typed
first-order logic, all of which include function, predicate, and axiom symbols. Second, we
extend some constructions to signature morphisms, which implies that our translations also
need to emit proofs, We are not aware of any descriptions of operators formalizing the
constructions at this level of generality.

Overview As a preliminary, in Section 5.2 we discuss different variants of representing
algebra theories in type theories (shallow vs. deep embeddings) and show how we use Mmt
theories to realize a shallow embedding. Importantly, we present our main case study in
Section 5.2.4: the algebraic hierarchy of LATIN2. Our main contribution is given in Sec-
tions 5.3–5.7, where we define operators Hom, Sub, Cong, Ker, and Img in this order. We
recommend to first read Hom as a primer on our way of using logical relations to specify
complex translations in universal algebra. Afterwards, Sub and Cong can be read indepen-
dently. To read about the connectors Ker ∶ Cong → Hom and Img ∶ Sub → Hom, we naturally
recommend reading about their domain and codomain functors first. Finally, we conclude
in Section 5.8, where we in particular share learnings in how logical relations helped and
partially lacked in specifying complex translations in universal algebra. Moreover, we list
some possible avenues of future work, culminating in the diagram of operators listed at the
beginning of this section.

N. Roux 77

5.2 Representing Algebra Theories and Related Work
Overall, we use a shallow embedding and use certain well-patterned Mmt theories extending
SFOL to represent algebra theories. We discuss all of that at length: In Section 5.2.1 we
recap and compare different type-theoretical approaches of representing algebra theories
in formalizations. Having settled with a shallow embedding, in Section 5.2.2 we can use
Mmt theories to realize polymorphic and/or dependently-typed variants of first-order logic
that Mmt/LF naturally induces on SFOL-extensions. Then, in Section 5.2.3 we discuss
related work concerning the preceding sections. And finally, in Section 5.2.4 we present our
overarching example: the algebraic hierarchy in LATIN2.

Throughout all sections the following algebra theory serves as a concise running example:

▶ Definition 96 (Unitals). Mathematically (and with mathematical notation), a unital is
a set 𝑈 equipped with a binary operation ∘ ∶ 𝑈 → 𝑈 → 𝑈 and a designated element 𝑒 ∈ 𝑈 ,
fulfilling the axiom ∀𝑥 ∈ 𝑈. 𝑒 ∘ 𝑥 = 𝑥.

▶ Example 97 (Unitals in Mmt). We can represent Definition 96 in Mmt as the below
theory. This is a shallow embedding, as we will explain in Section 5.2.1.

theory Unital = {
include SFOL
𝑈 ∶ tp
∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈
𝑒 ∶ tm 𝑈
neut ∶ ⊩ ∀𝑥∶ tm 𝑈. 𝑒 ∘ 𝑥 ≐ 𝑥

}

5.2.1 Shallow and Deep Embeddings
In general, there are two ways of representing algebra theories in type theories: using a
shallow embedding or a deep embedding. To be clear, we first settle on some terminology: An
algebra theory is a collection of abstract types, function and predicate symbols, and axiom
symbols. Examples include the abstract concepts of monoids, groups, and vectorspaces
(but, e.g., not any concrete monoids, groups, or vectorspaces). Sometimes they are called
structures or signatures. An algebra is an instantiation of an algebra theory with concrete
types, functions and predicates, and proofs of axioms. Model theorists would consider
algebras to be models of algebra theories. In the following, let 𝒯 denote some unspecified
type theory.

In a shallow embedding (the approach we are following), algebra theories are repre-
sented as 𝒯-theories, i.e., as lists of 𝒯-constants. For example, below we express the algebra
theory of unitals (without the neutrality axiom for simplicity) for the type theories 𝒯 = LF
of LF and 𝒯 = LF, SFOL of the one that Mmt induces for SFOL-extensions (see for SFOL).

UnitalsLF = {𝑈 ∶ type, ∘ ∶ 𝑈 → 𝑈 → 𝑈, 𝑒∶ 𝑈}
UnitalsLF,SFOL = {𝑈 ∶ tp, ∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈, 𝑒∶ tm 𝑈}

Algebras are represented as corresponding instantiations. For example, we can express
that natural numbers form a unital under addition using the following instantiations of the

78 Structure-Preserving Diagram Operators

preceding 𝒯-theories:11

NatLF ∶ UnitalsLF = {𝑈 ∶= ℕ, ∘ ∶= 𝜆𝑎 𝑏 ∶ ℕ. 𝑎 + 𝑏, 𝑒 ∶= 0}
NatLF,SFOL ∶ UnitalsLF,SFOL = {𝑈 ∶= tm nat, ∘ ∶= 𝜆𝑎 𝑏 ∶ tm nat. 𝑎 + 𝑏, 𝑒 ∶= 0}

Here and above we assumed our type theory to feature a way for stating 𝒯-theories (i.e.,
named lists of constants) and 𝒯-instantiations, using an ad-hoc syntax that is hopefully
clear without explanation. Many formal systems fulfill this in practice, e.g., Mmt has
Mmt theories and views, Coq has modules, Isabelle has locales; yet other systems call their
constructs records, structures, classes, or specifications. Importantly, in a shallow embedding
the represented algebra theories and algebras often syntactic, declarative constructs of 𝒯.

In contrast, a deep embedding employs an additional level of indirection. It defines a
general 𝒯-theory Sig whose instantiations represent algebra theories, and for every algebra
theory sig ∶ Sig represented that way it defines a 𝒯-theory Algsig whose instantiations repre-
sent algebras. Let us give an example following the approach of [DeM21]. We assume 𝒯 to be
some dependent type theory (e.g., LF) enriched with finite types 𝟙, 𝟚,…, pattern matching,
and the ability to express parametric theories like Algsig. For simplicity, we restrict our-
selves to representing those algebra theories that are given by single-sorted signatures with
function symbols. We in particular exclude multisortednes and predicate symbols (to which
our example easily generalizes) and axioms (which are considerably harder to deep-embed).
The deep embedding is as follows:

Sig = {F ∶ type, | ⋅ | ∶ F → type}
Algsig ∶ Sig = {U ∶ type, J⋅K ∶ Π 𝑓 ∶ F. (|𝑓| → U) → U}

Given an instantiation of Sig, we can think of the type assigned to F as the type of function
symbols. For example, to represent an algebra theory with exactly two function symbols, we
could assign the finite type 2. And for every 𝑓 ∶ F representing a function symbol, its arity
is encoded by the type |𝑓|. For example, if we wanted 𝑓 to represent a tertiary function
symbol, we could assign a function to | ⋅ | that returns the finite type 3 upon input 𝑓 . The
algebra theory of unitals (again, without the neutrality axiom) can be given as follows:

Unitals ∶ Sig = {F ∶= 𝟚, | ⋅ | ∶= 𝜆𝑓 ∶ 𝟚. 𝑓 match
case ⋅1 ⇒ 𝟚
case ⋅2 ⇒ 𝟘

}

To explain how Algsig works, we state that natural numbers form a unital under addition
using the deep embedding above:

Nat ∶ AlgUnitals = {U ∶= ℕ,J⋅K ∶= 𝜆𝑓 ∶ 𝟚. 𝑓 match
case ⋅1 ⇒ 𝜆𝑖∶ 𝟚 → ℕ. (𝑖 ⋅1) + (𝑖 ⋅2)
case ⋅2 ⇒ 𝜆𝑖∶ 𝟘 → ℕ. 0

}

11 For the first line we assume an LF type ℕ of natural numbers, an addition function +∶ ℕ → ℕ → ℕ,
and zero 0∶ ℕ. And for the second line we assume an SFOL type nat ∶ tp, an addition function
+∶ tm nat → tm nat → tm nat, and zero 0∶ tm nat.

N. Roux 79

symbols of algebra
theory given… meaning emerges… accessible to

module system?
(instantiations,

inheritance,
metadata)

object logic?
(theorems,

quantification,
transformations)

shallow embedding declaratively syntactically x
deep embedding expressively semantically x

shallow embedding deep embedding
symbols of algebra theory given declaratively expressively (as terms)
meaning emerges syntactically semantically
accessible to module system? x
accessible to object logic? x
extensibility easy difficult
univ. constructions expressible? no somewhat

Figure 19 Comparison of shallow and deep embeddings

By dots (⋅1, ⋅2, ⋅3, etc.) we denote inhabitants of finite types. The type assigned to U rep-
resents the universe of the intended algebra, and the function assigned to J⋅K encodes the
interpretations of function symbols. Concretely, for every function symbol 𝑓 ∶ F the termJ𝑓K ∶ (|𝑓| → U) → U encodes the interpretation of 𝑓 . Here, the argument |𝑓| → U encodes
|𝑓|-many arguments for interpretation. For example, for instantiations of Unitals (e.g., for
Nat shown above), we have the expected types J⋅1K ∶ (𝟚 → U) → U and J⋅2K ∶ (𝟘 → U) → U.
These function types are in bijective correspondence to types 𝑈 → 𝑈 → 𝑈 and 𝑈 , thus
precisely represent function types for the binary and the nullary operation (i.e., the neutral
element) of unital algebras.

Importantly, the collection of names of function symbols and their arity are no longer
syntactic, declarative constructs (as was the case with the shallow embedding), but emerge
semantically on the object level.

Shallow vs. Deep Embeddings Both approaches have their merits and both are used
in practice for different purposes. We summarize the main differences in Figure 19.

With a shallow embedding, the declarative and syntactic nature of how algebra the-
ories are stated makes them accessible to the module system. This is generally a good thing:
Consider how type theory advocates building on a type sytem to get in return its services
such as type safety, normalization, or termination. In the same spirit, module system devel-
opers [RK13] (as is the author) advocate building on a module system to get in return its
services such as organization into modules and libraries (inheritance, interrelations like mor-
phisms) and being able to annotate extra-logical metadata (humanly-authored comments,
source references, typechecking information) In our case, the primary advantage is that a
shallow embedding can make use of inheritance between algebra theories, thus state, e.g.,
the algebra theory of groups as an extension of monoids. This allows developing the whole
algebraic hierarchy using structuring features of the module system. This makes shallow
embeddings very attractive for formalizing the algebraic hierarchy (in contrast to universal
algebra as a unifying meta theory), as is done in major developments such as for Coq in
the Mathematical Components [mathcomp21; Gar+09] and previous developments [SW11;
Geu+02], for Agda in the Agda Standard Library [agd21], for Lean in the Lean Matehmatics
Library [Com20] and for Nuprl in [Jac95, ch. 6].

80 Structure-Preserving Diagram Operators

Hom(UnitalsLF,SFOL) =
⎧{{
⎨{{⎩

U𝑑 ∶ tp, ∘𝑑 ∶ tm U𝑑 → tm U𝑑 → tm U𝑑, 𝑒𝑑 ∶ tm U𝑑

U𝑐 ∶ tp, ∘𝑐 ∶ tm U𝑐 → tm U𝑐 → tm U𝑐, 𝑒𝑐 ∶ tm U𝑐

ℎ ∶ tm U𝑑 → tm U𝑐

∘ℎ ∶ Π 𝑥 𝑦 ∶ tm U𝑑. ⊩ ℎ (𝑥 ∘𝑑 𝑦) ≐ (ℎ 𝑥) ∘𝑐 (ℎ 𝑦)

⎫}}
⎬}}⎭

Figure 20 Theory of homomorphisms for the shallow embedding UnitalsLF,SFOL

Continuing our analogy, consider how basing things on a type system usually incurs a
loss of flexibility, primarily in reflection capabilities. For example, sometimes tricks that are
oneliners in untyped programming languages become very awkward when expressed in typed
programming languages. This is similar with module systems. Baring rare and advanced
reflection capabilities, with a shallow embedding we are unable to quantify over algebra
theories or algebras, unable to state meta theorems or transformations on algebra theories.
For example, to formalize homomorphisms we would need to specify a theory Hom(𝑇) for
every theory 𝑇 representing an algebra theory. Figure 20 shows how Hom(UnitalsLF,SFOL)
could look like. (Further explanations on this theory can be found in Section 5.3.) For lack
of alternatives, manually typing those theories is indeed regularly done in practice, e.g., in
the libraries cited above.

In contrast, with deep embeddings we can easily quantify over and transform algebra
theories and algebras to elegantly formalize universal constructions. For example, based on
our deep embedding above, the theory of homomorphisms can be given once and for all as
the following parametric theory:12

Homsig ∶ Sig,d ∶ Algsig,c ∶ Algsig
=

⎧{
⎨{⎩

≐ ∶ U𝑐 → U𝑐 → type
ℎ ∶ U𝑑 → U𝑐

hom ∶ Π 𝑓 ∶ F. Π 𝑎∶ |𝑓| → U𝑑. J𝑓K𝑑 𝑎 ≐ J𝑓K𝑐 (𝜆𝑥. ℎ (𝑎 𝑥))

⎫}
⎬}⎭

Therefore, deep embeddings are attractive to formalize universal algebra itself (unlike the
algebraic hierarchy) and its meta theorems, e.g., in Coq [Cap99; SW11] or Agda [DeM21;
GGP18].

We follow a combination of both approaches: we use shallow embeddings to
formalize algebra theories and codify universal constructions and meta theorems in the form
of diagram operators in the programming language underlying Mmt (Scala). This combines
all advantages of shallow embeddings with the flexbility to express arbitrarily complicated
transformations and meta theorems. The price to pay is that type safety and correctness
properties for the latter cannot be mechanically verified anymore. (But they can be proven
on paper as we do in this thesis.) Still, as we remark in in our implementation we can opt to
typecheck syntax produced by operators. This does not prevent operators from producing
senseless output, but at least it guarantees its well-typedness.

12 Alternatively, we can also give a deep embedding of the theory of homomorphisms itself. Assume a
deep embedding of multi-sorted signatures with axioms given by theories Sig+ (whose instantiations are
exactly those signatures) and Algsig

+ (whose instantiations are corresponding models). Then we can give
a defined constant hom ∶ Π sig ∶ Sig. Algsig → Algsig → Sig+ = … that constructs the deep embedding
variant of Homsig,𝑑,𝑐. In fact, we can generalize to hom ∶ Π sig ∶ Sig+. Algsig

+ → Algsig
+ → Sig+ = …

such that the expressivity of the output signatures matches the inputs’ ones. This is more in line with
some diagram operators that we give that also accept input signatures that are as expressive as their
output signatures.

N. Roux 81

5.2.2 Representing Algebra Theories as Mmt Theories
In Example 97 we foreshadowed how to represent the algebra theory of unitals as an SFOL-
extension (for theory SFOL from). We now distill a handful classes of well-patterned SFOL-
extensions, which we will use to represent algebra theories in our setting.

▶ Definition 98 (SFOL, PFOL, and DFOL Theories). Consider an SFOL-extension whose
declarations follow the patterns

type symbols (aka sort symbols)

𝑇 ∶ Π𝑎1 ...𝑎𝑚 ∶ tp. Π 𝑥1 ∶ tm 𝑡1. ... Π𝑥𝑛 ∶ tm 𝑡𝑛. tp [= 𝜆 𝑎1. ... 𝜆𝑎𝑚. 𝜆 𝑥1. ... 𝜆𝑥𝑛. 𝑎]

function symbols

𝑓 ∶ Π 𝑎1 ...𝑎𝑚 ∶ tp. Π 𝑥1 ∶ tm 𝑡1. ... Π𝑥𝑛 ∶ tm 𝑡𝑛. tm 𝑡 [= 𝜆 𝑎1. ... 𝜆𝑎𝑚. 𝜆 𝑥1. ... 𝜆𝑥𝑛. 𝑡]

predicate symbols

𝑝 ∶ Π 𝑎1 ...𝑎𝑚 ∶ tp. Π 𝑥1 ∶ tm 𝑡1. ... Π𝑥𝑛 ∶ tm 𝑡𝑛. prop [= 𝜆 𝑎1. ... 𝜆𝑎𝑚. 𝜆 𝑥1. ... 𝜆𝑥𝑛. 𝐹]

axiom symbols

ax ∶ Π 𝑎1 ...𝑎𝑚 ∶ tp. Π 𝑥1 ∶ tm 𝑡1. ... Π𝑥𝑛 ∶ tm 𝑡𝑛. ⊩ 𝐹 [= 𝜆𝑎1. ... 𝜆𝑎𝑚. 𝜆 𝑥1. ... 𝜆𝑥𝑛. pf]

where

𝑎 ∶∶= 𝑇 𝑎1 ... 𝑎𝑛 𝑡1 ... 𝑡𝑛 types (sorts)
𝑡 ∶∶= 𝑓 𝑎1 ... 𝑎𝑛 𝑡1 ... 𝑡𝑛 | 𝑥 terms
𝐹,𝐺 ∶∶= 𝐹 ∧ 𝐺 | 𝐹 ∨ 𝐺 | ¬𝐹 | 𝐹 ⇒ 𝐺 propositions (formulae)

∶∶= ∀𝑥∶ tm 𝑎. 𝐹 | ∃ 𝑥∶ tm 𝑎. 𝐹 | 𝑡 ≐𝑇 𝑡′
∶∶= 𝑝 𝑎1 ... 𝑎𝑛 𝑡1 ... 𝑡𝑛

pf ∶∶= ax 𝑎1 ... 𝑎𝑛 𝑡1 ... 𝑡𝑛 | proofs
∶∶= proof rules (omitted)

We call such an SFOL-extension

an SFOL-theory if 𝑚 = 0 in all declarations and 𝑛 = 0 for type symbol declarations
a PFOL-theory if 𝑛 = 0 for sort symbol declarations
a DFOL-theory if 𝑚 = 0 everywhere
a PDFOL-theory if 𝑚 and 𝑛 are unrestricted

In particular, this implies the hierarchy SFOL ⊆ {PFOL,DFOL} ⊆ PDFOL, i.e., all SFOL-
theories are PFOL- and DFOL-theories, and all PFOL- and DFOL-theories are also PDFOL-
theories.

Arguably, all notions from Definition 98 are folklore. P/D/PDFOL-declarations readily
emerge as subsets of well-formed declarations that LF induces for SFOL-extensions. Moreover,
these variants naturally appear in practice, see Examples 101 and 102 below. We note that
DFOL, as the combination of FOL with just dependent types, has first been described
in [Mak95] and first published in [Raba] (the latter matching our presentation). For SFOL
we can heavily simplify our patterns to match standard accounts given in literature:
▶ Remark 99 (SFOL-Theories). For SFOL-theories, the patterns demanded in Definition 98
simplify to the ones below. To see this, note that type symbols can only be of the form
𝑇 ∶ tp, and thus type expressions can only ever be atomic (i.e., refer to such 𝑇).

82 Structure-Preserving Diagram Operators

type symbols (aka sort symbols)

𝑇 ∶ tp [= 𝑇]
function symbols

𝑓 ∶ tm 𝑇1→...→tm 𝑇𝑛→tm 𝑇 [= 𝜆𝑥1. ... 𝜆𝑥𝑛. 𝑒]
predicate symbols

𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop [= 𝜆𝑥1. ... 𝜆𝑥𝑛. 𝐹]
axiom symbols

ax ∶ Π 𝑥1 ∶ tm 𝑇1. ... Π𝑥𝑛 ∶ tm 𝑇𝑛. ⊩ 𝐹 [= 𝜆𝑥1. ... 𝜆𝑥𝑛. pf]
These symbol patterns induce exactly the notion commonly referred to as SFOL-theories
in the literature. This is clear for everything except the term parameters in axiom sym-
bols. For those, observe that the universal quantification expressed by them can equiv-
alently be internalized using SFOL’s forall, yielding axiom symbols of the form ̃ax ∶ ⊩
∀𝑥1 ∶ tm 𝑇1. ...∀𝑥𝑛 ∶ tm 𝑇𝑛. 𝐹 .

Concretely, the notion of equivalence we are referring to can be made formal by giving
two LF functions translating between the LF types:

(Π𝑥1 ∶ tm 𝑇1. ... Π𝑥𝑛 ∶ tm 𝑇𝑛. ⊩ 𝐹) ⇌ (⊩ ∀𝑥1 ∶ tm 𝑇1. ...∀𝑥𝑛 ∶ tm 𝑇𝑛. 𝐹)
The LF function from left to right uses forall introduction 𝑛 times to introduce the con-
sequence and LF function application 𝑛 times to eliminate the premise. And conversely,
the LF function from right to left uses LF function introduction 𝑛 times to introduce the
consequence and forall elimination 𝑛 times to eliminate the premise.

While equivalent in expressivity, in practice it is much more convenient to formalize
quantification in axiom symbols using LF Πs. Namely, this makes the introduction (i.e.,
proofs) and elimination (i.e., axiom usage) forms much easier to type since they merely use
LF function abstraction and application, i.e., primitives of Mmt’s grammar – in contrast to
cascades of forall introduction and eliminations. Nonetheless, for ease of presentation, we
will assume axiom symbols in SFOL-theories to always be of the form ax ∶ ⊩ 𝐹 .

▶ Example 100 (Preoder). We give the theory of preorders as an SFOL-theory:

theory Preorder = {
include SFOL
𝑈 ∶ tp
≤ ∶ tm 𝑈 → tm 𝑈 → prop
refl ∶ Π 𝑥∶ tm 𝑈. ⊩ 𝑥 ≤ 𝑥
trans ∶ ⊩ ∀𝑥 𝑦 𝑧 ∶ tm 𝑈. ⊩ 𝑥 ≤ 𝑦 ⇒ 𝑦 ≤ 𝑧 ⇒ 𝑥 ≤ 𝑧

}
▶ Example 101 (Lists in PFOL). We give the theory of lists as a PFOL-theory:

theory Lists = {
include SFOL
list ∶ tp → tp
nil ∶ Π𝑈 ∶ tp. tm (list 𝑈)
cons ∶ Π𝑈 ∶ tp. tm 𝑈 → tm (list 𝑈) → tm (list 𝑈)

}

N. Roux 83

▶ Example 102 (Small Categories in DFOL). We give the theory of small categories as
the DFOL-theory below. As a reminder, a small category is a category where the size of
the collection of objects and all hom-collections are the same. In contrast, in a non-small
category, the collection of objects may form a class (e.g., when working in some set theory)
and the collection of hom-collections must be a set.

theory SmallCat = {
obj ∶ tp
hom ∶ tm obj → tm obj → tp
id ∶ Π 𝑎∶ tm obj. tm (hom 𝑎 𝑎)
∘ ∶ Π 𝑎 𝑏 𝑐 ∶ tm obj. tm (hom 𝑎 𝑏) → tm (hom 𝑏 𝑐) → tm (hom 𝑎 𝑐)
neutL ∶ Π 𝑎 𝑏 ∶ tm obj. Π 𝑓 ∶ tm hom 𝑎 𝑏. ⊩ id 𝑏 ∘ 𝑓 ≐ 𝑓
neutR ∶ Π 𝑎 𝑏 ∶ tm obj. Π 𝑓 ∶ tm hom 𝑎 𝑏. ⊩ 𝑓 ∘ id 𝑎 ≐ 𝑓
assoc ∶ Π 𝑎 𝑏 𝑐 𝑑 ∶ tm obj. Π 𝑓 ∶ tm hom 𝑎 𝑏. Π 𝑔 ∶ tm hom 𝑏 𝑐. Πℎ∶ tm hom 𝑎 𝑐.

⊩ 𝑓 ∘ (𝑔 ∘ ℎ) ≐ (𝑓 ∘ 𝑔) ∘ ℎ
}

For readability, we suppress the inferrable parameters in the notation for ∘.

5.2.3 Related Work
We are interested in large-scale programmatic definitions of universal algebra with shallow
embeddings. Such definitions have so far mostly been conducted with deep embeddings, e.g.,
for Coq [Cap99; SW11] or Agda [DeM21; GGP18]. For shallow embeddings, we are only
aware of [CFS20; Sha21], which both focus on programmatically generating many theories
derived from the algebraic hierarchy, even including some of the same examples as ours.

Despite having a similar focus as ours, these works primarily expand into breadth and con-
sider single-sorted first-order signatures with function and axiom symbols and present many
operators. Complementarily, we focus on depth and state our few constructions – where
feasible in the scope of this thesis – for PDFOL-theories and -morphisms, i.e., polymorphic,
dependently-typed first-order signature and signature morphisms with type, function, pred-
icate, and axiom symbols (all of which may be defined). This makes the involved syntax
translations much more complex. Indeed, universal algebra is typically developed in this
setting [BS12]. That is sufficient to represent typical algebra theories, but even vectorspaces
require at least two sorts (for scalars and vectors). For the many-sorted case, the basic
constructions extend seamlessly, e.g., see [Wec92, ch. 4.1]. We are not aware of existing
efforts to generalize the constructions, and our presentation may be the first one to do so.

Lastly, even though these works make use of a rich syntax to build theory graphs (going
beyond includes, but not as expressive as Mmt’s syntax in the implementation), everything
is flattened before applied to their programs generating the universal constructions. Thus
their output neglects all of the input structure. In contrast, we make structure preservation
a main concern of ours.

5.2.4 Overarching Example: Algebraic Hiearchy in LATIN2: TODO
we use this as case study...

▶ Example 103 (Algebraic Hierarchy in LATIN2). We can extend these two examples to a
full-blown algebraic hierarchy containing monoids, groups, rings, fields, vectorspaces, posets,

84 Structure-Preserving Diagram Operators

lattices, etc. The LATIN2 project [LATIN2] (the successor of LATIN [Cod+a]) does exactly
this and gives a big modular diagram, see Figure 21 for an excerpt. Importantly, the diagram
exploits Mmt’s structuring features wherever possible, making it a perfect example to apply
structure-preserving diagram operators to. Applying the operators that we will describe in
the following, we get a diagram larger than possible to typeset. We give excerpts in the
appendix

N. Roux 85

A
Figure 21 The Algebraic Hierarchy Developed as an Mmt Diagram

86 Structure-Preserving Diagram Operators

5.3 Homomorphisms

𝑇 Hom(𝑇)
Hom𝑑

Hom𝑐

ℎ

The linear functor Hom(−)maps every PDFOL-theory 𝑇 to the theory Hom(𝑇) of 𝑇 -homomorphisms,
whose models are the homomorphisms between two 𝑇 -models. For example, applied to the
theory Group it yields the theory Hom(Group) representing precisely what mathematicians
consider group homomorphisms. The linear connectors 𝑑, 𝑐 into Hom are the projections of
the very domain and codomain 𝑇 -models. And the logical relation-inspired translation ℎ
proves that 𝑇 -homomorphisms are homomorphic wrt. (preserve) not only atomic but ar-
bitrarily complex terms (propositions) built out of function (and predicate) symbols from
𝑇 .13

5.3.1 Preliminary Definition: Hom on Definitionless SFOL

For didactic reasons, we first define Hom and the connectors Hom𝑑, Hom𝑐 for the special case of
definitionless SFOL-theories. To do so, we make Hom a linear functor from SFOL-theories to
PDFOL-theories whose action on declarations is given below. Hom maps each type, function,
and predicate symbol declaration 𝑐 to three declarations 𝑐𝑑, 𝑐𝑐, 𝑐ℎ. The constants 𝑐𝑑 and 𝑐𝑐
serve as qualified copies to build up the domain and codomain structure of the homomor-
phism (following the idiom outlined in Theorem 38). And the constant 𝑐ℎ accounts for the
actual condition imposed on the homomorphism at the very input declaration. For function
symbols this amounts to the homomorphism acting homomorphic wrt. corresponding appli-
cations, and for predicate symbols this amounts to the homomorphism preserving truth of
corresponding applications. Axiom symbols are mapped to their qualified copies only.

type symbols 𝑇 ∶ tp are mapped to two copies and a mediating function (the homomor-
phism on terms of type 𝑇 𝑑):

𝑇 𝑑, 𝑇 𝑐 ∶ tp
𝑇 ℎ ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐

function symbols 𝑓 ∶ tm 𝑇1 → ... → tm 𝑇𝑛 → tm 𝑇 are mapped to two copies and the
condition of the homomorphism at types 𝑇1, ... , 𝑇𝑛 being homomorphic wrt. 𝑓 :

𝑓𝑑 ∶ tm 𝑇 𝑑
1 →...→tm 𝑇 𝑑

𝑛 →tm 𝑇 𝑑

𝑓𝑐 ∶ tm 𝑇 𝑐
1 →...→tm 𝑇 𝑐

𝑛→tm 𝑇 𝑐

𝑓ℎ ∶ Π 𝑥𝑑
1 ∶ tm 𝑇 𝑑

1 Π𝑥𝑑
𝑛 ∶ tm 𝑇 𝑑

𝑛 . ⊩ 𝑇 ℎ (𝑓𝑑 𝑥𝑑
1 ... 𝑥𝑑

𝑛) ≐ 𝑓𝑐 (𝑇 ℎ
1 𝑥𝑑

1) ... (𝑇 ℎ
𝑛 𝑥𝑑

𝑛)

predicate symbols 𝑝 ∶ tm 𝑇1 → ... → tm 𝑇𝑛 → prop are mapped to two copies and the
condition of the homomorphisms at types 𝑇1, ... , 𝑇𝑛 preserving truth:

𝑝𝑑 ∶ tm 𝑇 𝑑
1 →...→tm 𝑇 𝑑

𝑛 →prop
𝑝𝑐 ∶ tm 𝑇 𝑐

1 →...→tm 𝑇 𝑐
𝑛→prop

𝑝ℎ ∶ Π 𝑥𝑑
1 ∶ tm 𝑇 𝑑

1 Π𝑥𝑑
𝑛 ∶ tm 𝑇 𝑑

𝑛 . ⊩ 𝑝𝑑 𝑥𝑑
1 ... 𝑥𝑑

𝑛 ⇒ 𝑝𝑐 (𝑇 ℎ
1 𝑥𝑑

1) ... (𝑇 ℎ
𝑛 𝑥𝑑

𝑛)

13 See Theorem 117.

N. Roux 87

axiom symbols ax ∶ ⊩ 𝐹 are mapped to just two copies

ax𝑑 ∶ ⊩ 𝐹 𝑑

ax𝑐 ∶ ⊩ 𝐹 𝑐

The linear connectors Hom𝑑 and Hom𝑐 into Hom map every constant 𝑐 to 𝑐 ∶= 𝑐𝑑 and 𝑐 ∶= 𝑐𝑐,
respectively.

Our restriction to definitionless SFOL-theories makes it easy to see that Hom is well-typed
and functorial. Functoriality holds vacuously since Hom is partial on all defined constants,
including morphism assignments, thus in particular on all morphisms. By Theorem 38, the
connectors Hom𝑑, Hom𝑐 are well-typed and natural (the latter again vacuously).

▶ Example 104 (Hom(Unital)). For the theory Unital from Example 97 we obtain the
theory Hom(Unital) and incoming morphisms Hom𝑑(Unital) and Hom𝑐(Unital) shown in
Figure 22.14 We see that the constants 𝑈𝑑, ∘𝑑, 𝑒𝑑, neut𝑑 (and analogously the 𝑐-superscripted
ones) collectively make up a unital domain (codomain) structure. This is witnessed by the
morphism Hom𝑑(Unital) (and Hom𝑐(Unital)). Within Hom(Unital), these structures are
related via the ℎ-superscripted constants 𝑈ℎ, ∘ℎ, 𝑒ℎ, where 𝑈ℎ represents the homomorphism
function translating between the unital structures’ universes and the latter two capture that
unital homomorphisms preserve the binary operation and the neutral element of the domain
structure.

▶ Remark 105 (Axioms using LF’s Π vs. SFOL’s ∀). In the ℎ-superscripted axiom symbols that
we generate for function and predicate symbols (representing the respective homomorphism
condition), we make use of LF Π-binders to express universal quantification. Consider the
polymorphic axiom ∘ℎ generated by Hom in the preceding Example 104:

∘ℎ ∶ Π 𝑥 𝑦 ∶ tm 𝑈𝑑. ⊩ 𝑈ℎ (𝑥 ∘𝑑 𝑦) ≐ (𝑈ℎ 𝑥) ∘𝑐 (𝑈ℎ 𝑦)

These Π-binders are the reason why we needed to declare Hom to map SFOL- to PDFOL-
theories instead of just being an endofunctor on SFOL-theories. However, we can achieve the
latter by internalizing the Π-binders as ∀-quantifiers, and we discuss the (dis)advantages in
this remark. For example, instead of ∘ℎ shown above we could have generated the following
axiom:

̃∘ℎ ∶ ⊩ ∀𝑥 𝑦 ∶ tm 𝑈𝑑. 𝑈ℎ (𝑥 ∘𝑑 𝑦) ≐ (𝑈ℎ 𝑥) ∘𝑐 (𝑈ℎ 𝑦)

For the sake of this remark, imagine we applied this internalization in general and in the
above definition of Hom we replaced the synthesized axiom symbols 𝑓ℎ and 𝑝ℎ with the
following ones:

̃𝑓ℎ ∶ ⊩ ∀𝑥𝑑
1 ∶ tm 𝑇 𝑑

1 , ... , 𝑥𝑑
𝑛∶ tm 𝑇 𝑑

𝑛 . 𝑇 ℎ (𝑓𝑑 𝑥𝑑
1 ... 𝑥𝑑

𝑛) ≐ 𝑓𝑐 (𝑇 ℎ
1 𝑥𝑑

1) ... (𝑇 ℎ
𝑛 𝑥𝑑

𝑛)
̃𝑝ℎ ∶ ⊩ ∀𝑥𝑑

1 ∶ tm 𝑇 𝑑
1 , ... , 𝑥𝑑

𝑛∶ tm 𝑇 𝑑
𝑛 . 𝑝𝑑 𝑥𝑑

1 ... 𝑥𝑑
𝑛 ⇒ 𝑝𝑐 (𝑇 ℎ

1 𝑥𝑑
1) ... (𝑇 ℎ

𝑛 𝑥𝑑
𝑛)

Semantically, both approaches using LF Π-binders and SFOL ∀-quantifiers are equivalent:
the constants 𝑓ℎ and ̃𝑓ℎ (analogously: 𝑝ℎ and ̃𝑝ℎ) are each definable using the other one,
see Remark 99.

On the positive side, via the internalization Hom would become an endofunctor on def-
initionless SFOL-theories, thus yielding an arguably more elegant definition, at least on

14 To serve readability, we 𝛼-renamed certain bound variables.

88 Structure-Preserving Diagram Operators

theory Hom(Unital) = {
include SFOL
𝑈𝑑 ∶ tp
𝑈𝑐 ∶ tp
𝑈ℎ ∶ tm 𝑈𝑑 → tm 𝑈𝑐

∘𝑑 ∶ tm 𝑈𝑑 → tm 𝑈𝑑 → tm 𝑈𝑑

∘𝑐 ∶ tm 𝑈𝑐 → tm 𝑈𝑐 → tm 𝑈𝑐

∘ℎ ∶ Π 𝑥 𝑦 ∶ tm 𝑈𝑑. ⊩ 𝑈ℎ (𝑥 ∘𝑑 𝑦) ≐ (𝑈ℎ 𝑥) ∘𝑐 (𝑈ℎ 𝑦)
𝑒𝑑 ∶ tm 𝑈𝑑

𝑒𝑐 ∶ tm 𝑈𝑐

𝑒ℎ ∶ ⊩ 𝑈ℎ 𝑒𝑑 ≐ 𝑒𝑐

neut𝑑 ∶ ⊩ ∀𝑥𝑑 ∶ tm 𝑈𝑑. 𝑒𝑑 ∘𝑑 𝑥𝑑 ≐ 𝑥𝑑

neut𝑐 ∶ ⊩ ∀𝑥𝑐 ∶ tm 𝑈𝑐. 𝑒𝑐 ∘𝑐 𝑥𝑐 ≐ 𝑥𝑐

}

mor Hom𝑑(Unital) ∶ Unital → Hom(Unital) = {
= =

}

mor Hom𝑐(Unital) ∶ Unital → Hom(Unital) = {
= =

}

Figure 22 Theory of unital homomorphisms given by Hom(Unital) and corresponding domain
and codomain projections

first sight. In particular, this easy change would allow users to apply Hom iteratively as in
Hom(Hom(…)) (cf. Example 114).

However, the ∀-quantifiers make things more complicated when trying to extend Hom.
Even extending to SFOL-theories with definitions would become burdensome: For example,
for defined function symbols 𝑓 ∶= 𝑒, Hom maps it to three defined constants 𝑓𝑑, 𝑓𝑐, ̃𝑓ℎ,
where for the definition of 𝑓ℎ Hom would now need to synthesize awkward ∀-introduction
and ∀-elimination rules corresponding to the ∀-quantifiers in the type of 𝑓ℎ. In contrast,
with Π-binders we will merely need LF function abstractions and applications. First, being
primitives in the LF syntax, this will make extending Hom to a functor accepting all SFOL-
theories (including definitions) significantly less burdensome. Second, when generalizing to
PDFOL, Π-binders will occur naturally anyway, obviating any inclination to avoid them.
Moreover, the output generated by Hom will require less abstract syntax, easing human
consumption such as reading and using the generated constants.

N. Roux 89

5.3.2 Building Towards a Generalized Definition
We now aim to generalize Hom to a linear functor accepting all PDFOL-theories. In this
section, we collect ideas and an failing ansatz, culminating in a succeeding definition in the
next section (Section 5.3.3). The ansatz is failing in the sense that it procudes a functor
whose output is semantically equivalent to what is desired, but syntactically cluttered. The
general principle remains as before: we copy every input constant 𝑐 ∶ 𝐴 [= 𝑡] to two quali-
fied copies 𝑐𝑑 ∶ 𝐴𝑑 [= 𝑡𝑑] and 𝑐𝑐 ∶ 𝐴𝑐 [= 𝑡𝑐] (where −𝑑 and −𝑐 indicate systematic renaming
operations) and moreover output a designated third constant 𝑐ℎ for everything but axioms.
As previously, the connectors Hom𝑑 and Hom𝑐 map every constant to 𝑐 ∶= 𝑐𝑑 and 𝑐 ∶= 𝑐𝑐,
respectively.

The main hurdle lies in specifying the translation that yields the third constant 𝑐ℎ. Above
we saw that specifying this translation was easy on those LF types that occur in SFOL-
theories. But specifying the translation already becomes non-obvious for corresponding
LF terms, i.e., already in case of SFOL-theories, let alone LF types and terms occuring
in PDFOL-theories. For example, in SFOL-theories only atomic types can occur, thus
homomorphism structures only need to have a finite number of function symbols translating
between domain and codomain structure. In contrast, in DFOL we can have infinitely
many complex types, thus we need a function symbol for each one of them. And when we
additionally consider PFOL to get PDFOL-theories, carefully handling every such necessary
function symbol gets even more complicated.

Our magic trick is to cast the translation as a slightly modified variant of a binary partial
logical relation on Hom𝑑 and Hom𝑐 (cf. ?? on logical relations). Concretely, we will specify the
third constant as 𝑐ℎ ∶ ℎ(𝐴) 𝑐𝑑 𝑐𝑐 [= ℎ(𝑡)] (and only output it when ℎ(𝐴) is defined), where
ℎ is a partial translation function that we have yet to define and that uses the machinery of
logical relations Section 2.2 to outsource much of the complexity of defining it.

As a guiding example, recall the theory Lists from Example 101 formalizing generic
lists in PDFOL. Among all the constants, we find the type symbol list ∶ Π𝐴 ∶ tp. tp and
the function symbol nil ∶ Π𝐴∶ tp. tm list𝐴, serving as our example here.15 Now consider
the following fragment of Hom(Lists) that we expect a sensible and generalized definition of
Hom to yield:

theory Hom(Lists) = {
list𝑑 ∶ Π𝐴𝑑 ∶ tp. tp
list𝑐 ∶ Π𝐴𝑐 ∶ tp. tp
listℎ ∶ Π𝐴𝑑 ∶ tp. Π𝐴𝑐 ∶ tp. Π𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐. tm list𝐴𝑑 → tm list𝐴𝑐

nil𝑑 ∶ Π𝐴𝑑 ∶ tp. tm list𝑑 𝐴𝑑

nil𝑐 ∶ Π𝐴𝑐 ∶ tp. tm list𝑐 𝐴𝑐

nilℎ ∶ Π𝐴𝑑 ∶ tp. Π𝐴𝑐 ∶ tp. Π𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐.
⊩ listℎ 𝐴𝑑 𝐴𝑐 𝐴ℎ (nil𝑑 𝐴𝑑) ≐ (nil𝑐 𝐴𝑐)

…
}

Keep in mind that Hom(Lists) is supposed to be a theory whose models are the homomor-
phisms between Lists-models. And we can think of Lists-models as different implemen-

15 We opted to explicitly name the first parameter in the type of list (instead of making it anonymous
as in tp → tp) to ease visibility of the structure of the translation that we will come up with.

90 Structure-Preserving Diagram Operators

Σ ⊇ SFOL-expression mapped to Hom(Σ)-expression
types 𝑇 ∶ tp ℎ(𝑇) ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐 homomorphism for type 𝑇 from dom. to cod.
terms 𝑡 ∶ tm 𝑇 ℎ(𝑡) ∶ ⊩ ℎ(𝑇) 𝑡𝑑 ≐ 𝑡𝑐 proof of homomorphicity wrt. function symbols
propositions 𝐹 ∶ prop ℎ(𝐹) ∶ ⊩ 𝐹 𝑑 ⇒ 𝐹 𝑐 proof of preservation of monotone formulae
proofs pf ∶ ⊩ 𝐹 ℎ(pf) ∶ undefined (not mapped at all)

Figure 23 Intuitive overview of the translation to be carried out by ℎ

tations of lists (cf. linked and array lists in typical programming languages such as C and
Java). Thus, intuitively a homomorphism between two such models should translate list
terms of one to the other, while preserving certain things, e.g., the empty list of the domain
model should be preserved as the empty list of the codomain under this translation. This is
precisely what the theory fragment above represents. Moreover, the constants shown there
all emerge from the input constants in a systematic way that is similar as before. The only
extension as to before is that the named Π-bound variable 𝐴∶ tp (which previously could
not occur as SFOL input) is made subject to similar transformations as constants, e.g., it
gets copied to Π-bound variables 𝐴𝑑 ∶ tp, 𝐴𝑐 ∶ tp, and 𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐.

Using the guiding example, let us flesh out details of the variant of logical relation
that are we going to use. Recall that we intend to map input constants 𝑐 ∶ 𝐴 [= 𝑡] to
𝑐ℎ ∶ ℎ(𝐴) 𝑐𝑑 𝑐𝑐 [= ℎ(𝑡)], where ℎ resembles a binary partial logical relation on Hom𝑑 and Hom𝑐.
Consider the translation from the LF type of list to the LF type of listℎ. To realize this
transformation as a logical relation, we relate PDFOL types 𝑎𝑑 ∶ tp and 𝑎𝑐 ∶ tp in the binary
relation at LF type tp ∶ type iff there is a witness of the LF function type tm 𝑎𝑑 → tm 𝑎𝑐.
This makes the first parameter of list expand into the parameters 𝐴𝑑, 𝐴𝑐, 𝐴ℎ and the return
type (being tp) of list into tm list𝐴𝑑 → tm list𝐴𝑐. In other words, as the relation at
PDFOL types we precisely encode LF functions that represent the homomorphisms in our
setting. Now consider the translation from the LF type of nil to the LF type of nilℎ. To
phrase this transformation as a logical relation, we relate terms 𝑡𝑑 ∶ tm 𝑎𝑑 and 𝑡𝑐 ∶ tm 𝑎𝑐 in the
binary relation at LF type tm 𝑎 iff there is a witness of ⊩ 𝑎ℎ 𝑡𝑑 ≐ 𝑡𝑐 (where 𝑎ℎ is the recursive
witness of 𝑎𝑑 and 𝑎𝑐 being related, i.e., a function tm 𝑎𝑑 → tm 𝑎𝑐 – the homomorphism at
type 𝑎).

Displeasing Attempt: Hom using a Logical Relation The preceding remarks could lead
us to defining Hom as follows: we map every constant 𝑐 ∶ 𝐴 [= 𝑡] to 𝑐𝑑 ∶ 𝐴𝑑 [= 𝑡𝑑], 𝑐𝑐 ∶ 𝐴𝑐 [= 𝑡𝑐],
and 𝑐ℎ ∶ ℎ(𝐴) 𝑐𝑑 𝑐𝑐 [= ℎ(𝑡)] (the latter only when ℎ(𝐴) is defined), where ℎ is the partial
logical relation on Hom𝑑 and Hom𝑐 with base cases below.

ℎ(tp) = 𝜆𝑈𝑑 𝑈𝑐 ∶ tp. tm 𝑈𝑑 → tm 𝑈𝑐

ℎ(tm) = 𝜆𝑇 𝑑 𝑇 𝑐 ∶ tp. 𝜆𝑇 ℎ ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐. 𝜆𝑡𝑑 ∶ tm 𝑇 𝑑. 𝜆𝑡𝑐 ∶ tm 𝑇 𝑐. ⊩ 𝑇 ℎ 𝑡𝑑 ≐ 𝑡𝑐
ℎ(prop) = 𝜆𝐹 𝑑 𝐹 𝑐. ⊩ 𝐹 𝑑 ⇒ 𝐹 𝑐

ℎ(⊩) = undefined

See Figure 23 for a descriptive overview. This attempt works insofar that we can extend ℎ to
a logical relation by giving cases to all SFOL-symbols – excluding non-monotone connectives
like ¬ and ∀ (but this is to be expected anyway, we later explain this in).

However, this attempt also translates certain things in a way that is semantically equiv-
alent to what we desire but displeasing in terms of usability and users’ expectations. Con-
cretely, the culprit is the handling of terms 𝑡 ∶ tm 𝑇 . As an easy example, consider the
function symbol ∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈 from the theory Unital (see Example 104). The

N. Roux 91

supposed definition above would translate it to constants ∘𝑑, ∘𝑐 (with the obvious LF type),
and

∘ℎ ∶ Π 𝑥𝑑 ∶ tm 𝑈𝑑. Π 𝑥𝑐 ∶ tm 𝑈𝑐. Π 𝑥ℎ ∶ ⊩ 𝑈ℎ 𝑥𝑑 ≐ 𝑥𝑐.
Π 𝑦𝑑 ∶ tm 𝑈𝑑. Π 𝑦𝑐 ∶ tm 𝑈𝑐. Π 𝑦ℎ ∶ ⊩ 𝑈ℎ 𝑦𝑑 ≐ 𝑦𝑐.
⊩ 𝑈ℎ (𝑥𝑑 ∘𝑑 𝑦𝑑) ≐ 𝑥𝑐 ∘𝑐 𝑦𝑐

Our ansatz yields the expected return type (last line), but unfortunately it also yields
superfluous hypotheses 𝑥𝑐, 𝑥ℎ, 𝑦𝑐, 𝑦ℎ. By comparison, we desire a translation that outputs
the following constant instead (cf. Figure 22 from Example 104):

∘ℎ ∶ Π 𝑥𝑑 ∶ tm 𝑈𝑑.
Π 𝑦𝑑 ∶ tm 𝑈𝑑.
⊩ 𝑈ℎ (𝑥 ∘𝑑 𝑦) ≐ (𝑈ℎ 𝑥) ∘𝑐 (𝑈ℎ 𝑦)

In other words, our translation should have inlined the superfluous hypotheses as follows:

i) instead of binding 𝑥𝑐 (analogously: 𝑦𝑐), all references to 𝑥𝑐 should be replaced by 𝑈ℎ 𝑥𝑑

ii) instead of binding 𝑥ℎ ∶ ⊩ 𝑈ℎ 𝑥𝑑 ≐ 𝑥𝑐 (analogously: 𝑦ℎ) – whose type, using 𝑖), has
just become the trivial type ⊩ 𝑈ℎ 𝑥𝑑 ≐ 𝑈ℎ 𝑥𝑑 anyway – all references to 𝑥ℎ should be
replaced by refl (𝑈ℎ 𝑥𝑑)

Note that the two constants ∘ℎ above (the one that our failing definition of ℎ yields and the
intended one) are semantically equivalent: either constant is definable using the other one.
Thus, our preliminary definition is only failing in the sense of cosmetic issues. (Also note
that 𝑖𝑖) does not manifest in our example of ∘ℎ as there are neither references to 𝑥ℎ nor to
𝑦ℎ.)

5.3.3 Final Definition: Hom on PDFOL
For our definition of Hom on all PDFOL-theories, we take the ansatz from the previous section
(Section 5.3.2) as a starting point and implement precisely the two changes outlined in the
end of that section. In other words, to define ℎ as desired we take the complex cases for ℎ
that would have been induced if it was a logical relation on Hom𝑑, Hom𝑐 (with base cases as
in the failing definition above) and alter them as little as possible to get the inlining right:

▶ Definition 106. The translation ℎ maps contexts ⊢SFOL
Σ Σ and LF terms Σ ⊢SFOL

Σ 𝑡 to ℎΣ(𝑡)
as specified in Figure 24. In particular, it has base cases

ℎ(tp) = 𝜆𝑈𝑑 𝑈𝑐 ∶ tp. tm 𝑈𝑑 → tm 𝑈𝑐

ℎ(tm) = 𝜆𝑇 𝑑 𝑇 𝑐 ∶ tp. 𝜆𝑇 ℎ ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐. 𝜆𝑡𝑑 ∶ tm 𝑇 𝑑. 𝜆𝑡𝑐 ∶ tm 𝑇 𝑐. ⊩ 𝑇 ℎ 𝑡𝑑 ≐ 𝑡𝑐
ℎ(prop) = 𝜆𝐹 𝑑 𝐹 𝑐. ⊩ 𝐹 𝑑 ⇒ 𝐹 𝑐

ℎ(⊩) = undefined

For brevity, we hide the context in the notation, and in the sequel we also write ℎ for ℎ.

▶ Definition 107 (Homomorphism Operators). The linear functor Hom from PDFOL to all
possible SFOL-extensions and the linear connectors 𝑑, 𝑐 into Hom are given by

HomΣ(𝑐 ∶ 𝐴 [= 𝑡]) = 𝑐𝑑 ∶ 𝐴𝑑 [= 𝑡𝑑], 𝑐𝑐 ∶ 𝐴𝑐 [= 𝑡𝑐], 𝑐ℎ ∶ ℎΣ(𝐴) 𝑐𝑑 𝑐𝑐 [= ℎΣ(𝑡)]
Hom𝑑,Σ(𝑐 ∶ 𝐴) = 𝑐𝑑

Hom𝑐,Σ(𝑐 ∶ 𝐴) = 𝑐𝑐

92 Structure-Preserving Diagram Operators

where ℎΣ is the translation from Definition 106 extended by ℎΣ(𝑐) = 𝑐ℎ for every constant
𝑐 ∈ Σ.

Let us closely look at Figure 24 and compare the definitional cases there with the ones
that would taken effect if ℎ was a binary partial logical relation on Hom𝑑 and Hom𝑐. The
most important changes are in the cases of ℎ for Π𝑥 ∶ 𝐴. 𝐵 and 𝜆𝑥 ∶ 𝐴. 𝑡. Those have
been modified to suppress binding the two superfluous hypotheses 𝑥𝑐 and 𝑥ℎ for SFOL
terms, as was discussed in the end of the last section (Section 5.3.2). (Variables that do not
represent SFOL terms are translated as is usual for binary logical relations, e.g., for SFOL
types 𝑇 ∶ tp, we still bind 𝑇 𝑑, 𝑇 𝑐 ∶ tp and 𝑇 ℎ ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐.) The inlining of the now
suppressed hypotheses is accounted for at two places. First, for 𝑥𝑐 it is done in the subcase
of ℎ for Π𝑥 ∶ tm 𝑇 . 𝐵. Here, logical relations would use 𝔉 𝑥𝑐, but instead we use 𝔉′ 𝑐(𝑥),
yielding 𝔉′(ℎ(𝑇) 𝑥𝑑) by definition of 𝑐. The subcase guarantees us that 𝑇 ∶ tp is an SFOL
type, thus ℎ(𝑇) ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐 is precisely the homomorphism at type 𝑇 , translating 𝑥𝑑 to
its codomain counterpart. Second, for 𝑥ℎ the inlining happens in the case of ℎ for variables,
where in the subcase for 𝑥∶ tm 𝑇 references to 𝑥ℎ are avoided by directly emitting a proof
by refl. These were the most important changes; all other changes (e.g., in the case for
contexts and function application) are a logical consequence.

▶ Example 108 (Inlining of Hypotheses). To get a feel for how the complex translation ℎ
and particularly inlining works in practice, let us consider the following example of a defined
constant 𝑓 ∶ tm 𝑈 → tm 𝑈 = 𝜆𝑥. 𝑥 which Hom maps to three constants 𝑓𝑑, 𝑓𝑐, 𝑓ℎ:

𝑓 ∶ Π𝑥∶ tm 𝑈. tm 𝑈 = 𝜆𝑥∶ tm 𝑈. 𝑥

Hom↦
⎧{
⎨{⎩

𝑓𝑑 ∶ Π 𝑥∶ tm 𝑈𝑑. tm 𝑈𝑑 = 𝜆𝑥∶ tm 𝑈𝑑. 𝑥
𝑓𝑐 ∶ Π 𝑥∶ tm 𝑈𝑐. tm 𝑈𝑐 = 𝜆𝑥∶ tm 𝑈𝑐. 𝑥
𝑓ℎ ∶ ℎ(Π𝑥∶ tm 𝑈. tm 𝑈) 𝑓𝑑 𝑓𝑐 = ℎ(𝜆𝑥∶ tm 𝑈. 𝑥)

(For clarity, we are explicit about Π in our notation.) Let us slowly unfold the definition of
ℎ to see that the type and definiens of 𝑓ℎ in fact turn out to be the desired LF terms. For
the type we have,

ℎ(Π𝑥∶ tm 𝑈. tm 𝑈) 𝑓𝑑 𝑓𝑐

= ⎛⎜
⎝
𝜆𝔉𝔉′. Π 𝑥𝑑 ∶ tm 𝑈𝑑.

relation at tm 𝑈
⏞ℎ(tm 𝑈) (𝔉 𝑥𝑑) (𝔉′ 𝑐(𝑥))⎞⎟

⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
relation at type of 𝑓

𝑓𝑑 𝑓𝑐

=(𝜆𝔉𝔉′. Π 𝑥𝑑 ∶ tm 𝑈𝑑. ℎ(tm) 𝑈𝑑 𝑈𝑐 𝑈ℎ (𝔉 𝑥𝑑) (𝔉′ (𝑈ℎ 𝑥𝑑))) 𝑓𝑑 𝑓𝑐

=(𝜆𝔉𝔉′. Π 𝑥𝑑 ∶ tm 𝑈𝑑. ⊩ 𝑈ℎ (𝔉 𝑥𝑑) ≐ 𝔉′ (𝑈ℎ 𝑥𝑑)) 𝑓𝑑 𝑓𝑐

=Π𝑥𝑑 ∶ tm 𝑈𝑑. ⊩ 𝑈ℎ (𝑓𝑑 𝑥𝑑) ≐ 𝑓𝑐 (𝑈ℎ 𝑥𝑑)
=Π𝑥𝑑 ∶ tm 𝑈𝑑. ⊩ 𝑈ℎ 𝑥𝑑 ≐ 𝑈ℎ 𝑥𝑑

and for the definiens we have,

ℎ(𝜆𝑥∶ tm 𝑈. 𝑥)
=𝜆𝑥𝑑 ∶ tm 𝑈𝑑. refl 𝑈𝑐 (𝑈ℎ 𝑥𝑑)

The two places at which the inlining can be observed are underlined.

N. Roux 93

ℎ(tp) = 𝜆𝑈𝑑 𝑈𝑐 ∶ tp. tm 𝑈𝑑 → tm 𝑈𝑐

ℎ(tm) = 𝜆𝑇 𝑑 𝑇 𝑐 ∶ tp. 𝜆𝑇 ℎ ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐. 𝜆𝑡𝑑 ∶ tm 𝑇 𝑑. 𝜆𝑡𝑐 ∶ tm 𝑇 𝑐. ⊩ 𝑇 ℎ 𝑡𝑑 ≐ 𝑡𝑐
ℎ(prop) = 𝜆𝐹 𝑑 𝐹 𝑐. ⊩ 𝐹 𝑑 ⇒ 𝐹 𝑐

ℎ(⊩) = undefined

ℎ(type) = 𝜆𝔉𝔉′. 𝔉 → 𝔉′ → type

ℎ(Π𝑥∶ 𝐴. 𝐵) = {𝜆𝔉𝔉′. Π 𝑥𝑑 ∶ 𝑑(𝐴). ℎ(𝐵) (𝔉 𝑥𝑑) (𝔉′ 𝑐(𝑥)) if 𝐴 = tm 𝑇
𝜆𝔉𝔉′. Π 𝑥𝑑 ∶ 𝑑(𝐴). Π𝑥𝑐 ∶ 𝑐(𝐴). Π𝑥ℎ ∶ ℎ(𝐴) 𝑥𝑑 𝑥𝑐. ℎ(𝐵) (𝔉 𝑥𝑑) (𝔉′ 𝑥𝑐) otherwise

ℎ(𝜆𝑥∶ 𝐴. 𝐵) = {𝜆𝑥𝑑 ∶ 𝑑(𝐴). ℎ(𝐵) if 𝐴 = tm 𝑇
𝜆𝑥𝑑 ∶ 𝑑(𝐴). 𝜆𝑥𝑐 ∶ 𝑐(𝐴). 𝜆𝑥ℎ ∶ ℎ(𝐴) 𝑥𝑑 𝑥𝑐. ℎ(𝐵) otherwise

ℎ(𝑥) = {refl 𝑐(𝑇) (ℎ(𝑇) 𝑥𝑑) if 𝑥∶ 𝐴 and 𝐴 = tm 𝑇
𝑥ℎ otherwise

ℎ(𝑓 𝑡) = {ℎ(𝑓) 𝑑(𝑡) if 𝑡 ∶ 𝐴 and 𝐴 = tm 𝑇
ℎ(𝑓) 𝑑(𝑡) 𝑐(𝑡) ℎ(𝑡) otherwise

ℎ(⋅) = ⋅

ℎ(Γ, 𝑥∶ 𝐴) = {𝑥𝑑 ∶ 𝑑(𝐴) if 𝐴 = tm 𝑇
𝑥𝑑 ∶ 𝑑(𝐴), 𝑥𝑐 ∶ 𝑐(𝐴), 𝑥ℎ ∶ ℎ(𝐴) 𝑥𝑑 𝑥𝑐 otherwise

where 𝑑 and 𝑐 are defined as

𝑑(𝑡) =
⎧{
⎨{⎩

𝑥𝑑 if 𝑡 = 𝑥
Hom𝑑(𝑐) if 𝑡 = 𝑐
compositionally recurse into 𝑡 otherwise

𝑐(𝑡) =
⎧{
⎨{⎩

ℎ(𝑇) 𝑥𝑑 if 𝑡 = 𝑥 and 𝑥∶ tm 𝑇
Hom𝑐(𝑐) if 𝑡 = 𝑐
compositionally recurse into 𝑡 otherwise

(a) Cases for SFOL’s LF types and LF Primitives

ℎ(∧) ∶ Π𝐹 𝑑 𝐹 𝑐 𝐹ℎ 𝐺𝑑 𝐺𝑐 𝐺ℎ. ⊩ (𝐹 𝑑 ∧ 𝐺𝑑) ⇒ (𝐹 𝑐 ∧ 𝐺𝑐)
= 𝜆𝐹 𝑑 𝐹 𝑐 𝐹ℎ 𝐺𝑑 𝐺𝑐 𝐺ℎ. ⇒ Ipf ∧I (𝐹ℎ ⇒ E (pf ∧EL)) (𝐺ℎ ⇒ E (pf ∧ER))

ℎ(∨) ∶ Π𝐹 𝑑 𝐹 𝑐 𝐹ℎ 𝐺𝑑 𝐺𝑐 𝐺ℎ. ⊩ (𝐹 𝑑 ∨ 𝐺𝑑) ⇒ (𝐹 𝑐 ∨ 𝐺𝑐)
= 𝜆𝐹 𝑑 𝐹 𝑐 𝐹ℎ 𝐺𝑑 𝐺𝑐 𝐺ℎ. ⇒ Ipf pf ∨E (𝜆p̃f ∶ ⊩ 𝐹 𝑑. ∨IL (𝐹ℎ ⇒ E p̃f))

(𝜆p̃f ∶ ⊩ 𝐺𝑑. ∨IR (𝐺ℎ ⇒ E pf′))
ℎ(≐) ∶ Π𝑇 𝑑 𝑇 𝑐 𝑇 ℎ. Π 𝑥1 𝑥2 ∶ tm 𝑇 𝑑. ⊩ 𝑥1 ≐ 𝑥2 ⇒ (𝑇 ℎ 𝑥1 ≐ 𝑇 ℎ 𝑥2)

= 𝜆𝑇 𝑑 𝑇 𝑐 𝑇 ℎ 𝑥1 𝑥2. apply 𝑇 ℎ on both sides
ℎ(∃) ∶ Π𝑇 𝑑 𝑇 𝑐 𝑇 ℎ 𝑝𝑑 𝑝𝑐 𝑝ℎ. ⊩ (∃𝑝𝑑) ⇒ (∃𝑝𝑐)

= 𝜆𝑇 𝑑 𝑇 𝑐 𝑇 ℎ 𝑝𝑑 𝑝𝑐 𝑝ℎ. ⇒ Ipf pf ∃E𝑡𝑑,𝑝𝑡
∃I 𝑇 𝑐 𝑝𝑐 (𝑇 ℎ 𝑡𝑑) ((𝑝ℎ 𝑡𝑑) ⇒ E 𝑝𝑡)

(b) Cases for SFOL Connectives
Unless otherwise noted, for readability we omit the typings 𝑇 𝑑, 𝑇 𝑐 ∶ tp, 𝑇 ℎ ∶ tm 𝑇 𝑑 →
tm 𝑇 𝑐, 𝑝𝑑 ∶ tm 𝑇 𝑑 → prop, 𝑝𝑐 ∶ tm 𝑇 𝑐 → prop, 𝑝ℎ ∶ (Π𝑥𝑑 . ⊩ 𝑝𝑑 𝑥𝑑 ⇒
𝑝𝑐 (𝑇 ℎ 𝑥𝑑)), 𝐹 𝑑, 𝐹 𝑐, 𝐺𝑑, 𝐺𝑐 ∶ prop, 𝐹ℎ ∶ ⊩ 𝐹 𝑑 ⇒ 𝐹 𝑐, 𝐺ℎ ∶ ⊩ 𝐺𝑑 ⇒ 𝐺𝑐.

Figure 24 Translation ℎ

94 Structure-Preserving Diagram Operators

▶ Theorem 109. Hom as given in Definition 107 coincides on definitionless SFOL-theories
with the definition given at the beginning of Section 5.3.1. In particular, assuming type
symbols 𝑇1,… , 𝑇𝑛, 𝑇 ∶ tp it translates

type symbols 𝑇 ∶ tp to 𝑇 𝑑, 𝑇 𝑐, and

𝑇 ℎ ∶ tm 𝑇 𝑑 → tm 𝑇 𝑐

function symbols 𝑓 ∶ tm 𝑇1→...→tm 𝑇𝑛→tm 𝑇 to 𝑓𝑑, 𝑓𝑐, and

𝑓ℎ ∶ Π 𝑥𝑑
1 ∶ tm 𝑇 𝑑

1 Π𝑥𝑑
𝑛 ∶ tm 𝑇 𝑑

𝑛 . ⊩ 𝑇 ℎ (𝑓𝑑 𝑥𝑑
1 ... 𝑥𝑑

𝑛) ≐ 𝑓𝑐 (𝑇 ℎ
1 𝑥𝑑

1) ... (𝑇 ℎ
𝑛 𝑥𝑑

𝑛)

predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop to 𝑝𝑑, 𝑝𝑐, and

𝑝ℎ ∶ Π 𝑥𝑑
1 ∶ tm 𝑇 𝑑

1 Π𝑥𝑑
𝑛 ∶ tm 𝑇 𝑑

𝑛 . ⊩ 𝑝𝑑 𝑥𝑑
1 ... 𝑥𝑑

𝑛 ⇒ 𝑝𝑐 (𝑇 ℎ
1 𝑥𝑑

1) ... (𝑇 ℎ
𝑛 𝑥𝑑

𝑛)

Proof. The claim for type symbols follows immediately by definition expansion. For function
symbols (analogously for predicate symbols), a straightforward induction suffices, whose base
case we have effectively already exercised in Example 108. ◀

Partiality of Hom Note that the translation ℎ specified in Figure 24 is partial in two ways.
First, it is undefined on axioms with the effect that Hom maps axiom symbols to just two
qualified copies. Second, it is undefined on certain propositional connectives. Concretely, ℎ
is only defined monotone propositions:

▶ Definition 110. We call an SFOL-proposition monotone if it only uses the connectives
∨,∧, ∃ and possibly derived ones (but not ¬,⇒,∀).

A monotone formulae has the property that if it is true in a model 𝑀 , it remains true in
any supermodel of 𝑀 . In other words, 𝐹 stays true when enlarging domains of discourse. It
is well-known that homomorphisms only preserve monotone formulae We refer to [Rab17b,
Rem. 3.5] for an analysis of the problem in the context of Mmt theories and morphisms.

This partiality is a bit awkward but desirable in practice: users trying to apply Hom to
a theory or morphism violating the restriction are usually unaware of this issue and thus
have inconsistent expectections of the behavior of Hom.

Note that on SFOL propositions Hom can only be defined on monotone formulae given
by the grammar below.

State this theorem:

▶ Theorem 111. Homomorphisms preserve truth of monotone formulae.

Proof. Follows immediately from above, indeed logrel yields proof for every formulae. ◀

5.3.4 Examples

▶ Example 112 (Homomorphisms of Categories are Functors). Applying Hom on the theory
formalizing small categories from Example 102 yields Hom(SmallCat), the theory of functors

N. Roux 95

between small categories:

theory Hom(SmallCat) = {
obj𝑑, hom𝑑, id𝑑, ∘𝑑, neutL𝑑, neutR𝑑, assoc𝑑

obj𝑐, hom𝑐, id𝑐, ∘𝑐, neutL𝑐, neutR𝑐, assoc𝑐

objℎ ∶ tm obj𝑑 → tm obj𝑐

homℎ ∶ Π 𝑎 𝑏 ∶ tm obj𝑑. tm hom𝑑 𝑎 𝑏 → tm hom𝑐 (objℎ 𝑎) (objℎ 𝑏)
idℎ ∶ Π 𝑎∶ tm obj𝑑. ⊩ homℎ 𝑎 𝑎 (id𝑑 𝑎) ≐ id𝑐 (objℎ 𝑎)
∘ℎ ∶ Π 𝑎 𝑏 𝑐 ∶ tm obj𝑑. Π 𝑓 ∶ tm hom𝑑 𝑎 𝑏. Π 𝑔 ∶ tm (hom𝑑 𝑏 𝑐).

⊩ (homℎ (objℎ 𝑎) (objℎ 𝑐))𝑓 ∘𝑑 𝑔
≐ (homℎ (objℎ 𝑎) (objℎ 𝑏) 𝑓) ∘𝑐 (homℎ (objℎ 𝑏) (objℎ 𝑏) 𝑐)

}

The 𝑑-superscripted constants (respectively, the 𝑐-superscriptes ones) collectively repre-
sent the domain (codomain) category structure. For readability, we put them both first in
the presentation above and omitted their types, which can be read off (modulo systematic
renamings) the source theory SmallCat from Example 102 anyway. The ℎ-superscripted
constants represent the functor as such: objℎ represents its mapping on objects, homℎ its
mapping on morphisms, idℎ preservation of identity morphisms, and ∘ℎ represents preser-
vation of morphism composition.

Unwieldy, and to make ready for next example, we bedienen uns hier eines mmt features,
welches wir rausgelassen haben aus der arbeit der einfachheit halber, aber ein core feature
von mmt implementierung ist:

theory Hom(SmallCat) = {
struct dom ∶ SmallCat
struct cod ∶ SmallCat

objℎ ∶ tm dom/obj → tm cod/obj
homℎ ∶ Π 𝑎 𝑏 ∶ tm dom/obj. tm dom/hom 𝑎 𝑏 → tm cod/hom (objℎ 𝑎) (objℎ 𝑏)
idℎ ∶ Π 𝑎∶ tm dom/obj. ⊩ homℎ 𝑎 𝑎 (dom/id 𝑎) ≐ id𝑐 (objℎ 𝑎)
∘ℎ ∶ Π 𝑎 𝑏 𝑐 ∶ tm dom/obj. Π 𝑓 ∶ tm dom/hom 𝑎 𝑏. Π 𝑔 ∶ tm (dom/hom 𝑏 𝑐).

⊩ (homℎ (objℎ 𝑎) (objℎ 𝑐))𝑓dom/ ∘ 𝑔
≐ (homℎ (objℎ 𝑎) (objℎ 𝑏) 𝑓)cod/ ∘ (homℎ (objℎ 𝑏) (objℎ 𝑏) 𝑐)

}

theory Hom(Hom(SmallCat)) = {
struct dom ∶ Hom(SmallCat)
struct cod ∶ Hom(SmallCat)
struct dom ∶ Hom(SmallCat)
struct cod ∶ Hom(SmallCat)

objℎℎ ∶ Π 𝑥∶ tm dom/dom/obj. cod/
}

▶ Remark 113. We cannot extend Example 112 to large categories, where the sizes of the
object collection and the one of hom collections differ. It is impossible to formalize such size
difference within a PDFOL theory to begin with.

96 Structure-Preserving Diagram Operators

Nonetheless, one minimally invasive way to formalize large categories as an Mmt theory
would be to modify SmallCat such that obj ∶ type becomes an LF type (while the return
type of hom remains an SFOL type). and to replace every occurrence of tm obj by obj. The
declaration of obj is what makes LargeCat no longer PDFOL-well-patterned.

write more, what happens when objects *and* morphisms are both tp. possibly some-
thing goes wrong, semantics possibly

▶ Example 114 (Homomorphisms of Functors are Natural Transformations). ... need identifi-
cation here (= pushout?)

Finally we can return to our motivating example from ...:

▶ Example 115 (Hom(Lists) formalizes the map operation on lists). We apply Hom to the
theory Lists from Example 101 to obtain Hom(Lists) (not shown), in which we identify
the constant pairs (list𝑑, list𝑐), (nil𝑑, nil𝑐), and (cons𝑑, cons𝑐) to obtain Hom(Lists)′
(shown below).

theory Hom(Lists)′ = {
list ∶ tp → tp
nil ∶ Π𝐴∶ tp. tm list 𝐴
cons ∶ Π𝐴∶ tp. tm 𝐴 → tm list𝐴𝑝 → tm list𝐴
listℎ ∶ Π𝐴𝑑 ∶ tp. Π𝐴𝑐 ∶ tp. Π𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐. tm list 𝐴𝑑 → tm list 𝐴𝑐

nilℎ ∶ Π𝐴𝑑 ∶ tp. Π𝐴𝑐 ∶ tp. Π𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐. ⊩ listℎ 𝐴𝑑 𝐴𝑐 𝐴ℎ (nil 𝐴𝑑) ≐ (nil 𝐴𝑐)
consℎ ∶ Π𝐴𝑑 ∶ tp. Π𝐴𝑐 ∶ tp. Π𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐.

Π 𝑥𝑑 ∶ tm 𝐴𝑑. Π 𝑙𝑑 ∶ tm list𝐴𝑑.
⊩ list 𝐴𝑑 (cons 𝐴𝑑 𝑥𝑑 𝑙𝑑) ≐ cons 𝐴𝑐 (𝐴ℎ 𝑥𝑑) (listℎ 𝑙𝑑)

}

We can think of nilℎ and consℎ as the defining (inductive) equations for the function
listℎ. For any given function 𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐 (for any types 𝐴𝑑, 𝐴𝑐), these equations
uniquely determine the action of the function listℎ 𝐴𝑑 𝐴𝑐 𝐴ℎ; namely it maps lists over
𝐴𝑑 to 𝐴𝑐 elementwise via 𝐴ℎ. This action is the well-known “list map operation”.

5.3.5 Meta-Theoretical Properties
We spend the remainder of this section proving meta-theoretical properties of our functor
and its connectors.

The following theorem confirms the intuition laid down in Figure 23:

▶ Proposition 116 (Basic Lemma for ℎ). We have

if Γ ⊢SFOL 𝑡 ∶ 𝐴 and ℎ is defined for 𝑡, then ℎ is defined for 𝐴 and ℎ(Γ) ⊢SFOL ℎ(𝑡) ∶ ℎ(𝐴) 𝑑(𝑡) 𝑐(𝑡)
if ℎ is term-total, it is defined for a typed term if it is for its type

Proof. In principle, the proof proceeds similarly to the one of Theorem 11 for actual logical
relations. We already made the differences plausible right after ??. ◀

We can now prove rigorously the well-known theorem

▶ Theorem 117 (Homomorphisms Preserve Complex Terms & Propositions). Homomorphisms
preserve arbitrarily complex terms:

Σ ⊢SFOL
Σ 𝑡 ∶ tm 𝑎 ⟹ Hom(Σ) ⊢SFOL

Σ ℎ(𝑡) ∶ ℎ(𝑎) 𝑑(𝑡) ≐ 𝑐(𝑡)

N. Roux 97

For the special case of an atomic term 𝑡 = 𝑐 ∈ Σ we obtain the result Hom(Σ) ⊢SFOL
Σ

𝑐ℎ ∶ ℎ(𝑎) 𝑐𝑑 ≐ 𝑐𝑐.

Homomorphisms preserve arbitrarily complex monotone propositions:

Σ ⊢SFOL
Σ 𝐹 ∶ prop ⟹ Hom(Σ) ⊢SFOL

Σ ⊩ ℎ(𝐹)∶ 𝑑(𝐹) ⇒ 𝑐(𝐹)

Proof. By previous theorem. ◀

▶ Theorem 118. Hom𝑑 and Hom𝑐 are both well-typed and natural.

Proof. By Theorem 38 in conjunction with the next theorem. ◀

▶ Theorem 119. Hom is well-typed.

Proof. For well-typedness we use the criterion from Theorem 24. Assume Σ ⊢SFOL
Σ 𝑐 ∶ 𝐴 [= 𝑡]

is a well-typed declaration in Σ. Applying Hom yields three judgements that we need to
show:

Hom(Σ) ⊢SFOL
Σ 𝑐𝑑 ∶ 𝐴𝑑 [= 𝑡𝑑] Hom(Σ) ⊢SFOL

Σ 𝑐𝑐 ∶ 𝐴𝑐 [= 𝑡𝑐]
Hom(Σ) ⊢SFOL

Σ 𝑐ℎ ∶ ℎ(𝐴) 𝑐𝑑 𝑐𝑐 [= ℎ(𝑡)]

The first two judgements emerge immediately from the assumption given that −𝑑 and −𝑐

are mere systematic renamings. And the third judgement amounts to Proposition 116. ◀

▶ Conjecture 120. Under mild assumptions (e.g., of additional equational theory in SFOL),
Hom is functorial.

98 Structure-Preserving Diagram Operators

5.4 Substructures

𝑇 Sub(𝑇)
Sub𝑝

Sub𝑚

𝑠

The linear functor Sub(−) maps every PFOL-theory 𝑇 to the SFOL-extension Sub(𝑇) of 𝑇 -
substructures, whose models are submodels of 𝑇 -models. For example, applied to the theory
Group it yields the theory Sub(Group) formalizing exactly subgroups. The linear connector
𝑝 into Sub is the projection of the very parent 𝑇 -model, and the linear connector 𝑚 is the
realization of a 𝑇 -model from a 𝑇 -submodel via predicate subtypes (which are available
when suitably extending PDFOL; we defer describing the latter connector to ??.) And the
logical relation-inspired translation 𝑠 proves that 𝑇 -submodels are not only closed under
atomic but also arbitrarily complex terms built out of function symbols from 𝑇 .16

5.4.1 Preliminary Definition: Sub on Definitionless SFOL
For didactic reasons, we first define Sub and the connector Sub𝑝 for the special case of defi-
nitionless SFOL-theories. As given in the list below, Sub linearly maps each type, function,
and axiom symbol declaration 𝑐 ∶ 𝐴 to two declarations 𝑐𝑝 and 𝑐𝑠. The constant 𝑐𝑝 serves as
a qualified copy to build up the parent model, and the constant 𝑐𝑠 accounts for the actual
condition imposed on the substructure at the very input declaration. For function symbols
this amounts to the substructure being closed under corresponding function applications,
and for axiom symbols this amounts to the substructure fulfilling relativized variants of the
parent’s axioms. Finally, predicate symbols are mapped to their qualified copy only.

type symbols 𝑇 ∶ tp are mapped to a copy and a predicate on terms thereof:

𝑇 𝑝 ∶ tp
𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop

function symbols 𝑓 ∶ tm 𝑇1 → ... → tm 𝑇𝑛 → tm 𝑇 are mapped to a copy and a closure
axiom:

𝑓𝑝 ∶ tm 𝑇 𝑝
1 →...→tm 𝑇 𝑝

𝑛 →tm 𝑇 𝑝

𝑓𝑠 ∶ Π 𝑡1 ∶ tm 𝑇1. Π 𝑡𝑠1 ∶ ⊩ 𝑇 𝑠
1 𝑡1.

⋮
Π 𝑡𝑛 ∶ tm 𝑇𝑛. Π 𝑡𝑠𝑛 ∶ ⊩ 𝑇 𝑠

𝑛 𝑡𝑛. ⊩ 𝑇 𝑠 (𝑓𝑝 𝑡1 ... 𝑡𝑛)
predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop are mapped to just a copy:

𝑝𝑝 ∶ tm 𝑇 𝑝
1 →...→tm 𝑇 𝑝

𝑛 →prop

axiom symbols ax ∶ ⊩ 𝐹 are mapped to a copy and a relativized variant:

ax𝑝 ∶ ⊩ 𝐹 𝑝

ax𝑠 ∶ ⊩ 𝐹 𝑠

where 𝐹 𝑠 emerges from 𝐹 𝑝 by replacing i) every universally quantified formula ∀𝑥∶ tm 𝑇 𝑝. 𝜙(𝑥)
by ∀𝑥∶ tm 𝑇 𝑝. 𝑇 𝑠 𝑥 ⇒ 𝜙(𝑥) and ii) every existentially quantified formula ∃𝑥∶ tm 𝑇 𝑝. 𝜙(𝑥)
by ∃𝑥∶ tm 𝑇 𝑝. 𝑇 𝑠 𝑥 ∧ 𝜙(𝑥).

16 See Theorem 131.

N. Roux 99

theory Sub(Unital) = {
include SFOL
𝑈𝑝 ∶ tp
𝑈𝑠 ∶ tm 𝑈𝑝 → prop

∘𝑝 ∶ tm 𝑈𝑝 → tm 𝑈𝑝 → tm 𝑈𝑝

∘𝑠 ∶ Π 𝑥𝑝 ∶ tm 𝑈𝑝. Π 𝑥𝑠 ∶ ⊩ 𝑈𝑠 𝑥𝑝.
Π 𝑦𝑝 ∶ tm 𝑈𝑝. Π 𝑦𝑠 ∶ ⊩ 𝑈𝑠 𝑦𝑝.
⊩ 𝑈𝑠 (𝑥𝑝 ∘ 𝑦𝑝)

𝑒𝑝 ∶ tm 𝑈𝑝

𝑒𝑠 ∶ ⊩ 𝑈𝑠 𝑒𝑝

neut𝑝 ∶ ⊩ ∀𝑥𝑝. 𝑒𝑝 ∘ 𝑥𝑝 ≐ 𝑥𝑝

neut𝑠 ∶ ⊩ ∀𝑥𝑝. 𝑈𝑠 𝑥𝑝 ⇒ 𝑒𝑝 ∘ 𝑥𝑝 ≐ 𝑥𝑝

}

mor Sub𝑝(Unital) ∶ Unital → Sub(Unital) = {
= =

}

Figure 25 Theory of unital substructures given by Sub(Unital) and corresponding parent pro-
jection

The linear connector Sub𝑝 into Sub maps every constant 𝑐 to 𝑐 ∶= 𝑐𝑝.
Our restriction to definitionless SFOL-theories makes it easy to see that Sub is well-typed

and functorial. Functoriality holds vacuously since Sub is partial on all defined constants,
including morphism assignments, thus in particular on all morphisms. By Theorem 38, the
connector Sub𝑝 is well-typed and natural (the latter again vacuously).

▶ Example 121 (Sub(Unital)). For the theory Unital from Example 97 we obtain the
theory Sub(Unital) and the morphism Sub𝑝(Unital) ∶ Unital → Sub(Unital) shown in Fig-
ure 25. We see that the constants 𝑈𝑝, ∘𝑝, 𝑒𝑝, neut𝑝 collectively make up a unital structure,
and this is precisely what is witnessed by the morphism. Within Sub(Unital), additional
structure is imposed on these constants by means of the 𝑠-superscripted constants. Impor-
tantly, 𝑈𝑠 represents a selection of terms of type 𝑈𝑝 (a “subset”), and the constants ∘𝑠 and
𝑒𝑠 force this selection to be closed under the corresponding operations. Lastly, the generated
axiom neut𝑠 actually does not impose any additional structure since it is trivially provable
from neut𝑝. In fact, for all axioms ax using only ∀ and ≐ (i.e., the axioms primarily used
in universal algebra) the corresponding axioms ax𝑠 are automatically true in each submodel
and thus provable. Here, Sub could do much better and translate such axioms to theorems
by synthesizing an appropriate proof and adding it as the definiens of ax𝑠. We continue
discussing this avenue of future work in Section 5.8.

▶ Remark 122.
▶ Remark 123. say it’s weird how we distinguish between defined predicate symbols and
just propositional terms, in our encoding defined predicate symbols are no longer subject to
the general guarantees of abbreviations.

100 Structure-Preserving Diagram Operators

Σ ⊇ SFOL-expression mapped to Sub(Σ)-expression
types 𝑇 ∶ tp 𝑠(𝑇) ∶ tm 𝑇 𝑑 → prop selection of subset of 𝑇 𝑝

terms 𝑡 ∶ tm 𝑇 𝑠(𝑡) ∶ ⊩ 𝑠(𝑇) 𝑝(𝑡) proof of 𝑡𝑝 being in subset at 𝑇 𝑝 selected by 𝑠(𝑡)
propositions 𝐹 ∶ prop 𝑠(𝐹) ∶ prop proposition relativized in quantifiers
proofs pf ∶ ⊩ 𝐹 𝑠(pf) ∶ ⊩ 𝑠(𝐹) proof of relativized proposition

Figure 26 Intuitive overview of the translation to be carried out by 𝑠

5.4.2 Building Towards a Generalized Definition

We now aim to generalize Sub to a linear functor accepting all PDFOL-theories. In this
section, we collect ideas and a failing ansatz, culminating in a succeeding definition for
the special case of PFOL-theories in the next section (Section 5.4.3). The general principle
remains as before: we copy every input constant 𝑐 ∶ 𝐴 [= 𝑡] to one qualified copy 𝑐𝑝 ∶ 𝐴𝑝 [= 𝑡𝑝]
(where −𝑝 indicates a systematic renaming operation) and moreover output a designated
second constant 𝑐𝑠 for everything but predicate symbols. Similarly as with generalizing Hom
in Section 5.3.1, the main hurdle lies in specifying the translation that is needed to generate
the second constant here, and likewise the key idea is to define a translation while having a
logical relation on Sub𝑝 in mind and suitably modifying inductive cases.

Reading off the definition of Sub given above, we come up with the following base cases
for a putative logical relation 𝑠 on Sub𝑝:

𝑠(tp) = 𝜆𝑈𝑝 ∶ tp. tm 𝑈𝑝 → prop
𝑠(tm) = 𝜆𝑇 𝑝 ∶ tp. 𝜆𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop. 𝜆𝑡𝑝 ∶ tm 𝑇 𝑝. ⊩ 𝑇 𝑠 𝑡𝑝
𝑠(prop) = 𝜆𝐹 𝑝 ∶ prop. prop
𝑠(⊩) = 𝜆𝐹 𝑝 𝐹 𝑠 ∶ prop. 𝜆pf ∶ ⊩ 𝐹 𝑝. ⊩ 𝐹 𝑠

If we actually extended 𝑠 to a logical relation, it would map SFOL expressions as overviewed
in Figure 26.

This sounds right, but is elusive: consider a context with variables 𝑇 ∶ tp and 𝑝 ∶ tm 𝑇 →
prop. If 𝑠 was really extended to a logical relation, applying it to the context would yield the
variable 𝑝𝑠 ∶ Π 𝑥𝑝 ∶ 𝑇 𝑝. Π 𝑥𝑠 ∶ ⊩ 𝑇 𝑠 𝑥𝑝. prop in the translated context. Here, the introduction
of the parameter 𝑥𝑠 leads to undesired consequences. This is best seen when trying to define
our putative logical relation on the symbols for universal and existential quantification from
SFOL. Recall these symbol declarations from SFOL:

∀, ∃∶ Π𝑇 ∶ tp. Π 𝑝 ∶ tm 𝑇 → prop. prop

The expected types of respective assignments would be:

𝑠(∀), 𝑠(∃) ∶ Π𝑇 𝑝 ∶ tp. Π 𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop.
Π 𝑝𝑝 ∶ tm 𝑇 𝑝 → prop. Π 𝑝𝑠 ∶ (Π𝑥𝑝 ∶ tm 𝑇 𝑝. Π 𝑥𝑠 ∶ ⊩ 𝑇 𝑠 𝑥𝑝. prop) .
prop

We can think of the parameter 𝑝𝑝 as the predicate originating from the parent’s structure
and of 𝑝𝑠 as the relativized variant. But here the type of 𝑝𝑠, particularly its parameter 𝑥𝑠,
makes it impossible to give any meaningful assignments that are in line with our definition
of Sub at the beginning of Section 5.4. Ideally, we would have hoped to make the following

N. Roux 101

assignments:

𝑠(∀) = 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∀ 𝑥𝑝 ∶ tm 𝑇 𝑝. 𝑇 𝑠 𝑥𝑝 ⇒
impossible!
⏞𝑝𝑠 𝑥𝑝 (1)

𝑠(∃) = 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∃ 𝑥𝑝 ∶ tm 𝑇 𝑝. 𝑇 𝑠 𝑥𝑝 ∧ 𝑝𝑠 𝑥𝑝⏟
impossible

(2)

But both lines are ill-typed, precisely because we cannot satisfy the required parameter 𝑥𝑠

of 𝑝𝑠.
Note that the antecedences in both lines are identical to the sought after type of 𝑥𝑠. If

in the consequences
As a fix, in the next section we aim at patching the cases of 𝑠 induced by being a logical

relation such that for predicate functions 𝑞 ∶ tm 𝑇 → prop (not necessarily a predicate
symbol declaration) applying 𝑠 creates a parameter 𝑥𝑝 ∶ tm 𝑇 𝑝, but avoids introducing any
parameter 𝑥𝑠 ∶ 𝑇 𝑠 𝑥𝑝. In general, we will prescribe this avoidance even for complex predicate
functions of the form 𝑞 ∶ Π𝑥1 ∶ tm 𝑇1. ... Π𝑥𝑛 ∶ tm 𝑇𝑛. prop. Applying 𝑠 to those will simply
yield the expected type

𝑠(𝑞) ∶ Π𝑥𝑝
1 ∶ tm 𝑇 𝑝

1 Π𝑥𝑝
𝑛 ∶ tm 𝑇 𝑝

𝑛 . prop

This fix also goes hand-in-hand with how the definition of Sub at the beginning of Section 5.4
acts on predicate symbol declarations: it only copies them to a parent copy. Since no
additional declaration is generated for the substructure, the modified logical relation should
also avoid analogous additional parameters/variables when recursing.

▶ Remark 124 (Alternative Fix via Dependent Implication and Conjunction). Having to give
up on the original definition of logical relations is frustrating. Consider the desired, but
ill-typed assignments in Equations (1) and (2). In both cases, we were unable to supply
an argument to the parameter 𝑥𝑠 of 𝑝𝑠. Now observe how in Equation (1) the antecedence
is identical to the expected type of 𝑥𝑠. If in the consequence we could somehow assume
a witness of the antecedence, we could pass it to 𝑝𝑠 as the argument for 𝑥𝑠 and thereby
achieve a well-typed and meaningful assignment. Analogously in Equation (2), if in the
right conjunct we could somehow assume a witness of the left conjunct, we could pass it to
𝑝𝑠, too.

Logical features, i.e., variants of implications and conjunctions, that allow such usage
are lesser known as dependent implication and dependent conjunction [HP18]. Their ana-
logue in programming languages is widely known: short circuit evaluation in boolean ex-
pressions [Wik22]. For example, in the programming language C if you write the boolean
expression !f() || g() (encoding an implication from f() to g()), upon runtime g() is
only evaluated when !f() evaluates to false, i.e., when f() evaluates to true. Thus, pro-
grammers may write C-style implications (encoded using !_ || _) in a way that assumes
the truth of the antecedence in the consequence. Analogously, if you write f() && g(),
upon runtime g() is only evaluated when f() evalutes to true. Thus, programmers may
write C-style conjunctions using && in a way that assumes the truth of left conjuncts in the
right conjuncts.

Let us shortly show how the assignments to 𝑠(∀) and 𝑠(∃) would look like using dependent
implication and conjunction. First, we formalize the respective logical features by extending

102 Structure-Preserving Diagram Operators

SFOL as follows [LATIN2]17:

theory DepSFOL = {
include SFOL
depImpl ∶ Π𝐹 ∶ prop. Π𝐺∶ ⊩ 𝐹 → prop. prop
depConj ∶ Π𝐹 ∶ prop. Π𝐺∶ ⊩ 𝐹 → prop. prop
/* /* proof rules omitted */ */

}

We now conjecture that we can define a linear functor DepSub from PDFOL- to PDFOL+
DepSFOL-theories using the exact logical relation suggested at the beginning of Section 5.4.2
and using dependent connectives. (We state our conjecture more formally below as Conjec-
ture 128.) For example the quantifiers could be given the following assignments:

𝑠(∀) = 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∀ 𝑥𝑝 ∶ tm 𝑇 𝑝. depImpl (𝑇 𝑠 𝑥𝑝) (𝜆𝑥𝑠. 𝑝𝑠 𝑥𝑝 𝑥𝑠)
𝑠(∃) = 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∃ 𝑥𝑝 ∶ tm 𝑇 𝑝. depConj (𝑇 𝑠 𝑥𝑝) (𝜆𝑥𝑠. 𝑝𝑠 𝑥𝑝 𝑥𝑠)

We conjecture that the remaining assignments in the logical relation can be taken from our
final Definition 126 of Sub below (concretely: Figures 27b and 27c).

The main advantage over the ansatz to modify the logical relation as needed is that we
conjecture we could actually get a functor that accepts all PDFOL-theories. In contrast, the
ansatz we carry out below, culminating in ??, only works on PFOL-theories and that seems
to be limitation that cannot be overcome within that ansatz. And the main disadvantage
would be that the theories and morphisms output by Sub would then contain these constructs
(which are nothing but artifacts of our way of specifying the translation), and it would be
rather awkward for us to push these them onto formalizations that users get to see and need
to use.

5.4.3 Final Definition: Sub on PFOL

As for Hom, to finally define 𝑠 as desired, we take the complex cases for 𝑠 that would have
been induced if it was a logical relation on Sub𝑝 and alter them as little as possible to
suppress undesired parameters:

▶ Definition 125. The translation 𝑠 maps contexts ⊢SFOL
Σ Σ and LF terms Σ ⊢SFOL

Σ 𝑡 to 𝑠Σ(𝑡)
as specified in Figure 27. In particular, it has base cases

𝑠(tp) = 𝜆𝑈𝑝 ∶ tp. tm 𝑈𝑝 → prop
𝑠(tm) = 𝜆𝑇 𝑝 ∶ tp. 𝜆𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop. 𝜆𝑡𝑝 ∶ tm 𝑇 𝑝. ⊩ 𝑇 𝑠 𝑡𝑝
𝑠(prop) = 𝜆𝐹 𝑝 ∶ prop. prop
𝑠(⊩) = 𝜆𝐹 𝑝 𝐹 𝑠. 𝜆pf ∶ ⊩ 𝐹 𝑝. ⊩ 𝐹 𝑠

For brevity, we hide the context in the notation, and in the sequel we also write 𝑠 for 𝑠.

17 Inspired by formalizations currently in file source/logic/propositional/dependent_pl.mmt:
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/
source/logic/propositional/dependent_pl.mmt

https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/logic/propositional/dependent_pl.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/logic/propositional/dependent_pl.mmt

N. Roux 103

𝑠(tp) = 𝜆𝑈𝑝 ∶ tp. tm 𝑈𝑝 → prop
𝑠(tm) = 𝜆𝑇 𝑝 ∶ tp. 𝜆𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop. 𝜆𝑡𝑝 ∶ tm 𝑇 𝑝. ⊩ 𝑇 𝑠 𝑡𝑝
𝑠(prop) = 𝜆𝐹 𝑝 ∶ prop. prop
𝑠(⊩) = 𝜆𝐹 𝑝 𝐹 𝑠. 𝜆pf ∶ ⊩ 𝐹 𝑝. ⊩ 𝐹 𝑠

𝑠(Π𝑥∶ 𝐴. 𝐵) = {𝜆𝔉 ∶ 𝑝(Π𝑥∶ 𝐴. 𝐵). Π𝑥𝑝 ∶ 𝑝(𝐴). 𝑠(𝐵) (𝔉 𝑥𝑝) if 𝐴 = tm 𝑇 and ret(𝐵) = prop
𝜆𝔉 ∶ 𝑝(Π𝑥∶ 𝐴. 𝐵). Π𝑥𝑝 ∶ 𝑝(𝐴). Π𝑥𝑠 ∶ 𝑠(𝐴) 𝑥𝑝. 𝑠(𝐵) (𝔉 𝑥𝑝) otherwise

𝑠(𝜆𝑥∶ 𝐴. 𝑡) = {𝜆𝑥𝑝 ∶ 𝑝(𝐴). 𝑠(𝑡) if 𝐴 = tm 𝑇 , 𝑡 ∶ prop
𝜆𝑥𝑝 ∶ 𝑝(𝐴). 𝜆𝑥𝑠 ∶ 𝑠(𝐴) 𝑥𝑝. 𝑠(𝑡) otherwise

𝑠(𝑥) = 𝑥𝑠

𝑠(𝑓 𝑡) = {𝑠(𝑓) 𝑝(𝑡) if 𝑓 ∶ (Π𝑥∶ tm 𝑇 . 𝐵) and ret(𝐵) = prop
𝑠(𝑓) 𝑝(𝑡) 𝑠(𝑡) otherwise

where 𝑝 is defined as 𝑝(𝑡) = Sub𝑝(𝑡)[𝑥 ↦ 𝑥𝑝], i.e., as the result emerging from Sub𝑝(𝑡) by
substituting every variable reference 𝑥 with 𝑥𝑝

(a) Cases for SFOL’s LF types and LF Primitives
𝑠(∀) ∶ 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∀ 𝑡𝑝. 𝑇 𝑠 𝑡𝑝 ⇒ 𝑝𝑠 𝑡𝑝
𝑠(∃) ∶ 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∃ 𝑡𝑝. 𝑇 𝑠 𝑡𝑝 ∧ 𝑝𝑠 𝑡𝑝
𝑠(≐) ∶ 𝜆𝑇 𝑝 𝑇 𝑠. 𝜆𝑥𝑝

1 𝑥𝑝
2. 𝑥𝑝

1 ≐ 𝑥𝑝
2

𝑠(¬) ∶ 𝜆𝐹 𝑝 𝐹 𝑠. ¬𝐹 𝑠

𝑠(∧) ∶ 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. 𝐹 𝑠 ∧ 𝐺𝑠

𝑠(∨) ∶ 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. 𝐹 𝑠 ∨ 𝐺𝑠

𝑠(⇒) ∶ 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. 𝐹 𝑠 ⇒ 𝐺𝑠

(b) Cases for SFOL Connectives

▶ Definition 126 (Substructure Operators). The linear functor Sub from PFOL-theories to
all possible SFOL-extensions and the linear connector 𝑝 into Sub are given by

SubΣ(𝑐 ∶ 𝐴 [= 𝑡]) = 𝑐𝑝 ∶ 𝐴𝑝 [= 𝑡𝑝], {𝑐𝑠 ∶ 𝑠Σ(𝐴) 𝑐𝑝 [= 𝑠Σ(𝑡)] if 𝑐 is a type, fun., or ax. symbol
⋅ if 𝑐 is a predicate symbol

Sub𝑝,Σ(𝑐 ∶ 𝐴) = 𝑐 ∶= 𝑐𝑝

where 𝑠Σ is the translation from Definition 125 extended by

𝑠Σ(𝑐) = {𝑐𝑠 if 𝑐 is a type, fun., or ax. symbol
𝑐𝑝 if 𝑐 is a predicate symbol

for every 𝑐 in Σ.

Let us look at Figure 27 and compare the definitional cases given there with the ones
that would have taken effect if 𝑠 was a unary logical relation on Sub𝑝. The most important
change from which all others follow is in the case of 𝑠 for Π𝑥 ∶ 𝐴. 𝐵. It has been modified
to suppress generation of a parameter 𝑥𝑠 ∶ 𝑠(𝐴) 𝑥𝑝 for function types tm 𝑇 → … → prop
(incl. the dependent function type cases) where the dots … indicate an arbitrary number of
arbitrary parameter types. Consequently, the cases for function abstraction (𝜆𝑥∶ 𝐴. 𝑡) and
application (𝑓 𝑡) suppress binding/supplying the parameter/an argument for corresponding
functions.

104 Structure-Preserving Diagram Operators

𝑠(∀I) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. Π pf𝑝 ∶ (Π𝑥𝑝. ⊩ 𝑝𝑝 𝑥𝑝). Π pf𝑠 ∶ (Π𝑥𝑝 𝑥𝑠. ⊩ 𝑝𝑠 𝑥𝑝).
⊩ ∀ 𝑡𝑝. 𝑇 𝑠 𝑡𝑝 ⇒ 𝑝𝑠 𝑡𝑝
= 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠 pf𝑝 pf𝑠. ∀I𝑥𝑝 ⇒ I𝑥𝑠 pf𝑠 𝑥𝑝 𝑥𝑠

𝑠(∀E) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. Π pf𝑝 ∶ ⊩ ∀𝑝𝑝. Π pf𝑠 ∶ ⊩ ∀𝑥𝑝. 𝑇 𝑠 𝑥𝑝 ⇒ 𝑝𝑠 𝑥𝑝.
Π 𝑥𝑝 𝑥𝑠. ⊩ 𝑝𝑠 𝑥𝑝

= 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠 pf𝑝 pf𝑠 𝑥𝑝 𝑥𝑠. (pf𝑠 ∀E 𝑥𝑝) ⇒ E 𝑥𝑠

𝑠(∃I) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠 𝑥𝑝 𝑥𝑠. Π pf𝑝 ∶ ⊩ 𝑝𝑝 𝑥𝑝. Π pf𝑠 ∶ ⊩ 𝑝𝑠 𝑥𝑝. ⊩ ∃ 𝑥𝑝. 𝑇 𝑠 𝑥𝑝 ∧ 𝑝𝑠 𝑥𝑝

𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠 𝑥𝑝 𝑥𝑠 pf𝑝 pf𝑠. ∃I 𝑥𝑝 (∧I 𝑥𝑠 pf𝑠)
𝑠(∃E) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. Π pf𝑝 ∶ ⊩ ∃ 𝑝𝑝. Π pf𝑠 ∶ ⊩ ∃ 𝑥𝑝. 𝑇 𝑠 𝑥𝑝 ∧ 𝑝𝑠 𝑥𝑝.

Π𝐹 𝑝 𝐹 𝑠. Π p̃f
𝑝 ∶ (Π𝑥𝑝. ⊩ 𝑝𝑝 𝑥𝑝 → ⊩ 𝐹 𝑝). Π p̃f

𝑠 ∶ (Π𝑥𝑝 𝑥𝑠. ⊩ 𝑝𝑠 𝑥𝑝 → ⊩ 𝐹 𝑠). ⊩ 𝐹 𝑠

𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠 pf𝑝 pf𝑠 𝐹 𝑝 𝐹 𝑠 p̃f
𝑝

p̃f
𝑠. pf𝑠 ∃E𝑥𝑝,𝑦 p̃f

𝑠 𝑥𝑝 (𝑦 ∧EL) (𝑦 ∧ER)
𝑠(refl) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑥𝑝 𝑥𝑠. ⊩ 𝑥𝑝 ≐ 𝑥𝑝

= 𝜆𝑇 𝑝 𝑇 𝑠 𝑥𝑝 𝑥𝑠. refl 𝑇 𝑝 𝑥𝑝

𝑠(symm) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑥𝑝 𝑥𝑠 𝑦𝑝 𝑦𝑠. Π pf𝑝 pf𝑠 ∶ ⊩ 𝑥𝑝 ≐ 𝑦𝑝. ⊩ 𝑦𝑝 ≐ 𝑥𝑝

= 𝜆𝑇 𝑝 𝑇 𝑠 𝑥𝑝 𝑥𝑠 𝑦𝑝 𝑦𝑠 pf𝑝 pf𝑠. symm 𝑇 𝑝 pf𝑝

𝑠(trans) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑥𝑝 𝑥𝑠 𝑦𝑝 𝑦𝑠 𝑧𝑝 𝑧𝑠. Π pf𝑝1 pf𝑠1 ∶ ⊩ 𝑥𝑝 ≐ 𝑦𝑝. Π pf𝑝2 pf𝑠2 ∶ ⊩ 𝑦𝑝 ≐ 𝑧𝑝. ⊩ 𝑥𝑝 ≐ 𝑧𝑝
= 𝜆𝑇 𝑝 𝑇 𝑠 𝑥𝑝 𝑥𝑠 𝑦𝑝 𝑦𝑠 𝑧𝑝 𝑧𝑠 pf𝑝1 pf𝑠1 pf𝑝2 pf𝑠2. trans 𝑇 𝑝 𝑥𝑝 𝑦𝑝 𝑧𝑝 pf𝑝1 pf𝑝2

𝑠(∧I) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. Π pf𝑝𝐹 ∶ ⊩ 𝐹 𝑝. Π pf𝑠𝐹 ∶ ⊩ 𝐹 𝑠. Π pf𝑝𝐺 ∶ ⊩ 𝐺𝑝. Π pf𝑠𝐺 ∶ ⊩ 𝐺𝑠. ⊩ 𝐹 𝑠 ∧ 𝐺𝑠

= 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠 pf𝑝𝐹 pf𝑠𝐹 pf𝑝𝐺 pf𝑠𝐺. ∧I pf𝑠𝐹 pf𝑠𝐺
𝑠(∧EL) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. Π pf𝑝 ∶ ⊩ 𝐹 𝑝 ∧ 𝐺𝑝. Π pf𝑠 ∶ ⊩ 𝐹 𝑠 ∧ 𝐺𝑠. ⊩ 𝐹 𝑠

= 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠 pf𝑝 pf𝑠. pf𝑠 ∧EL
𝑠(∧ER) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. Π pf𝑝 ∶ ⊩ 𝐹 𝑝 ∧ 𝐺𝑝. Π pf𝑠 ∶ ⊩ 𝐹 𝑠 ∧ 𝐺𝑠. ⊩ 𝐺𝑠

= 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠 pf𝑝 pf𝑠. pf𝑠 ∧ER
𝑠(∨IL) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. Π pf𝑝 ∶ ⊩ 𝐹 𝑝. Π pf𝑠 ∶ ⊩ 𝐹 𝑠. ⊩ 𝐹 𝑠 ∨ 𝐺𝑠

= 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠 pf𝑝 pf𝑠. ∨IL pf𝑠

𝑠(∨IR) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. Π pf𝑝 ∶ ⊩ 𝐺𝑝. Π pf𝑠 ∶ ⊩ 𝐺𝑠. ⊩ 𝐹 𝑠 ∨ 𝐺𝑠

= 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠 pf𝑝 pf𝑠. ∨IR pf𝑠

𝑠(∨E) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠. Π pf𝑝 ∶ ⊩ 𝐹 𝑝 ∨ 𝐺𝑝. Π pf𝑠 ∶ ⊩ 𝐹 𝑠 ∨ 𝐺𝑠. Π𝐻𝑝 𝐻𝑠. Π pf𝑝1 ∶ ⊩ 𝐹 𝑝 → ⊩ 𝐻𝑝.
Π pf𝑠1 ∶ ⊩ 𝐹 𝑠 → ⊩ 𝐻𝑠. Π pf𝑝2 ∶ ⊩ 𝐺𝑝 → ⊩ 𝐻𝑝. Π pf𝑠2 ∶ ⊩ 𝐺𝑠 → ⊩ 𝐻𝑠. ⊩ 𝐻𝑠

= 𝜆𝐹 𝑝 𝐹 𝑠 𝐺𝑝 𝐺𝑠 pf𝑝 pf𝑠 𝐻𝑝 𝐻𝑠 pf𝑝1 pf𝑠1 pf𝑝2 pf𝑠2. pf𝑠 ∨E pf𝑠1 pf𝑠2

(c) Cases for SFOL Proof Rules

Unless otherwise noted, for readability we omit the typings 𝑇 𝑝 ∶ tp, 𝑇 𝑠 ∶ tm 𝑇 𝑠 →
prop, 𝑝𝑝, 𝑝𝑠 ∶ tm 𝑇 𝑝 → prop, 𝑡𝑝, 𝑥𝑝, 𝑥𝑝

1, 𝑥𝑝
2 ∶ tm 𝑇 𝑝, 𝑥𝑠 ∶ ⊩

𝑇 𝑠 𝑥𝑝, 𝐹 𝑝, 𝐹 𝑠, 𝐺𝑝, 𝐺𝑠,𝐻𝑝,𝐻𝑠 ∶ prop.
And ret is defined up to 𝛼-renamings as

ret(𝑡) = {ret(𝐵) if 𝑡 = Π𝑥∶ 𝐴. 𝐵
𝑡 otherwise

Figure 27 Translation 𝑠

N. Roux 105

▶ Theorem 127. Sub as given in ?? coincides on definitionless SFOL-theories with the
definition given at the beginning of Section 5.4.1. In particular, assuming type symbols
𝑇1,… , 𝑇𝑛, 𝑇 ∶ tp it translates

type symbols 𝑇 ∶ tp to 𝑇 𝑝 and

𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop

function symbols 𝑓 ∶ tm 𝑇1→...→tm 𝑇𝑛→tm 𝑇 to 𝑓𝑝 and

𝑓𝑠 ∶ Π 𝑡1 ∶ tm 𝑇1. Π 𝑡𝑠1 ∶ ⊩ 𝑇 𝑠
1 𝑡1.

⋮
Π 𝑡𝑛 ∶ tm 𝑇𝑛. Π 𝑡𝑠𝑛 ∶ ⊩ 𝑇 𝑠

𝑛 𝑡𝑛. ⊩ 𝑇 𝑠 (𝑓𝑝 𝑡1 ... 𝑡𝑛)

predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop to just a copy 𝑝𝑝
axiom symbols ax ∶ ⊩ 𝐹 to ax𝑝 and

ax𝑠 ∶ ⊩ 𝐹 𝑠

where 𝐹 𝑠 is the variant of 𝐹 𝑝 in which every quantifier on terms of type 𝑇 is relativized
by the predicate 𝑇 𝑠 (see Section 5.4.1)

Proof. The claims for type and predicate symbols are immediate. The ones for function
and axiom symbols follow by unfolding the definition and a simple induction. ◀

Discussion of Limitation to PFOL-Theories To see why Sub as defined in Defini-
tion 126 is only applicable to PFOL-theories, consider the DFOL-theory below, which is one
of the smallest ones reproducing the issue. For clarity, we are explicit about syntax lest to
hide something in notational tricks.

theory Fail = {
𝑇 ∶ tp

𝑏 ∶ Π𝑥∶ tm 𝑇 . tp

ax ∶ ⊩ ∀ 𝑇 (𝜆𝑥∶ tm 𝑇 . ∀ (𝑏 𝑥) (𝜆𝑦 ∶ tm 𝑏 𝑥. true))
}

Naively applying Sub would yield the following ill-typed theory, containing a dangling
variable reference 𝑥𝑠 (underlined):

theory Sub(Fail) = {
𝑇 𝑝 ∶ tp
𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop

𝑏𝑝 ∶ Π 𝑥𝑝 ∶ tm 𝑇 𝑝. tp
𝑏𝑠 ∶ Π 𝑥𝑝 ∶ tm 𝑇 𝑝. Π 𝑥𝑠 ∶ ⊩ 𝑇 𝑠 𝑥𝑝. tm 𝑏𝑝 → prop

ax𝑝 ∶ ⊩ ∀ 𝑇 𝑝 (𝜆𝑥𝑝 ∶ tm 𝑇 𝑝. ∀ (𝑏𝑝 𝑥𝑝) (𝜆𝑦𝑝 ∶ tm 𝑏𝑝 𝑥𝑝. true))
ax𝑠 ∶ ⊩ ∀ 𝑇 𝑝 (𝜆𝑥𝑝 ∶ tm 𝑇 𝑝. 𝑇 𝑠 𝑥𝑝 ⇒ ∀ (𝑏𝑝 𝑥𝑝) (𝜆𝑦𝑝 ∶ tm 𝑏𝑝 𝑥𝑝. 𝑏𝑠 𝑥𝑝 𝑥𝑠 𝑦𝑝 ⇒ true))

}

106 Structure-Preserving Diagram Operators

The dangling variable reference stems from applying the case 𝑠(𝑥) = 𝑥𝑠 from Figure 27a
when no such variable 𝑥𝑠 has been bound in previous invocations of 𝑠 in the call stack of
𝑠. Observe how, similar to Remark 124, in the line of ax𝑠 with the outer antecedence 𝑇 𝑠 𝑥𝑝

we would have a witness that we could have supplied for the parameter 𝑥𝑠 of 𝑏𝑠 if we used
dependent implications.

In Remark 124 we suggested dependent variants of implications and conjunctions to
overcome the cosmetic issue of needing to modify the inductive cases of the logical relation-
based ansatz. Here, we may be observing a more fundamental problem: possibly, dependent
connectives are inevitable when trying to generalize Sub to all PDFOL-theories. In any case,
we conjecture the following:

▶ Conjecture 128. Assume a theory DepSFOL formalizing dependent connectives on top of
SFOL. We conjecture that we can define a linear functor DepSub from PDFOL- to PDFOL+
DepSFOL-theories that on definitionless SFOL-theories reasonably18 agrees with Sub as defined
at the beginning of Section 5.4.1 and that is defined using an (unmodified!) unary logical
relation 𝑠 with base cases

𝑠(tp) = 𝜆𝑈𝑝 ∶ tp. tm 𝑈𝑝 → prop
𝑠(tm) = 𝜆𝑇 𝑝 ∶ tp. 𝜆𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop. 𝜆𝑡𝑝 ∶ tm 𝑇 𝑝. ⊩ 𝑇 𝑠 𝑡𝑝
𝑠(prop) = 𝜆𝐹 𝑝 ∶ prop. prop
𝑠(⊩) = 𝜆𝐹 𝑝 𝐹 𝑠 pf. ⊩ 𝐹 𝑠

and inductive cases as inspired from Figure 27c, e.g., with

𝑠(∀) = 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∀ 𝑥𝑝 ∶ tm 𝑇 𝑝. depImpl (𝑇 𝑠 𝑥𝑝) (𝜆𝑥𝑠. 𝑝𝑠 𝑥𝑝 𝑥𝑠)
𝑠(∃) = 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ∃ 𝑥𝑝 ∶ tm 𝑇 𝑝. depConj (𝑇 𝑠 𝑥𝑝) (𝜆𝑥𝑠. 𝑝𝑠 𝑥𝑝 𝑥𝑠)

5.4.4 Examples
▶ Example 129 (Sub(Lists) formalizes lists where all elements satisfy a predicate). Applying
Sub on the theory Lists from Example 101 gives the theory Sub(Lists) below.

theory Sub(Lists) = {
list𝑝 ∶ tp → tp
nil𝑝 ∶ Π𝐴𝑝 ∶ tp. list𝑝 𝐴𝑝

cons𝑝 ∶ Π𝐴𝑝 ∶ tp. tm 𝐴𝑝 → tm list𝑝 𝐴𝑝 → tm list𝑝 𝐴𝑝

list𝑠 ∶ Π𝐴𝑝 ∶ tp. Π𝐴𝑠 ∶ tm 𝐴𝑝 → prop. tm list𝑝 𝐴𝑝 → prop
nil𝑠 ∶ Π𝐴𝑝 ∶ tp. Π𝐴𝑠 ∶ tm 𝐴𝑝 → prop. ⊩ list𝑠 𝐴𝑝 𝐴𝑠 nil𝑝

cons𝑠 ∶ Π𝐴𝑝 ∶ tp. Π𝐴𝑠 ∶ tm 𝐴𝑝 → prop.
Π 𝑥𝑝 ∶ tm 𝐴𝑝. Π 𝑥𝑠 ∶ ⊩ 𝐴𝑠 𝑥𝑝. Π 𝑙𝑝 ∶ tm list𝑝 𝐴𝑝. Π 𝑙𝑠 ∶ ⊩ list𝑠 𝐴𝑝 𝐴𝑠 𝑙𝑝.
⊩ list𝑠 𝐴𝑝 𝐴𝑠 (cons𝑝 𝐴𝑝 𝑥𝑝 𝑙𝑝)

}

For any given type 𝐴∶ tp and predicate 𝑝 ∶ tm 𝐴 → prop, we can think of the pair of list𝑝 𝐴
and list𝑠 𝐴 𝐴𝑝 (a type and a predicate on terms thereof) as the inductive datatype of lists

18 e.g., we would allow “dependent connective artifacts” stemming from the way the translation is defined,
for instance, we would say a dependent implication where the consequence does not even use the
antecedence’s witness is reasonably agrees with an ordinary implication

N. Roux 107

𝑟(tp) ∶ ⊥
𝑟(prop) ∶ 𝜆𝐹 𝑝 𝐹 𝑠. 𝜆pf ∶ ⊩ 𝐹 𝑝. ⊩ 𝐹 𝑝 ⇔ 𝐹 𝑠

𝑟(tm) ∶ ⊥
𝑟(⊩) ∶ ⊥

𝑓(∀) ∶ Π𝑇 𝑝 𝑇 𝑠. Π 𝑝𝑝 𝑝𝑠 ∶ tm 𝑇 𝑝 → prop. Π 𝑝𝑟 ∶ Π 𝑥𝑝 𝑥𝑠. ⊩ 𝑝𝑝 𝑥𝑝 ⇔ 𝑝𝑠 𝑥𝑝.
⊩ (∀𝑥𝑝. 𝑝𝑝 𝑥𝑝) ⇔ (∀𝑥𝑝. 𝑇 𝑠 𝑥𝑝 ⇒ 𝑝𝑠 𝑥𝑝)

= 𝜆𝑇 𝑝 𝑇 𝑠 𝑝𝑝 𝑝𝑠. ⇔ I (𝜆pf ∶ ⊩ ∀𝑥𝑝. 𝑝𝑝 𝑥𝑝. ∀I𝑥𝑝 ⇒ I𝑥𝑠 (𝑝𝑟 𝑥𝑝 𝑥𝑠) ⇔
→
E (pf ∀E 𝑥𝑝))

(𝜆pf ∶ ⊩ ∀𝑥𝑝. 𝑇 𝑠 𝑥𝑝 ⇒ 𝑝𝑠 𝑥𝑝. ∀I𝑥𝑝 ...)
𝑓(≐) ∶ Π𝑇 𝑝 𝑇 𝑠 𝑥𝑝

1 𝑥𝑠
1 𝑥𝑝

2 𝑥𝑠
2. ⊩ (𝑥𝑝

1 ≐ 𝑥𝑝
2) ⇔ (𝑥𝑝

1 ≐ 𝑥𝑝
2)

= 𝜆𝑇 𝑝 𝑇 𝑠 𝑥𝑝
1 𝑥𝑠

1 𝑥𝑝
2 𝑥𝑠

2. ⇔ I (𝜆𝑥. 𝑥) (𝜆𝑥. 𝑥)
𝑓(¬𝐹) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐹 𝑟. ⊩ ¬𝐹 𝑝 ⇔ ¬𝐹 𝑠

=𝜆𝐹 𝑝 𝐹 𝑠 𝐹 𝑟. ⇔ I (𝜆pf ∶ ⊩ ¬𝐹 𝑝. ¬Ip̃f ∶ 𝐹𝑠 (𝐹 𝑟 ⇔
←
E p̃f) ¬E pf)

(𝜆pf ∶ ⊩ ¬𝐹 𝑠. ¬Ip̃f ∶ 𝐹𝑝 (𝐹 𝑟 ⇔
→
E p̃f) ¬E pf)

𝑓(∧) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐹 𝑟 𝐺𝑝 𝐺𝑠 𝐺𝑟. ⊩ (𝐹 𝑝 ∧ 𝐺𝑝) ⇔ (𝐹 𝑠 ∧ 𝐺𝑠)
= 𝜆𝐹 𝑝 𝐹 𝑠 𝐹 𝑟 𝐺𝑝 𝐺𝑠 𝐺𝑟.

⇔ I (𝜆pf ∶ ⊩ 𝐹 𝑝 ∧ 𝐺𝑝. ∧I (𝐹 𝑟 ⇔
→
E (pf ∧EL)) (𝐺𝑟 ⇔

→
E (pf ∧ER)))

(𝜆pf ∶ ⊩ 𝐹 𝑠 ∧ 𝐺𝑠. ∧I (𝐹 𝑟 ⇔
←
E (pf ∧EL)) (𝐺𝑟 ⇔

←
E (pf ∧ER)))

𝑓(∨) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐹 𝑟 𝐺𝑝 𝐺𝑠 𝐺𝑟. ⊩ (𝐹 𝑝 ∨ 𝐺𝑝) ⇔ (𝐹 𝑠 ∨ 𝐺𝑠)
= 𝜆𝐹 𝑝 𝐹 𝑠 𝐹 𝑟 𝐺𝑝 𝐺𝑠 𝐺𝑟. 𝑇𝑂𝐷𝑂

𝑓(𝐹 ⇒ 𝐺) ∶ Π𝐹 𝑝 𝐹 𝑠 𝐹 𝑟 𝐺𝑝 𝐺𝑠 𝐺𝑟. ⊩ (𝐹 𝑝 ⇒ 𝐺𝑝) ⇔ (𝐹 𝑠 ⇒ 𝐺𝑠)
= 𝜆𝐹 𝑝 𝐹 𝑠 𝐹 𝑟 𝐺𝑝 𝐺𝑠 𝐺𝑟. 𝑇𝑂𝐷𝑂

Unless otherwise noted, for readability we omit the typings 𝐹 𝑝, 𝐹 𝑠, 𝐺𝑝, 𝐺𝑠 ∶ prop, 𝐹 𝑟 ∶ ⊩
𝐹 𝑝 ⇔ 𝐹 𝑠, 𝐺𝑟 ∶ ⊩ 𝐺𝑝 ⇔ 𝐺𝑠, 𝑇 𝑝 ∶ tp, 𝑇 𝑠 ∶ tm 𝑇 𝑝 → prop, 𝑥𝑝

1, 𝑥𝑝
2 ∶ tm 𝑇 𝑝, 𝑥𝑠

1 ∶ ⊩ 𝑇 𝑠 𝑥𝑝
1, 𝑥𝑠

2 ∶ ⊩
𝑇 𝑠 𝑥𝑝

2.

108 Structure-Preserving Diagram Operators

where all elements satisfy 𝑝. In particular, list𝑠 𝐴 𝑝 is the predicate 𝑝 lifted on lists such
that (in context of the above theory) list𝑠 𝐴 𝑝 𝑙 is provable iff all elements of 𝑙 provably
satisfy 𝑝.

The inductive datatype mentioned above is featured in various placed in the Agda stan-
dard library under the name All [AgdaAll21].

5.4.5 Meta-Theoretical Properties
The following theorem confirms the intuition laid down in Figure 26:

▶ Proposition 130 (Basic Lemma for 𝑠). We have

if Γ ⊢SFOL 𝑡 ∶ 𝐴 and 𝑠 is defined for 𝑡, then 𝑠 is defined for 𝐴 and 𝑠(Γ) ⊢SFOL 𝑠(𝑡) ∶ 𝑠(𝐴) 𝑝(𝑡)
if 𝑠 is term-total, it is defined for a typed term if it is for its type

Proof. In principle, the proof proceeds similarly to the one of Theorem 11 for actual logical
relations. We already made the differences plausible right after Definition 126. ◀

▶ Theorem 131 (Substructures are Closed under Complex Terms). Let 𝑇 be a theory 𝑇 and
Σ ⊢SFOL

𝑇 𝑡 ∶ tm 𝑎 an arbitrary, possibly complex term. Then we have

Sub(Σ) ⊢SFOL
Sub(𝑇)⊩ 𝑠(𝑎) 𝑝(𝑡)

Consider the special case where 𝑇 is an SFOL-theory and Σ = {𝑥1 ∶ tm 𝑎1, ... , 𝑥𝑛 ∶ tm 𝑎𝑛}
exactly contains the free term variables occurring in 𝑡. This forces all types 𝑎1, ... , 𝑎𝑛, 𝑎 to be
atomic, i.e., references to type symbols declared in 𝑇 . The statement above now reduces to:
if all 𝑥1, ... , 𝑥𝑛 are contained in the submodel, then so is 𝑡:

⎧{
⎨{⎩

𝑥𝑝
1 ∶ tm 𝑎𝑝1, 𝑥𝑠

1 ∶ ⊩ 𝑎𝑠1 𝑥𝑝
1

⋮ ⋮
𝑥𝑝
𝑛 ∶ tm 𝑎𝑝𝑛, 𝑥𝑠

𝑛 ∶ ⊩ 𝑎𝑠𝑛 𝑥𝑝
𝑛

⎫}
⎬}⎭

⊢SFOL
Sub(𝑇)⊩ 𝑎𝑠 𝑝(𝑡)

where, in this case, 𝑝(𝑡) emerges from 𝑡 by superscripting all references to function symbols
and variables with 𝑝.

Proof. Direct consequence of Proposition 130. ◀

▶ Theorem 132. Sub𝑝 is well-typed and natural.

Proof. By Theorem 38 in conjunction with the next theorem. ◀

▶ Theorem 133. Sub is well-typed.

Proof. Direct consequence of Proposition 130. ◀

▶ Conjecture 134. Under mild assumptions (e.g., of additional equational theory in SFOL),
Sub is functorial.

N. Roux 109

theory Cong(Unital) = {
include SFOL
𝑈𝑑 ∶ tp
𝑈𝑔 ∶ tm 𝑈𝑑 → tm 𝑈𝑑 → prop

∘𝑑 ∶ tm 𝑈𝑑 → tm 𝑈𝑑 → tm 𝑈𝑑

∘𝑔 ∶ Π 𝑥𝑑 𝑥𝑑′ ∶ tm 𝑈𝑑. Π 𝑥𝑔 ∶ ⊩ 𝑈𝑔 𝑥𝑑 𝑥𝑑′.
Π 𝑦𝑑 𝑦𝑑′ ∶ tm 𝑈𝑑. Π 𝑦𝑔 ∶ ⊩ 𝑈𝑔 𝑦𝑑 𝑦𝑑′.
⊩ 𝑈𝑔 (𝑥𝑑 ∘𝑑 𝑦𝑑) (𝑥𝑑′ ∘𝑑 𝑦𝑑′)

𝑒𝑑 ∶ tm 𝑈𝑑

𝑒𝑔 ∶ ⊩ 𝑈𝑔 𝑒𝑑 𝑒𝑑

neut𝑑 ∶ ⊩ ∀𝑥𝑑 ∶ tm 𝑈𝑑. 𝑒𝑑 ∘ 𝑥𝑑 ≐ 𝑥𝑑

neut𝑔 ∶ ⊩ ∀𝑥𝑑 ∶ tm 𝑈𝑑. 𝑈𝑔 (𝑒𝑑 ∘ 𝑥𝑑) 𝑥𝑑

}

mor Cong𝑑(Unital) ∶ Unital → Cong(Unital) = {
= =

}

Figure 28 Theory of unital congruence structures given by Cong(Unital) together with domain
projection

5.5 Congruences

𝑇 Cong(𝑇)
𝑑

The linear functor Cong(−) maps every SFOL-theory 𝑇 to the SFOL-extension Cong(𝑇) of 𝑇 -
congruences, whose models are congruence models of 𝑇 -models. For example, applied to the
theory Group it yields the theory Cong(Group) of group congruences. (Group congruences
are an equivalent characterization of normal subgroups. Even though most group theorists
use normal subgroups rather than congruences, we settle with formalizing congruences as
that is the more general, more syntactical notion, which is also used by universal algebraists.)
The linear connector 𝑝 into Cong is the projection of the very domain 𝑇 -model.

5.5.1 Cong on Definitionless SFOL

Before defining Cong, let us first look at an example of what we would expect the theory
Cong(Unital) of unital congruences to look like (using Unital from Example 97):

▶ Example 135 (Cong(Unital)). For the theory Unital from Example 97 we obtain the
theory Cong(Unital) and the morphism Cong𝑑(Unital) ∶ Unital → Cong(Unital) shown in
Figure 28. We see that the constants 𝑈𝑑, ∘𝑑, 𝑒𝑑, neut𝑑 collectively make up a unital structure,
and this is precisely what is witnessed by the morphism. Within Cong(Unital), additional
structure is imposed on these constants by means of the 𝑔-superscripted constants.

Importantly, 𝑈𝑔 represents a binary relation on terms of type 𝑈𝑑. Perhaps suprisingly, we

110 Structure-Preserving Diagram Operators

do not require this relation to be an equivalence (i.e., symmetric, reflexive, and transitive).19

Our decision is guided by the connector QuotMod which we envision as part of future work
(see also Section 5.8): it maps every theory 𝑇 to the morphism QuotMod(𝑇) ∶ 𝑇 → Cong(𝑇)
that translates every congruence model to an actual 𝑇 -model “of equivalence classes” using
quotient types. And we envision using the quotient types of the LATIN2 project [Rab21]
which for every type 𝑇 ∶ tp and binary relation 𝑅∶ tm 𝑇 → tm 𝑇 → prop already yield a
quotient type 𝑇/𝑅. This variant of quotient types that puts no restriction on the relation
has the advantage of being dual to predicate subtypes in a certain sense [Rab21, Sec. 2.3]
wrt. formation, introduction, and elimination rules, and more. Therefore, we will define
Cong in alignment with those quotient types (even though we never introduce them in this
thesis for conciseness).

The axiom symbols ∘𝑔 and 𝑒𝑔 force the relation 𝑈𝑔 to be closed under the corresponding
operations. In mathematical folklore, the constant ∘𝑔 is often put in words as requiring “∘𝑑
to be well-defined wrt. the binary relation 𝑈𝑔” (except that in our setting 𝑈𝑔 needs not
be an equivalence). Interestingly, in our setting well-definedness extends to nullary function
symbols too, and for 𝑒∶ tm 𝑈 , the generated axiom 𝑒𝑔 amounts to requiring reflexivity of
the relation 𝑈𝑔. Finally, the axiom symbol neut𝑔 is the variant of neut𝑑 that relativizes
equality at type 𝑈𝑑 by 𝑈𝑔. This axiom will be essential for QuotMod when assigning a
proof to neut ∈ Unital in the morphism QuotMod(Unital) ∶ Unital → Cong(Unital): it
guarantees that the “equivalence class” for 𝑒𝑑 ∶ tm 𝑈𝑑 is neutral wrt. all other “equivalence
classes”.

▶ Definition 136 (Congruence Operators). The linear functor Cong from definitionless SFOL-
theories to all possible SFOL-extensions is given by:

type symbols 𝑇 ∶ tp are mapped to a copy and a binary predicate on terms thereof:

𝑇 𝑑 ∶ tp
𝑇 𝑔 ∶ tm 𝑇 𝑝 → tm 𝑇 𝑝 → prop

function symbols 𝑓 ∶ tm 𝑇1 → ... → tm 𝑇𝑛 → tm 𝑇 are mapped to a copy and a closure
axiom:

𝑓𝑑 ∶ tm 𝑇 𝑑
1 →...→tm 𝑇 𝑑

𝑛 →tm 𝑇 𝑑

𝑓𝑔 ∶ Π 𝑡𝑑1 ∶ tm 𝑇 𝑑
1 . Π 𝑡𝑑1

′ ∶ tm 𝑇 𝑑
1 . Π 𝑡𝑔1 ∶ ⊩ 𝑇 𝑔

1 𝑡𝑑1 𝑡𝑑1
′.

⋮
Π 𝑡𝑑𝑛 ∶ tm 𝑇 𝑑

𝑛 . Π 𝑡𝑑𝑛
′ ∶ tm 𝑇 𝑑

𝑛 . Π 𝑡𝑔𝑛 ∶ ⊩ 𝑇 𝑔
𝑛 𝑡𝑑𝑛 𝑡𝑑𝑛

′. ⊩ 𝑇 𝑔 (𝑓𝑑 𝑡𝑑1 ... 𝑡𝑑𝑛) (𝑓𝑑 𝑡𝑑1
′

... 𝑡𝑑𝑛
′)

predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop are mapped to a copy and a preservation
axiom:

𝑝𝑑 ∶ tm 𝑇 𝑝
1 →...→tm 𝑇 𝑝

𝑛 →prop

𝑝𝑔 ∶ Π 𝑡𝑑1 ∶ tm 𝑇 𝑑
1 . Π 𝑡𝑑1

′ ∶ tm 𝑇 𝑑
1 . Π 𝑡𝑔1 ∶ ⊩ 𝑇 𝑔

1 𝑡𝑑1 𝑡𝑑1
′.

⋮
Π 𝑡𝑑𝑛 ∶ tm 𝑇 𝑑

𝑛 . Π 𝑡𝑑𝑛
′ ∶ tm 𝑇 𝑑

𝑛 . Π 𝑡𝑔𝑛 ∶ ⊩ 𝑇 𝑔
𝑛 𝑡𝑑𝑛 𝑡𝑑𝑛

′. ⊩ 𝑝𝑑 𝑡𝑑1 ... 𝑡𝑑𝑛 ⇔ 𝑝𝑑 𝑡𝑑1
′

... 𝑡𝑑𝑛
′

19 Although it will be reflexive by means of the axioms that we generate for function symbols, see Propo-
sition 140.

N. Roux 111

axiom symbols ax ∶ ⊩ 𝐹 are mapped to a copy and a relativized variant:

ax𝑑 ∶ ⊩ 𝐹 𝑑

ax𝑔 ∶ ⊩ 𝐹 𝑔

where 𝐹 𝑔 emerges from 𝐹 𝑑 by replacing every equality 𝜙 ≐ 𝜓 at type 𝑇 by 𝑇 𝑔 𝜙 𝜓

And the linear connector Cong𝑝 into Cong maps every constant 𝑐 to 𝑐 ∶= 𝑐𝑑.

▶ Example 137 (Cong Applied To Graphs). Consider the following formalization of directed
graphs as an SFOL-theory:

theory Graph = {
include SFOL
𝑉 ∶ tp
edge ∶ tm 𝑉 → tm 𝑉 → prop

}

Applying Cong yields the theory below, where we manually added some notation (indicated
after #) to ease readability.

theory Cong(Graph) = {
include SFOL
𝑉 𝑑 ∶ tp
𝑉 𝑔 ∶ tm 𝑉 𝑑 → tm 𝑉 𝑑 → prop # 1 ∼ 2
edge𝑑 ∶ tm 𝑉 𝑑 → tm 𝑉 𝑑 → prop # 1 ↠ 2
edge𝑔 ∶ Π 𝑢 𝑢′. Π 𝑢𝑔 ∶ ⊩ 𝑢 ∼ 𝑢′.

Π 𝑣 𝑣′. Π 𝑣𝑔 ∶ ⊩ 𝑣 ∼ 𝑣′.
⊩ 𝑢 ↠ 𝑣 ⇔ 𝑢′ ↠ 𝑣′

}

Note that actually this is not what is commonly usually understood as a congruce (quo-
tient) graph, e.g., see https://en.wikipedia.org/w/index.php?title=Quotient_graph&oldid=
1033184360.

Meta-Theoretical Properties

▶ Theorem 138. Cong𝑑 is well-typed and natural.

Proof. By Theorem 38 in conjunction with the next theorem. ◀

▶ Theorem 139. Cong is well-typed and functorial.

Proof. Easy to see by Definition 136. ◀

Note that naturality and functoriality hold vacuously since Cong is partial on all defined
constants anyway, i.e., in particular morphism assignments.

Even though we do not require the binary relations 𝑇 𝑔 to be equivalence, they become
reflexive by means of the axioms that we generate for function symbols:

https://en.wikipedia.org/w/index.php?title=Quotient_graph&oldid=1033184360
https://en.wikipedia.org/w/index.php?title=Quotient_graph&oldid=1033184360

112 Structure-Preserving Diagram Operators

▶ Proposition 140. For all SFOL-theories 𝑆, type symbols 𝑇 ∶ tp in 𝑆, and arbitrarily
complex terms ⊢𝑆 𝑡 ∶ tm 𝑇 , there is a witness for the type

⊢Sub(𝑆)⊩ 𝑇 𝑔 𝑡𝑑 𝑡𝑑

where 𝑡𝑑 is the systematic renaming of 𝑡 with 𝑑 superscripts in all function symbols.

Proof. Since 𝑆 is an SFOL-theory and 𝑡 a closed term, it must follow the grammar

𝑡 ∶∶= 𝑓 𝑡1 ... 𝑡𝑛

where 𝑓 ranges over all function symbols of 𝑆. We induct on this grammar (and explicitly
separate cases for didactic reasons):

𝑡 = 𝑓 and 𝑓 ∶ tm 𝑇 is a nullary function symbol in 𝑆: by construction the theory Sub(𝑆)
then contains the axiom symbol 𝑓𝑔 ∶ ⊩ 𝑇 𝑔 𝑓 𝑓 completing the proof.
𝑡 = 𝑓 𝑡1 ... 𝑡𝑛 and 𝑓 ∶ tm 𝑇1 → ...→ tm 𝑇𝑛 → tm 𝑇 is an 𝑛 ≥ 1-ary function symbol in
𝑆: by induction hypotheses there are proofs pf1, ... , pf𝑛 such that ⊢Sub(𝑆) pf𝑖 ∶ ⊩ 𝑇 𝑔

𝑖 𝑡𝑖 𝑡𝑖.
Moreover, Sub(𝑆) contains the axiom symbol 𝑓𝑔, which we use to form the desired witness
as

⊢Sub(𝑆) 𝑓𝑔 𝑡1 𝑡1 pf1 ... 𝑡𝑛 𝑡𝑛 pf𝑛 ∶ ⊩ 𝑇 𝑔 (𝑓 𝑡1 ... 𝑡𝑛) (𝑓 𝑡1 ... 𝑡𝑛)
◀

▶ Proposition 141. Let 𝑆 be an SFOL-theory. For propositions ⊢𝑆 𝐹 ∶ prop we denote by
⊢Sub(𝑆) 𝐹 𝑔 ∶ prop the systematically renamed (via 𝑝-superscripts) and relativized proposition
as defined above in the case for axiom symbols.

If ⊢𝑆 pf ∶ ⊩ 𝐹 is a proof of 𝐹 without usage of symm and trans, then there is a proof
⊢Sub(𝑆) pf𝑔 ∶ ⊩ 𝐹 𝑔.

Proof. We induct on derivations for ⊢𝑆 pf ∶ ⊩ 𝐹 :

case pf = ax: set pf𝑔 = ax𝑔 to the axiom symbol ax𝑔 ∶ 𝐹 𝑔 which Sub(𝑆) contains by
construction
case pf = refl: follows by Proposition 140
cases pf = symm or pf = trans: excluded by assumption
cases where pf is the application of any other proof rule: Let us exemplarily consider forall
elimination, where pf = p̃f ∀E 𝑡, 𝐹 =⊩ 𝑝 𝑡, and ⊢𝑆 p̃f ∶ ∀ 𝑝. By induction hypothesis there
is ⊢Sub(𝑆) p̃f

𝑔 ∶ ⊩ ∀ 𝑝𝑔 allowing us to set pf𝑔 = p̃f
𝑔 ∀E 𝑡𝑝, where 𝑡𝑝 is the systematically

renamed copy of 𝑡.
◀

The logical relation approach below generalizes this idea.

5.5.2 Thoughts on a Generalized Definition
We would like to extend Cong to a linear functor on all SFOL-theories (i.e., including those
with definitions and morphisms) and PFOL, DFOL or even PDFOL-theories if possible. In
Sections 5.3 and 5.4, we used logical relations as a guiding approach to lift ad-hoc definitions
of Hom and Sub to complex, yet systematic specifications. Already there we had to carefully
modify inductive cases of logical relations to suit our needs. We were lucky that we got by
with few systematic modifications, which made it possible to reuse meta theorems from the
theory of logical relations. We suspected the same to be true for Cong, but to our surprise

N. Roux 113

Σ ⊇ SFOL-expression mapped to Cong(Σ)-expression
types 𝑇 ∶ tp 𝑔(𝑇) ∶ tm 𝑇 𝑑 → tm 𝑡𝑑′𝑇 → prop binary relation
terms 𝑡 ∶ tm 𝑇 𝑔(𝑡) ∶ ⊩ 𝑇 𝑔 𝑡𝑑 𝑡𝑑′ reflexivity
propositions 𝐹 ∶ prop 𝑔(𝐹) ∶ ⊩ 𝐹 𝑑 ⇔ 𝐹 𝑑′ reflection & preservation
proofs pf ∶ ⊩ 𝐹 𝑔(pf) ∶ ⊩ 𝐹 rel relativization

Figure 29 Intuitive overview of the translation to be carried out by 𝑔

it seems that Cong would necessitate fundamentally more modifications (beyond the scope
of this thesis). Therefore, we have opted to solely describe some of the difficulties for future
work to pick up on.

Judging from Definition 136, Example 135, and in particular Proposition 140, we would
naively try a binary logical relation on Cong𝑑 and Cong𝑑 implementing the translation
sketched in Figure 29. There, the superscripts −𝑑 and −𝑑′ indicate the two models (model
in a lose sense) on which the binary logical relation is operating. If we succeeded in defining
a logical relation 𝑔 that way, we could define the linear functor Cong from PDFOL-theories
to all possible SFOL-extensions and its connector Cong𝑑 as usual by

CongΣ(𝑐 ∶ 𝐴 [= 𝑡]) = 𝑐𝑑 ∶ 𝐴𝑑 [= 𝑡𝑑], 𝑐𝑔 ∶ 𝑔(𝐴) 𝑐𝑑 𝑐𝑑 [= 𝑟(𝑡)]
Cong𝑑,Σ(𝑐 ∶ 𝐴) = 𝑐 ∶= 𝑐𝑑

Here, we instantiate the relation 𝑔(𝐴) at LF type 𝐴 with one and the same model 𝑐𝑑.
Unfortunately, there are two fundamental problems with this approach, for which we have
not found a promising and systematic fix.

First, the desired action on propositions (Figure 29, line 3) is problematic because it
makes it impossible to define 𝑔 on the universal and existential quantifier. For example, the
expected LF type for the assignment to ∀ is

𝑔(∀)∶ Π𝑇 𝑑 𝑇 𝑑′ ∶ tp. Π 𝑇 𝑔 ∶ tm 𝑇 𝑑 → 𝑇 𝑑′ → prop.
Π 𝑝𝑑 ∶ tm 𝑇 𝑑 → prop. Π 𝑝𝑑′ ∶ tm 𝑇 𝑑′ → prop.
⊩ (∀𝑝𝑑) ⇔ (∀𝑝𝑑′)

This LF type is visibly empty due to the disparity of types over which is quantified (𝑇 𝑑 and
𝑇 𝑑′), i.e., there is simply no well-typed assignment to 𝑔(∀).

Second, it is impossible to encode lines 3 and 4 of Figure 29 at the same time in a single
logical relation. In order to perform the intended relativization of propositions as part of
the logical relation (analogous to how we did with Sub; see Figure 26 and Figure 26), we
would need to map propositions 𝐹 ∶ prop again to propositions 𝑔(𝐹)∶ prop such that the
assignment to 𝑔(≐) can account for relativizing equalities. But this clashes with line 3 of
Figure 29, which is crucial to achieve the desired action of Cong on predicate symbols. Note
that Sub maps predicate symbol 𝑝 to just a qualified copy 𝑝𝑝 for the parent structure. Thus,
in the logical relation-inspired approach employed for Sub, there is no need to implement any
logic to produce the LF type of any other additional constant, say 𝑝𝑠. Therefore, there is
“enough room” to encode Sub’s relativization of propositions. In contrast, for Cong we need
to map predicate symbols to both a qualified copy 𝑝𝑑 and a fundamentally new constant
𝑝𝑔, and we need to implement relativization of propositions. Possibly, it is ill-guided to try
implementing both actions in one and the same logical relation. And possibly it only worked
for Sub as that was a special case, but it fails generalizing to other settings, e.g., to Cong.

114 Structure-Preserving Diagram Operators

mor Img(Unital) ∶ Sub(Unital) → Hom(Unital) = {
∶ ∶

}

Unless otherwise noted, for readability we omit the typings 𝑥, 𝑥1, 𝑥2 ∶ tm 𝑈𝑑, 𝑦, 𝑦1, 𝑦2 ∶ tm 𝑈𝑐.

Figure 30 Image of a unital homomorphism given by Img(Unital)

5.6 Images of Homomorphisms

Sub(𝑇) Hom(𝑇)Img(𝑇)

The linear connector Img(−) yields for any SFOL-theory 𝑇 the morphism Img(𝑇) ∶ Sub(𝑇) →
Hom(𝑇) that translates every Hom(𝑇)-model representing a homomorphism to the Sub(𝑇)-
model representing the homomorphism’s image. This submodel inherits exactly the opera-
tions of the homomorphism’s codomain structure. For example, applied to the theory Group
it yields the morphism Img(Group) ∶ Sub(Group) → Hom(Group) formalizing precisely the no-
tion that the image of every group homomorphism induces a subgroup on the codomain.

The connector Img becomes particularly useful in combination with another one (which
we left out in this thesis for space reasons): consider the connector SubMod(𝑇) ∶ 𝑇 →
Sub(𝑇) that translates every Sub(𝑇)-model representing a submodel to an actual 𝑇 -model
(“submodel”). For example, SubMod(Group) ∶ Group → Sub(Group) captures that every sub-
group is again a group.

𝑇 Sub(𝑇) Hom(𝑇)SubMod(𝑇) Img(𝑇)

Composing these connectors as above gives a connector that, e.g., applied to Group yields
a morphism 𝑇 → Hom(𝑇) that translates every group homomorphism to the group of its
image.

5.6.1 Img on Definitionless SFOL

Before defining Img and spelling out the details, let us first look at an example of what we
would expect the morphism Img(Unital) ∶ Sub(Unital) → Hom(Unital) to look like (using
Unital from Example 97):

▶ Example 142 (Img(Unital)). In Figure 30 we show the connecting morphism Img(Unital)
that we desire. For readability, we annotated expected, possibly 𝛼-renamed types.

Before perusing the assignments, recall Sub(Unital) and Hom(Unital) from Figures 25
and 22, respectively. In particular, recall that Sub(Unital) encodes a Unital structure for
the parent structure via the systematically renamed 𝑝-superscripted constants 𝑐𝑝 ∶ 𝐴𝑝 for
every constant 𝑐 ∶ 𝐴 in Unital. And Hom(Unital) encodes two Unital structures for the
domain and codomain structures via the 𝑑- and 𝑐-superscripted constants 𝑐𝑑 ∶ 𝐴𝑑 and 𝑐𝑐 ∶ 𝐴𝑐

for every constant 𝑐 ∶ 𝐴 in Unital.
We want Img(Unital) to realize the homomorphism’s image as a Unital substructure,

namely on the homomorphism’s codomain t sructure. Thus we systematically have assign-
ments 𝑐𝑝 ∶= 𝑐𝑐 for all 𝑐 in Unital. The remaining assignments serve to actually select a
substructure and to fulfill proof obligations for closure properties.

N. Roux 115

First, in the assignment to 𝑈𝑠 we choose the substructure to be composed of those
elements from the homomorphism’s codomain that possess a preimage.

Next, in the assignment to ∘𝑠 we prove that those elements are closed under applying ∘𝑐.
Concretely, given two elements 𝑦1 and 𝑦2 that lie within the image of the homomorphism –
as witnessed by 𝑦𝑠1 and 𝑦𝑠2 – we construct a witness of 𝑦1 ∘𝑐 𝑦2 also lying within the image.
Intuitively, we take three steps: i) we get hold of some corresponding preimages 𝑥1 and 𝑥2,
ii) we compute 𝑥1 ∘𝑑 𝑥2, and iii) prove that 𝑥1 ∘𝑑 𝑥2 is in fact a preimage of 𝑦1 ∘𝑐 𝑦2 (using
the homomorphism property) In reality, while the first two steps are easy to formalize (see
Figure 30), things get a bit awkward for the third step. Here, we would need to rewrite some
equalities using SFOL’s congruence axiom cong, which would produce quite an unreadable
LF term. Thus, for readability we opted to give a proof outline in natural language. And in
the assignment to 𝑒𝑠 we prove that the homomorphism’s image contains the neutral element.

Finally, in the assignment to neut𝑠 we essentially repeat the assignment neut𝑝 = neut𝑐

cluttered with trivial introduction and elimination rules. This seeming repetition goes back
to according to which axioms like neut𝑠 are provable in terms of neut𝑝 anyway if they.

We now specify Img on definitionless SFOL-theories:

▶ Definition 143 (Homomorphism Images). The linear connector Img from Sub to Hom on
SFOL-theories is given by:

type symbols 𝑇 ∶ tp are mapped to

𝑇 𝑝 ∶= 𝑇 𝑐

𝑇 𝑠 ∶= 𝜆𝑦 ∶ tm 𝑇 𝑐. ∃ 𝑥∶ tm 𝑇 𝑑. 𝑇 ℎ 𝑥 ≐ 𝑦

function symbols 𝑓 ∶ tm 𝑇1→...→tm 𝑇𝑛→tm 𝑇 are mapped to

𝑓𝑝 ∶= 𝑓𝑐

𝑓𝑠 ∶= 𝜆𝑦1 ∶ tm 𝑇 𝑐
1 . 𝜆𝑦𝑠1 ∶ (⊩ ∃ 𝑥1 ∶ tm 𝑇 𝑑

1 . 𝑇 ℎ
1 𝑥1 ≐ 𝑦1).

⋮
𝜆𝑦𝑛 ∶ tm 𝑇 𝑐

𝑛. 𝜆𝑦𝑠𝑛 ∶ (⊩ ∃ 𝑥𝑛 ∶ tm 𝑇 𝑑
𝑛 . 𝑇 ℎ

𝑛 𝑥𝑛 ≐ 𝑦𝑛).
𝑦𝑠1 ∃E𝑥1,𝑥ℎ

1
... 𝑦𝑠𝑛 ∃E𝑥𝑛,𝑥ℎ𝑛

∃I (𝑓𝑑 𝑥1 ... 𝑥𝑛) pf

where pf is the LF term representing the SFOL-proof

⎧{{{
⎨{{{⎩

⊩ 𝑈ℎ (𝑓𝑑 𝑥1 ... 𝑥𝑛) ≐ 𝑓𝑐 (𝑇 ℎ
𝑖 𝑥1) ... (𝑇 ℎ

𝑖 𝑥𝑛) by 𝑓ℎ

⊩ 𝑇 ℎ
𝑖 𝑥𝑖 ≐ 𝑦𝑖 by 𝑥ℎ

𝑖 for all 𝑖
⊩ 𝑇 ℎ (𝑓𝑑 𝑥1 ... 𝑥𝑛) ≐ 𝑓𝑐 𝑦1 ... 𝑦𝑛 by rewriting with prev. eqns.

⎫}}}
⎬}}}⎭

predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop are mapped to

𝑝𝑝 ∶= 𝑝𝑐

axiom symbols ax ∶ ⊩ 𝐹 are mapped to

ax𝑝 ∶= ax𝑐

116 Structure-Preserving Diagram Operators

In particular, we generously assume the variant of Sub that supplies definitions for certain
axiom symbols ax𝑠 (see) and leave Img undefined otherwise.

Again, we invite the reader to expand the natural language proof given in the assignment
to 𝑓𝑠 to an LF term using SFOL’s cong axiom.

Note that as a connector on definitionless SFOL-theories, Img is maximally defined in the
sense that there are axiom symbols with ¬ and ∃, respectively, on which it is impossible to
define Img. We give corresponding examples below. In fact, we conjecture that the axiom
symbols ax𝑠 for which Sub can (cannot) emit a definition are precisely those for which Img
can (cannot) emit an assignment. Thus, we never emit an assignment to ax𝑠, shifting all work
onto Sub (this also makes sense from a software engeering perspective when implementing
said functors).

▶ Example 144 (Img Not Fully Extensible to ¬,∀). Consider the theory below which extends
Unital from Example 97 with an axiom symbol that forces unital structures to be non-trivial,
i.e., to consist of more than just the neutral element.

theory NonTrivialUnital = {
include Unital
nottriv ∶ ¬∀𝑥∶ tm 𝑇 . 𝑥 ≐ 𝑒

}

Correspondingly, Sub(NonTrivialUnital) extends Sub(Unital) (see Example 121) with
axiom symbols

nottriv𝑝 ∶ ⊩ ¬∀𝑥𝑝 ∶ tm 𝑇 𝑝. 𝑥𝑝 ≐ 𝑒𝑝
nottriv𝑠 ∶ ⊩ ¬∀𝑥𝑝. 𝑇 𝑠 𝑥𝑝 ⇒ 𝑥𝑝 ≐ 𝑒𝑝

and thus also unital substructures must be non-trivial. And Hom(NonTrivialUnital) ex-
tends Hom(Unital) (see Example 104) with axiom symbols nottriv𝑑 and nottriv𝑐 for the
domain and codomain structure.

Now consider a homomorphism, i.e., a Hom(NonTrivialUnital)-model, that maps every-
thing to the neutral element of the codomain. Its image is a trivial Unital-model, but not
a NonTrivialUnital-model. Thus, there cannot be a total morphism

Img(NonTrivialUnital) ∶ Sub(NonTrivialUnital) → Hom(NonTrivialUnital)

▶ Example 145 (Img Not Fully Extensible to ∃). Consider the formalization of unital struc-
tures below that instead of a function symbol for the neutral element uses an existential
axiom symbol.

theory Unital♭ = {
include SFOL
𝑈 ∶ tp
∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈
neut♭ ∶ ⊩ ∃ 𝑒∶ tm 𝑈. ∀𝑥∶ tm 𝑈. 𝑒 ∘ 𝑥 ≐ 𝑥

}

Consider a Hom(Unital♭)-model from some arbitrary domain model to a non-trivial codomain
model that maps every element of the domain model to the codomain’s non-neutral element.

N. Roux 117

The image of this homomorphism fails to be a Sub(Unital♭)-model because the proposition
required by neut♭𝑠 is plain false. Thus, there cannot be a total morphism

Img(Unital♭) ∶ Sub(Unital♭) → Hom(Unital♭)

As remarked for Sub in ..., ¬ (and thus propositional logic PL) alone is not problematic, but
as soon as ¬ and ∀ meet, there will be unprovable – or from the POV of Img: unassignable
– axioms symbols ax𝑠.

▶ Theorem 146. Img is well-typed.

Proof. Easy to see at ??. ◀

▶ Conjecture 147. Under mild assumptions (e.g., of additional equational theory in SFOL),
Img is natural.

5.6.2 Thoughts on a Generalized Definition
We defined the connector Img only for definitionless SFOL-theories for two reasons. First,
the author was limited by time constraints and instead focussed on defining the functors Hom,
Sub, and Cong in previous sections. Second, we had difficulties expressing the translation
performed by Img in terms of logical relations20 which would have eased generalizing the
definition (e.g., as was the case with Hom, Sub, and Cong). Nonetheless, we shortly give two
concrete examples that illustrate problems that would need to be overcome when generalizing
Img.

▶ Example 148 (Img is Non-Obvious to Extend to PFOL). Consider the PFOL-theory Fun
below as well as its images under Sub and Hom. Note that, up to naming, Fun is the beginning
of the theory Lists of generic lists from Example 101, thus has practical significance.

theory Fun = {
include SFOL
fun ∶ tp → tp

}

theory Sub(Fun) = {
include SFOL
fun𝑝 ∶ tp → tp
fun𝑠 ∶ Π𝐴𝑝 ∶ tp. Π𝐴𝑠 ∶ tm 𝐴𝑝 → prop.

tm fun𝑝 𝐴𝑝 → prop

}

theory Hom(Fun) = {
include SFOL
fun𝑑, fun𝑐 ∶ tp → tp
funℎ ∶ Π𝐴𝑑 𝐴𝑐 ∶ tp.

Π𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐.
tm fun𝑑 𝐴𝑑 → tm fun𝑐 𝐴𝑐

}
Now consider how in Img(Fun) we have difficulties assigning anything sensible to fun𝑠:

mor Img(Fun) ∶ Sub(Fun) → Hom(Fun) = {
= =

}

20 The same thing occurs for Ker

118 Structure-Preserving Diagram Operators

In particular note that if we wanted to use funℎ somehow in the assignment, it would be
non-obvious on how to instantiate its parameter 𝐴ℎ ∶ tm 𝐴𝑑 → tm 𝐴𝑐. We do not readily
have any such function. Overall, the author has not found a way to complete the putative
morphism above, apart from trivial, non-sensibile solutions like always returning true or
false in the assignment to fun𝑠.

▶ Example 149 (Img Could Be Extended to DFOL). Consider the PFOL-theory Dep below as
well as its images under Sub and Hom. We can see Dep as a minimalized version of the begin-
ning of SmallCat, the theory representing small categories from Example 102. In particular,
Hom(SmallCat) represents functors (see Example 112) and consequently Img(SmallCat) – if
it was definable – would represent funtors’ images. Thus, getting to work Img on Dep bears
practical significance.

theory Dep = {
include SFOL
A ∶ tp
B ∶ tm A → tp

}

theory Sub(Dep) = {
include SFOL
A𝑝 ∶ tp
A𝑠 ∶ tm A𝑝 → prop
B𝑝 ∶ tm A𝑝 → tp
B𝑠 ∶ Π 𝑥𝑝 ∶ A𝑝. Π 𝑥𝑠 ∶ ⊩ A𝑠 𝑥𝑝.

tm B𝑝 𝑥𝑝 → prop

}

theory Hom(Dep) = {
include SFOL
A𝑑, A𝑐 ∶ tp
Aℎ ∶ tm A𝑑 → tm A𝑐

B𝑑 ∶ tm A𝑑 → tp
B𝑐 ∶ tm A𝑐 → tp
Bℎ ∶ Π 𝑥𝑑 ∶ tm A𝑑.

tm B𝑑 𝑥𝑑 → tm B𝑐 (Aℎ 𝑥𝑑)
}

Now consider how in Img(Dep) we have difficulties assigning anything sensible to B𝑠:

mor Img(Dep) ∶ Sub(Dep) → Hom(Dep) = {
= =

}

Intuitively, the assignment to B𝑠 should work in the same way as for A𝑠: the original
corresponding symbols B and A are both symbols that return an SFOL type. Thus, we
would want ??? to be the proposition that checks whether 𝑧 has a preimage under Bℎ.
Unfortunately, we cannot state this as ∃ Bℎ ... ≐ 𝑧 since the return type of Bℎ (being
tm B𝑐 (𝐴ℎ 𝑥𝑑) for some 𝑥𝑑) cannot be unified with the type of 𝑧 (being tm B𝑐 𝑦).

Looking at the assumption 𝑥𝑠, there is actually an 𝑥 such that we can express 𝑦 in the
form 𝑦 ≐ Aℎ 𝑥 for some 𝑥. But SFOL’s logic is not strong enough to be able to use that fact.
Imagine we extended SFOL with a suitable cast operator ... as ... via ..., we could complete
the assignment as:

??? = 𝑥𝑠 ∃E𝑥𝑑,pf ∃𝑤. Bℎ 𝑥𝑑 𝑤 ≐ (𝑧 as B𝑐 (𝐴ℎ 𝑥𝑑) via pf)

We conjecture that we could extend Img to a linear connector on all DFOL-theories this
way.

N. Roux 119

mor Ker(Unital) ∶ Cong(Unital) → Hom(Unital) = {
∶ ∶

}

Figure 31 Kernel of a unital homomorphism given by Ker(Unital)

5.7 Kernels of Homomorphisms

Cong(𝑇) Hom(𝑇)Ker(𝑇)

The linear connector Ker(−) yields for any theory 𝑇 the morphism Ker(𝑇) ∶ Cong(𝑇) →
Hom(𝑇) that translates every Hom(𝑇)-model to the Cong(𝑇)-model representing the homo-
morphism’s kernel (as a congruence on the homomorphism’s domain model). For example,
applied to the theory Group it yields the morphism Ker(Group) ∶ Cong(Group) → Hom(Group)
formalizing precisely the notion that the kernel of every group homomorphism induces a
congruence (equivalently: a normal subgroup) on the domain. (Even though most group
theorists use normal subgroups rather than congruences, we settle with formalizing congru-
ences as that is the more general, more syntactical notion, which is also used by universal
algebraists.)

The connector Ker becomes particularly useful in combination with another one (which
we left out in this thesis for space reasons): consider the connector QuotMod(𝑇) ∶ 𝑇 →
Cong(𝑇) that translates every Cong(𝑇)-model representing a congruence model to an ac-
tual 𝑇 -model (“quotient model”). For example, QuotMod(Group) ∶ Group → Cong(Group)
captures that every group congruence induces again a group by means of its equivalence
classes.

𝑇 Cong(𝑇) Hom(𝑇)QuotMod(𝑇) Ker(𝑇)

Composing these connectors as above gives a connector that, e.g., applied to Group yields
a morphism Group → Hom(Group) that translates every group homomorphism to the group
of its kernel.

5.7.1 Ker on Definitionless SFOL

Before defining Ker and spelling out the details, let us first look at an example of what we
would expect the morphism Ker(Unital) ∶ Cong(Unital) → Hom(Unital) to look like (using
Unital from Example 97):

▶ Example 150 (Ker(Unital)). We already showed Cong(Unital) and Hom(Unital) in
Figures 28 and 22, respectively. In Figure 31 we show the connecting morphism Ker(Unital)
that we would expect.

Recall that Cong(Unital) encodes a Unital structure for the domain of the intended
Unital congruence structure by means of the 𝑑-superscripted constants. For every constant
𝑐 ∶ 𝐴 in Unital, the theory Cong(Unital) contains a systematically renamed copy 𝑐𝑑 ∶ 𝐴𝑑.
Since we want Ker(Unital) to realize a Unital congruence structure in terms of a Unital
homomorphism, namely on its domain, we systematically have assignments 𝑐𝑑 ∶= 𝑐𝑑 for all
𝑐 in Unital. In the remaining assignments it is left to select an actual congruence (on terms
of type 𝑈𝑑) and verify its properties (e.g., closure under function symbols).

120 Structure-Preserving Diagram Operators

First, in the assignment to 𝑈𝑔 we realize the congruence that relates domain elements
iff they are identified under the homomorphism.

Next, in the assignment to ∘𝑔 we prove that ∘𝑑 is well-defined wrt. the relation we assigned
to 𝑈𝑔. Concretely, we prove that if the homomorphism identifies the pair of elements (𝑥1, 𝑥𝑑

1
′)

and another pair of elements (𝑥2, 𝑥𝑑
2
′), then the homomorphism also identifies the elements

in the pair (𝑥1 ∘𝑑 𝑥2, 𝑥𝑑
1
′ ∘𝑑 𝑥𝑑

2
′). Intuitively, the proof is a straightforwarded application

of the homomorphism property of 𝑈ℎ wrt. ∘𝑑 (twice) and application of the assumptions
of relatedness. In reality, things get a bit awkward when constructing the proof as an LF
term. As in the previous example, we resort to omitting the full proof in Figure 31 to
ease readability. Next, in the assignment to 𝑒𝑔 we prove that the homomorphism actually
identifies 𝑒𝑑 and 𝑒𝑑 (which is trivially the case). In general, for nullary (binary, ternary, …)
function symbols 𝑓 , assignments to 𝑓𝑔 amount to proofs that the homomorphism identifies
𝑓 𝑥1 ... 𝑥𝑛 and 𝑓 𝑥𝑑

1
′

... 𝑥𝑑
𝑛
′ if all arguments (𝑥𝑖, 𝑥𝑑

𝑖
′) were already related. (NB: By induction

this means that arbitrarily complex terms built out of function symbols and free variables
are well-defined. For multisorted signatures (unlike Unital), the well-definedness holds wrt.
the relations of all involved SFOL types.)

Finally, in the assignment to neut𝑔 we use neut𝑑 on the domain to prove neutrality;
importantly, not wrt. equality ≐, but wrt. the binary relation we assigned to 𝑈𝑔.

▶ Definition 151 (Homomorphism Kernels). The linear connector Ker from Cong into Hom
on SFOL-theories is given by:

type symbols 𝑇 ∶ tp are mapped to

𝑇 𝑑 ∶= 𝑇 𝑑

𝑇 𝑔 ∶= 𝜆𝑥1 𝑥2 ∶ tm 𝑇 𝑑. 𝑇 ℎ 𝑥1 ≐ 𝑇 ℎ 𝑥2

function symbols 𝑓 ∶ tm 𝑇1→...→tm 𝑇𝑛→tm 𝑇 are mapped to

𝑓𝑑 ∶= 𝑓𝑑

𝑓𝑔 ∶= 𝜆𝑥1𝑥′
1∶ tm 𝑇 𝑑

1 . 𝜆 𝑥𝑔
1∶ ⊩ 𝑇 ℎ

1 𝑥1 ≐ 𝑇 ℎ
1 𝑥′

1. ... 𝜆𝑥𝑛𝑥′
𝑛∶ tm 𝑇 𝑑

𝑛 .𝜆 𝑥𝑔
𝑛∶ ⊩ 𝑇 ℎ

𝑛 𝑥𝑛 ≐ 𝑇 ℎ
𝑛 𝑥′

𝑛.
proof of
⎧{{{
⎨{{{⎩

𝑇 ℎ (𝑓𝑑 𝑥1 ... 𝑥𝑛) ≐ 𝑓𝑐 (𝑇 ℎ
1 𝑥1) ... (𝑇 ℎ

𝑛 𝑥𝑛) by homomorphism property 𝑓ℎ

≐ 𝑓𝑐 (𝑇 ℎ
1 𝑥′

1) ... (𝑇 ℎ
𝑛 𝑥′

𝑛) by assumptions 𝑥𝑔
1, ... , 𝑥𝑔

𝑛
≐ 𝑇 ℎ (𝑓𝑑 𝑥′

1 ... 𝑥′
𝑛) by homomorphism property 𝑓ℎ

⎫}}}
⎬}}}⎭

predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop are left undefined

axiom symbols ax ∶ ⊩ 𝐹 are mapped to

ax𝑑 ∶= ax𝑑

ax𝑔 ∶= KerProof(∅; 𝐹 , 𝐹 𝑔, 𝐹 𝑐, ax𝑐, ax𝑐)

where KerProof is the partial function sketched in Definition 152 below (in case its output
is undefined, we omit the assignment to ax𝑔)

▶ Definition 152. The partial function KerProof is given by:

N. Roux 121

Input
an SFOL-context Σ ⊢SFOL

𝑆 Σ
i.e., of the form Σ = {𝑥1 ∶ tm 𝑈1, ... , 𝑥𝑛 ∶ tm 𝑈𝑛}

a formula 𝐹 Σ ⊢SFOL
𝑆 𝐹 ∶ prop

𝐹 as relativized by Cong: Σ𝑑 ⊢SFOL
Cong(𝑆) 𝐹 𝑔 ∶ prop

𝐹 𝑐 as codomain-qualified by Hom Σ𝑐 ⊢SFOL
Hom(𝑆) 𝐹 𝑐 ∶ prop

a proof of 𝐹 𝑐 Σ𝑐 ⊢SFOL
Hom(𝑆) pfc ∶ ⊩ 𝐹 𝑐

a proof of 𝐹 𝑐𝜎 Σ𝑑 ⊢SFOL
Hom(𝑆) pfz ∶ ⊩ 𝐹 𝑐𝜎

where 𝜎 is the substitution given by 𝜎 = {𝑥𝑐 ↦ 𝑉 ℎ 𝑥𝑑 ∣ (𝑥 ∶ tm 𝑉) ∈ Σ}
Output

a proof of Ker(𝐹 𝑔) Σ𝑑 ⊢SFOL
Hom(𝑆) pf ∶ ⊩ Ker(𝐹 𝑔)

Steps

universal quantifier, i.e., when

𝐹 = ∀𝑥∶ tm 𝑈. 𝐺
𝐹 𝑔 = ∀𝑥𝑑 ∶ tm 𝑈𝑑. 𝐺𝑔

𝐹 𝑐 = ∀𝑥𝑐 ∶ tm 𝑈𝑐. 𝐺𝑐

Ker(𝐹 𝑔) = ∀𝑥𝑑 ∶ tm 𝑈𝑑. Ker(𝐺𝑔)

Output

pf ← ∀I𝑥𝑑 KerProof(Σ, 𝑥∶ tm 𝑈; 𝐺,𝐺𝑔, 𝐺𝑐, pfc ∀E 𝑥𝑑, pfz ∀E (𝑈ℎ 𝑥𝑑))

equality, i.e., when
𝐹 = 𝑡1 ≐𝑈 𝑡2
𝐹 𝑔 = 𝑈𝑔 𝑡𝑑1 𝑡𝑑2
𝐹 𝑐 = 𝑡𝑐1 ≐ 𝑡𝑐2
Ker(𝐹 𝑔) = 𝑈ℎ 𝑡𝑑1 ≐ 𝑈ℎ 𝑡𝑑2

Define the substitution 𝜋 = {𝑥𝑑 ↦ 𝑉 ℎ 𝑥𝑑 ∣ (𝑥 ∶ tm 𝑉) ∈ Σ}. Output the proof of the
equality chain

𝑈ℎ 𝑡𝑑1 ≐ ... ≐ 𝑡𝑑1𝜋 by maximally pushing down 𝑈ℎ

≐ 𝑡𝑑2𝜋 by pfz
≐ ... ≐ 𝑈ℎ 𝑡𝑑2 by maximally pulling up 𝑈ℎ

conjunction, i.e., when

𝐹 = 𝐺 ∧𝐻
𝐹 𝑔 = 𝐺𝑔 ∧𝐻𝑔

𝐹 𝑐 = 𝐺𝑐 ∧𝐻𝑐

Ker(𝐹 𝑔) = Ker(𝐺𝑐) ∧ Ker(𝐻𝑐)

Output
pf ← ∧I (KerProof(Σ; 𝐺,𝐺𝑔, 𝐺𝑐, pfc ∧EL, pfz ∧EL))

(KerProof(Σ; 𝐺,𝐺𝑔, 𝐺𝑐, pfc ∧ER, pfz ∧ER))
disjunction, i.e., when

𝐹 = 𝐺 ∨𝐻
𝐹 𝑔 = 𝐺𝑔 ∨𝐻𝑔

𝐹 𝑐 = 𝐺𝑐 ∨𝐻𝑐

Ker(𝐹 𝑔) = Ker(𝐺𝑐) ∨ Ker(𝐻𝑐)

122 Structure-Preserving Diagram Operators

Output

pf ←pfc ∨E
(𝜆𝑘 ∶ ⊩ 𝐺𝑐. ∨IL KerProof(Σ; 𝐺,𝐺𝑔, 𝐺𝑐, 𝑘, ???))
(𝜆𝑘 ∶ ⊩ 𝐻𝑐. ∨IR KerProof(Σ; 𝐻,𝐻𝑔,𝐻𝑐, 𝑘, ???))

In particular, KerProof is undefined on formulae containing negations, existential quan-
tifiers, or applications of predicate symbols.

Definition 151 of Cong looks straightforward, having discussed the preceding example
with the exception of the invocation of Definition 152, which looks rather complicated. We
conjecture that a rigorous and digestible definition to be feasible using higher-order logical
relations, an idea communicated by Florian Rabe outside the scope of this thesis. Nonethe-
less, we give a larger example next to better understand the preceding definition:

▶ Example 153 (KerProof on a Complex Axiom). Consider the following made-up theory
whose sole purpose is to have a complex axiom symbol with nested function symbols:

theory NestedAxiom = {
include SFOL
𝑈 ∶ tp
∘ ∶ tm 𝑈 → tm 𝑈 → tm 𝑈
ax ∶ ⊩ ∀𝑥 𝑦 ∶ tm 𝑈. (𝑥 ∘ 𝑒) ∘ 𝑦 ≐ 𝑦 ∘ 𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

abbreviate as 𝐹

}

The morphism Ker(NestedAxiom) given by applying Definition 151 is shown below. For
reference, the theories Cong(NestedAxiom) and Hom(NestedAxiom) are shown in Figure 32.
Even though NestedAxiomshares two declarations with Unital and thus a lot of syntax that
is shown is mere repetition from previous examples, we still do so to remain self-contained
in this example.

mor Ker(NestedAxiom) ∶ Cong(NestedAxiom) → Hom(NestedAxiom) = {
= =

}

N. Roux 123

Let us unfold Definition 152 to inspect the assignment to ax𝑔 in detail:

KerProof(∅; 𝐹 , 𝐹 𝑔, 𝐹 𝑐, ax𝑐, ax𝑐)

=∀I𝑥𝑑 KerProof

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥∶ tm 𝑈
∀𝑦 ∶ tm 𝑈. (𝑥 ∘ 𝑒) ∘ 𝑦 ≐ 𝑦 ∘ 𝑥
∀ 𝑦 ∶ tm 𝑈. 𝑈𝑔 ((𝑥 ∘ 𝑒) ∘ 𝑦)(𝑦 ∘ 𝑥)
∀ 𝑦𝑐 ∶ tm 𝑈𝑐. (𝑥𝑐 ∘𝑐 𝑒𝑐) ∘𝑐 𝑦𝑐 ≐ 𝑦𝑐 ∘ 𝑥𝑐

ax𝑐 ∀E 𝑥𝑑

ax𝑐 ∀E (𝑈ℎ 𝑥𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∀I𝑥𝑑 ∀I𝑦𝑑 KerProof

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥∶ tm 𝑈, 𝑦 ∶ tm 𝑈
(𝑥 ∘ 𝑒) ∘ 𝑦 ≐ 𝑦 ∘ 𝑥
𝑈𝑔 ((𝑥 ∘ 𝑒) ∘ 𝑦)(𝑦 ∘ 𝑥)
(𝑥𝑐 ∘𝑐 𝑒𝑐) ∘𝑐 𝑦𝑐 ≐ 𝑦𝑐 ∘ 𝑥𝑐

(ax𝑐 ∀E 𝑥𝑑) ∀E 𝑦𝑑
(ax𝑐 ∀E (𝑈ℎ 𝑥𝑑)) ∀E (𝑈ℎ 𝑦𝑑)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=∀I𝑥𝑑 ∀I𝑦𝑑 proof of
⎧{{{{{{
⎨{{{{{{⎩

𝑈ℎ ((𝑥𝑑 ∘𝑑 𝑒𝑑) ∘𝑑 𝑦𝑑) ≐ (𝑈ℎ (𝑥𝑑 ∘𝑑 𝑒𝑑) ∘𝑐 (𝑈ℎ 𝑦𝑑)) by ∘ℎ (to push down 𝑈ℎ)
≐ ((𝑈ℎ 𝑥𝑑) ∘𝑐 (𝑈ℎ 𝑒𝑑)) ∘𝑐 (𝑈ℎ 𝑦𝑑) by ∘ℎ (to push down 𝑈ℎ)
≐ ((𝑈ℎ 𝑥𝑑) ∘ 𝑒𝑐) ∘𝑐 (𝑈ℎ 𝑦𝑑) by 𝑒ℎ (to push down 𝑈ℎ; now done)
≐ (𝑈ℎ 𝑦𝑑) ∘𝑐 (𝑈ℎ 𝑥𝑑) by (ax𝑐 ∀E (𝑈ℎ 𝑥𝑑)) ∀E (𝑈ℎ 𝑦𝑑)
≐ 𝑈ℎ (𝑦𝑑 ∘𝑑 𝑥𝑑) by ∘ℎ (to pull up 𝑈ℎ; now done)

⎫}}}}}}
⎬}}}}}}⎭

Indeed, the last line constitues a valid proof term to be assigned to ax𝑔 (modulo expressing
the equality rewriting as an LF term using SFOL’s cong axiom). Overall, the complexity of
KerProof lies in the case for equalities, which necessitated defining all the input parameters
to begin with.

▶ Remark 154 (Partiality on Predicate Symbols). Neither Ker nor KerProof can be defined
on predicate symbols. The reason is that in general homomorphisms only preserve, but
not reflect propositions. To see this for Ker, consider the following putative assignment to

124 Structure-Preserving Diagram Operators

theory Cong(NestedAxiom) = {
include SFOL
𝑈𝑑 ∶ tp
𝑈𝑔 ∶ tm 𝑈𝑑 → tm 𝑈𝑑 → prop

∘𝑑 ∶ tm 𝑈𝑑 → tm 𝑈𝑑 → tm 𝑈𝑑

∘𝑔 ∶ Π 𝑥𝑑 𝑥𝑑′ ∶ tm 𝑈𝑑. Π 𝑥𝑔 ∶ ⊩ 𝑈𝑔 𝑥𝑑 𝑥𝑑′.
Π 𝑦𝑑 𝑦𝑑′ ∶ tm 𝑈𝑑. Π 𝑦𝑔 ∶ ⊩ 𝑈𝑔 𝑦𝑑 𝑦𝑑′.
⊩ 𝑈𝑔 (𝑥𝑑 ∘𝑑 𝑦𝑑) (𝑥𝑑′ ∘𝑑 𝑦𝑑′)

𝑒𝑑 ∶ tm 𝑈𝑑

𝑒𝑔 ∶ ⊩ 𝑈𝑔 𝑒𝑑 𝑒𝑑

ax𝑑 ∶ ∀ 𝑥𝑑 𝑦𝑑 ∶ tm 𝑈𝑑. (𝑥𝑑 ∘ 𝑒𝑑) ∘𝑑 𝑒𝑑 ≐ 𝑦𝑑 ∘𝑑 𝑥𝑑

ax𝑔 ∶ ∀ 𝑥𝑑 𝑦𝑑 ∶ tm 𝑈𝑑. 𝑈𝑔 ((𝑥𝑑 ∘𝑑 𝑒𝑑) ∘𝑑 𝑦𝑑) (𝑦𝑑 ∘𝑑 𝑥𝑑)
}

theory Hom(NestedAxiom) = {
include SFOL
𝑈𝑑 ∶ tp
𝑈𝑐 ∶ tp
𝑈ℎ ∶ tm 𝑈𝑑 → tm 𝑈𝑐

∘𝑑 ∶ tm 𝑈𝑑 → tm 𝑈𝑑 → tm 𝑈𝑑

∘𝑐 ∶ tm 𝑈𝑐 → tm 𝑈𝑐 → tm 𝑈𝑐

∘ℎ ∶ Π 𝑥 𝑦 ∶ tm 𝑈𝑑. ⊩ 𝑈ℎ (𝑥 ∘𝑑 𝑦) ≐ (𝑈ℎ 𝑥) ∘𝑐 (𝑈ℎ 𝑦)
𝑒𝑑 ∶ tm 𝑈𝑑

𝑒𝑐 ∶ tm 𝑈𝑐

𝑒ℎ ∶ ⊩ 𝑈ℎ 𝑒𝑑 ≐ 𝑒𝑐

ax𝑑 ∶ ∀ 𝑥𝑑 𝑦𝑑 ∶ tm 𝑈𝑑. (𝑥𝑑 ∘𝑑 𝑒𝑑) ∘ 𝑦𝑑 ≐ 𝑦𝑑 ∘ 𝑥𝑑

ax𝑐 ∶ ∀ 𝑥𝑐 𝑦𝑐 ∶ tm 𝑈𝑐. (𝑥𝑐 ∘𝑐 𝑒𝑐) ∘ 𝑒𝑦𝑐 ≐ 𝑦𝑐 ∘ 𝑥𝑐

}

Figure 32 TODO

N. Roux 125

predicate symbols 𝑝 ∶ tm 𝑇1→...→tm 𝑇𝑛→prop.

𝑝𝑑 ∶= 𝑝𝑑
𝑝𝑔 ∶= Π𝑥1 𝑥′

1 ∶ tm 𝑇 𝑑
1 . Π 𝑥𝑔

1 ∶ ⊩ 𝑇 ℎ
1 𝑥1 ≐ 𝑇 ℎ

1 𝑥′
1. ... Π𝑥𝑛 𝑥′

𝑛 ∶ tm 𝑇 𝑑
𝑛 . Π 𝑥𝑔

𝑛 ∶ ⊩ 𝑇 ℎ
𝑛 𝑥𝑛 ≐ 𝑇 ℎ

𝑛 𝑥′
𝑛.

⊩ 𝑝𝑑 𝑥1 ... 𝑥𝑛 ⇔ 𝑝𝑑 𝑥′
1 ... 𝑥′

𝑛)
= 𝜆𝑥1 𝑥′

1 ...𝑥𝑛 𝑥′
𝑛. proof of

𝑝𝑑 𝑥1 ... 𝑥𝑛 ⇔ 𝑝𝑐 (𝑇 ℎ
1 𝑥1) ... (𝑇 ℎ

𝑛 𝑥𝑛) by preservation & reflection
⇔ 𝑝𝑐 (𝑇 ℎ

1 𝑥′
1) ... (𝑇 ℎ

𝑛 𝑥′
𝑛) by assumptions 𝑥𝑔

1 ... , 𝑥𝑔
𝑛

⇔ 𝑝𝑑 𝑥′
1 ... 𝑥′

𝑛 by preservation & reflection

As expected, preservation and reflection of the predicate symbol by the homomorphisms
are crucial. Thus, we cannot take adop the above assignment for Ker since Hom only emits
axioms requiring preservation. However, we could define a linear functor ReflectiveHom
that maps every theory 𝑇 to the theory of 𝑇 -homomorphisms that preserve and reflect all
predicate symbols (and by induction all propositions, too). The definition would be be
identical to the one of Hom given in Definition 106 except that the relation at propositions
𝐹 would be 𝐹 𝑑 ⇔ 𝐹 𝑐 (instead of merely 𝐹 𝑑 ⇒ 𝐹 𝑐). With such a functor, we could define a
linear connector ReflectiveKer ∶ Cong → ReflectiveHom that avoids the partiality of Ker
on predicate symbols.

▶ Conjecture 155. KerProof works as specified in Definition 152: for any input arguments
adhering to the specification, the output is also typed as specified.

▶ Conjecture 156. Ker is well-typed.

Proof. Assuming Conjecture 155, well-typedness can be read off Definition 151 given the
limited domain on which Ker is defined. ◀

▶ Conjecture 157. Under mild assumptions (e.g., of additional equational theory in SFOL),
Ker is natural.

5.7.2 Thoughts on a Generalized Definition
As a connector Ker ∶ Cong → Hom, generalizing Ker hinges on the domain and codomain
functor being suitably generalized. As of now, the bottleneck is Cong, which we have only
defined for definitionless SFOL-theories. Thus, we defer generalizing Ker to future work.

126 Structure-Preserving Diagram Operators

5.8 Conclusion & Future Work
5.8.1 Conclusion
Algebra theories such as monoids, groups, and vectorspaces are ubiquitous throughout for-
mal sciences, meriting their representation in formal systems. Even though universal al-
gebra describes corresponding constructions (e.g., of homomorphisms, substructures, and
congruence structures) that for each algebra theory systematically yield the corresponding
theory, many current libraries of formal systems still rely on manually specifying all every
algebra theory separately. However, due to their universal and constructive nature, these
constructions are a perfect fit to be automated. We have cast several such constructions as
structure-preserving diagram operators and learnt the following lessons:

We can easily specify operators for folklore notions that are given in standard
literature (e.g., homomorphisms for first-order signatures with just function symbols). But
it gets tricky if we want to extend them to what is needed in practice (predicate and axiom
symbols). Yet more considerable effort and novelty is needed to generalize those
notions to the setting that Mmt/LF automatically induces on top of logic formal-
izations (e.g., polymorphism and dependent typing due to Π-types, and defined symbols
and morphisms, i.e., in particular including proof terms). This increase in complexity when
putting things onto a firm formal ground is to be expected, as is quite usual in the interac-
tive theorem prover community. Note that we could have saved efforts and opted to specify
operators for folklore cases only. But then they would be undefined on most interesting
formalizations occurring in practice.

We used logical relations as a guiding approach to generalize universal con-
structions known in literature to our setting of polymorphic dependently-typed first-order
logic with definitions (incl. proofs) and morphisms. Ideas inspired by logical relations served
us to define complex, yet systematic specifications for constructions such as homomorphisms,
substructures, and congruences. Much to our frustration, even though these three construc-
tions in principle each behave like a logical relation, there turn out be minor, but persistent
differences. Even worse, these differences seem to vary across construction. For example,
for the homomorphism construction these differences are purely syntactical: a pure logical
relation ansatz would produce syntax that semantically equals to what is desired. But for
the substructure construction the differences are even semantical: logical relations strictly
produce something different from what is desired. In any case, this led us to defining trans-
lations by first copying all cases as if they were a logical relation and then finetuning cases
as desired.

With all those difficulties mentioned above, our framework’s value might go unnoticed.
But it was our very framework that allowed us to spend almost all our efforts on domain-
specific issues (e.g., defining translations on terms), freeing us from any responsbilities of
defining translations on theories, morphisms, or theory graphs. Thus, domain experts can
focus on domain problems, leaving all the bureaucracy of structure-preservation
to the framework.

5.8.2 Future Work
Now that specifications have been worked out for several operators of universal algebra,
future work could focus on a corresponding implementation & evaluation based on the
framework’s implementation presented in Section 6. Initially, the author had successfully
implemented homomorphisms, substructures, and congruences, among others, for definition-
less SFOL-theories. But after a refactoring of the framework’s implementation, this became

N. Roux 127

dead code. And as we have seen most prominently in Sections 5.3 and 5.4, the ad-hoc speci-
fication on definitionless SFOL-theories does not scale anyway. Thus, the author prioritized
working out the specification and postponed the implementation to future work.

We believe higher-order logical relations – part of ongoing work between Florian
Rabe and the author – to be a worthwhile avenue of investigation, e.g., for defining connectors
Img ∶ Sub → Hom and Ker ∶ Cong → Hom, which we only specified for definitionless SFOL-
theories. In our sense (originally coined by [RS13]), a logical relation 𝑟 ∶ 𝑚1, ... ,𝑚𝑛 on
morphisms 𝑚1, ... ,𝑚𝑛 ∶ 𝑆 → 𝑇 allows to express certain meta-theorems relating terms ⊢𝑇

𝑚1(𝑡), ... ,𝑚𝑛(𝑡) for every typed term ⊢𝑆 𝑡. Consequently, an 𝑛-th order logical relation on
(𝑛 − 1)-th order logical relations 𝑟 ∶ 𝑟1, ... , 𝑟𝑛 would allow to express certain meta-theorems
relating terms ⊢𝑇 𝑟1(𝑡), ... , 𝑟𝑛(𝑡). Nonetheless, we stress that logical relations need not be
the panacea for all universal constructions. There might even be different, more suitable
abstractions for defining complex functions occurring in universal algebra altogether.

Provable Axioms: Recall that the substructure operator Sub maps axiom symbols ax ∶ ⊩
𝐹 to a qualified copy ax𝑝 ∶ ⊩ 𝐹 𝑝 for the parent structure and to a relativized variant ax𝑠 ∶ ⊩
𝐹 𝑠. Here, even if ax is undefined, the generated constant ax𝑠 may be definable (i.e., provable)
in terms of ax𝑝. For example, all axioms using only ∀ and ≐ (i.e., the axioms primarily used
in universal algebra) are automatically true in each submodel. Consequently, Sub could do
much better and translate such axioms to theorems by synthesizing an appropriate proof
and adding it as the definiens of ax𝑠. We believe provable axioms to be a recurring theme
for all logic-dependent operators, even beyond universal algebra. Thus, more generally, we
could run a theorem prover on every axiom we generate (independent of its shape) and
generate a definiens whenever a proof can be found.

This issue can be more subtle as a similar example with Hom shows: sometimes the gen-
erated axioms only become provable in the context of stronger theories. For example, every
magma homomorphism between groups is automatically a group homomorphism. Thus, the
preservation axioms 𝑒ℎ for the neutral element and 𝑖ℎ (where 𝑖 is the unary function symbol
for the inverse element) are provable in the theory Hom(Group), at which place it would
therefore be desirable for Hom to add definitions. However, this makes it trickier for the
operator to be structure-preserving: the theory Hom(Monoid) must still contain 𝑒ℎ without
a definition, and the definition should only be added when Hom(Monoid) is included into
Hom(Group).

Ideas for Operators Below we list some ideas for linear functors and connectors in the
realm of universal algebra. We remain vague on operator domains and codomains and
generally assume SFOL or suitable extensions thereof. Some ideas have been communicated
by Florian Rabe directly and/or were taken from LATIN221.

Linear functors:

Iso, Mono, Epi, Endo, ...: variants of Hom representing homomorphisms that are isomorphic,
monomorphic (injective), epimorphic (surjective), or endomorphic (on a single model)
Prod𝑛(𝑇): the theory whose models are 𝑛-tuples of 𝑇 -models
Monotone(𝑇): extends 𝑇 with a preorder on all its type symbols and corresponding
compatibility axioms for all function symbols of 𝑇

21 https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/
source/math_theories_overview.txt

https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/math_theories_overview.txt
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/math_theories_overview.txt

128 Structure-Preserving Diagram Operators

Morph(𝑆, 𝑇): the bilinear functor maps theories 𝑆 and 𝑇 to Morph(𝑆, 𝑇) which extends
both 𝑆 and 𝑇 and adds compatibility axioms between all function and predicate symbols
from 𝑆 and 𝑇 . Special cases are:

Monotone = Morph(Preorder, −), where Preorder formalizes preorders
Morph(PartialOrder, Magma) ∪ Group: partially-ordered group, where ∪ is theory
union (a concept that pops up in certain fields of mathematics)
Morph(Lattice, Magma) ∪ Group: lattice-ordered groups (ditto)

GroupAction(𝑇): the theory extending 𝑇 with a group action
Action(𝑆, 𝑇): the theory extending 𝑇 (the actee) with contains qualified copies 𝑐act for
every 𝑐 ∈ 𝑆 (the actor), and that contains function symbols act𝑇 ∶ tm 𝑇 act → tm 𝑇 →
tm 𝑇 for every shared type symbol 𝑇 , and that contains axiom symbols that make
the collection of all act𝑇 functions a homomorphism from 𝑆 to the 𝑇 -endomorphisms.
Special case is GroupAction = Action(Group, −).
Generated(𝑇): extending 𝑇 with a closure function ⟨−⟩𝑇 ∶ tm 𝒫(𝑇) → tm 𝒫(𝑇) for every
type 𝑇 ∶ tp in 𝑇 (and where 𝒫 is a powerset operator given by suitably extending SFOL)
and suitable axioms for every function symbol, such that ⟨𝐺⟩𝑇 gives the subset of 𝑇
generated by the subset 𝐺 of 𝑇 .22

Linear connectors:

SubFull ∶ Sub → Id: the linear connector that yields morphisms SubFull(𝑇) ∶ Sub(𝑇) →
𝑇 translating 𝑇 -models to full Sub(𝑇)-models (i.e., 𝑇 -submodels), i.e., where the subset
predicate is constant true
SubMod ∶ Id → Sub: the linear connector that yields morphisms SubMod(𝑇) ∶ 𝑇 → Sub(𝑇)
translating Sub(𝑇)-models (i.e., 𝑇 -submodels) to actual 𝑇 -models using predicate sub-
types (when suitably extending SFOL)
QuotMod ∶ Id → Cong: the linear connector that yields morphisms QuotMod(𝑇) ∶ 𝑇 →
Cong(𝑇) translating Cong(𝑇)-models (i.e., 𝑇 -congruences) to actual 𝑇 -models using quo-
tient types (when suitably extending SFOL)

22 See https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/
source/algebra/generated.mmt for examples.

https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/algebra/generated.mmt
https://gl.mathhub.info/MMT/LATIN2/-/blob/39dc7046f457ff02f695387a8ebd80366789a465/source/algebra/generated.mmt

N. Roux 129

6 Implementation

6.1 Walkthrough: Using and Developing Diagram Operators
6.1.1 Library User’s Perspective
6.1.2 Library Developer’s Perspective
6.2 Class Hierarchy
6.3 Design Decisions & Limitations

130 Structure-Preserving Diagram Operators

7 Conclusion & Future Work

7.1 Conclusion
We introduced a class of structure-preserving functorial operators that act on dia-
grams of formalizations. This class comes equipped with an easy scheme to specify, verify,
and implement operators. Developers only need to specify/implement operators for few
syntax cases, focusing on their domain problem, and our framework lifts them to large
structured diagrams. Our operators allow building small diagram expressions that evaluate
to large diagrams whose structure remains intuitive and predictable to users. Similar to
templating techniques in programming languages, they can be used to automate devel-
opments in entire libraries of formalizations and cut the size of humanly maintained
portions. We state our results in the fairly general setting of Mmt where formalizations are
composed out of theories (lists of constants) and morphisms between theories (subusming
many compositional translations). We only assume the Edinburgh Logical Framework (LF)
for concreteness, and in fact our framework, as stated, subsumes most declarative, typed lan-
guages including many logics, type theories, and set theories. Even though many presented
operators depend on LF, their ideas could equally be worked out in one logical foundation
or another.

Our operators can be seen as different degrees of compositionality-breaking: push-
out-based translations are induced by the homomorphic extension of a morphism and thus
entirely compositional; strongly linear functors use arbitrary expression translation functions
and extend them compositionally to declarations and theories; linear functors use arbitrary
declaration translation functions and extend them compositionally to theories; finally, the
most general class translates theories without any constraint. Thus, our work can be seen
as identifying good trade-offs between the rather restrictive pushout-based and the unpre-
dictable arbitrary operators.

We presented several important operators in our framework. First, we presented logic-
independent operators, which are operators that are applicable to formalizations over
very weak logics, thus are rather domain-agnostic and of widespread use. The pushout
operator acted as our canonical example here. Moreover, we considered logical relations
for a logical framework to state meta theorems on theories and morphisms (as introduced
in [RS13]) and gave an operator to internalize proofs of such meta theorems. Thus, our
operators especially allow the representation and application of ubiquitous meta theorems,
translations such as pushout being a special case thereof. Even though such meta theorems
had long been wanted, e.g., in the LATIN atlas [Cod+a] to realize many logic translations,
they could not be given previously as the lack of a flexible operator system meant that
Mmt’s main syntax and core would have needed modification. Thus, our operators also
serve early and rapid prototyping of new propsective Mmt features. Finally, as a case
study following [RR21b], we composed these operators with a refactoring-inspired operator
to obtain the powerful operator that systematically translates formalizations of type theory
from intrinsic to extrinsic style.

Second, as logic-dependent operators we presented several universal constructions
from universal algebra. We specified operators that applied to diagrams 𝐷 formalizing
algebraic hierarchies (e.g., containing formalizations of monoids and groups) yield diagrams
Hom(𝐷) of corresponding theories of homomorphisms, Sub(𝐷) of corresponding theories of
substructures, and Cong(𝐷) of corrresponding theories of congruence structure. Thus, these
operators can be used to significantly reduce the humanly maintained portions in the LATIN
atlas needed to represent derived notions of the algebraic hierarchy.

N. Roux 131

We have implemented a framework for structure-preserving diagram operators for
the Mmt system (cf. source code [MMTb], documentation [MMTa]). Among the operators,
we implemented the logic-independent ones and referred to an extensive case study [RR21b]
(the implementation in the cited work having been solely developed by the author). We
defer implementing the operators for universal algebra to future work.

In fact, it turned out that from the ones we presented most logic-dependent operators
were much more complicated to specify than initially thought. After all, universal
algebra and its constructions ought to be well-established material. However, the level of
formality and generality of our setting forced us to invest considerable effort and novelty
into generalizng many notions present in literature. Retrospectively, this is not surprising
as, e.g., it is folklore that formalizing even decade-old mathematics in interactive theorem
provers can require substantial novelty.

Despite those complexities, our theoretical framework proved to be useful insofar that we
spent most time on specifying domain-specific translations (e.g., on terms) and could
let the framework handle the rest (e.g., lifting to theories, morphisms, and diagrams).
Thus, the present document can be seen as a positive evaluation of our theoretical framework.
We leave it to future work to thoroughly evaluate the implemented framework, e.g., by
implementing some of the operators from universal algebra that we specified. In some cases,
typically concerning small formalizations and overly specific operators, we even believe that
fully specifying and implementing an operator might take longer than typing the desired
output by hand.

7.2 Limitations & Future Work
Two main directions of future work are i) defining and implementing more operators (esp.
gaps in the LATIN atlas) and ii) improving the (theoretical and practical) framework. Both
directions benefit from each other: the former may drive necessary design decisions for
the latter, and the latter may make the former even easier in practice. Notably, with the
framework laid out in this work, the former can already be done pretty efficiently, thus be
a good starting point for an elaborated case study. Below we compiled a few points on the
latter direction of future work.

Exploiting More of Mmt’s Structuring Features For brevity we described and proved
correctness of our framework only for the most simple structuring features of Mmt, even
though our implementation already accounts for many more. Thus, a longer report may
focus on bringing this to paper by describing syntax and semantics of Mmt’s structuring
features (which for many features only exist in form of source code at time of writing) and
extending our framework to them. In particular, many operators we presented awkwardly
copy input declarations to qualified copies, something which could be stated more concisely
using a structuring feature that Mmt already possesses.

Static Type System for Functors A drawback of our approach is the lack of a static type
system at the diagram expression level: all our diagram operators are partial, and the only
way to check that 𝑂(𝐷) is defined is to successfully evaluate it. This is especially frustrating
for more expressive operators that, e.g., take lists or even trees of identifiers as parameters.
However, our experiments in this direction have indicated that any type system that could
predict definedness would be too complicated to be practical. Moreover, in practice, the
immediate evaluation of diagram expressions is needed anyway for two reasons: First, many
operators can only be type-checked if their arguments are fully evaluated, thus obviating

132 Structure-Preserving Diagram Operators

the main advantage of static type-checking. Second, because diagram expressions introduce
theories that are to be used as interfaces later, their evaluation is usually triggered soon
after type-checking.

Flexible Generation/Choice of Identifiers In Section 3.4 we defined how to lift an oper-
ator on anonymous diagrams in a straightforward way to an operator on named, structured
diagrams occurring in practice. To do so, we assumed an injective function that translates
those very identifiers occurring in named diagrams. For example, we can choose the function
that suffixes all identifiers and, e.g., maps the theory identifier Monoid to MonoidHom. The
assumption of such a function sounds benign on paper, but is challenging in practice since
the function needs not only i) output unique identifiers for the system, but also identifiers
that are ii) predictable, iii) typable, and iv) desired by humans. Arguably, for the homo-
morphism operator, suffixing with Hom is a good choice that fulfills all four properties. But
even for the pushout functor along a fixed morphism 𝑚, it is unclear what to do in practice.
We can easily choose to map theory identifiers 𝑋 to pushout.𝑚.𝑋, but that would only fulfill
the first two properties. In particular, since in the Mmt system all identifiers are URIs, we
would need to encode both URIs of 𝑚 and 𝑋 into the desired output URI. While certainly
possible, without proper syntax, end users will not be able to enter resulting identifiers.
Moreover, theories resulting from pushouts can often be given more sensible identifiers than
our canonical choice above, but this absolutely requires a human’s domain knowledge.

We believe a satisfactory solution must ultimately offer a syntax for end users to specify
the injective naming function that a particular operator invocation should use, possibly
overriding any default naming function that the operator comes equipped with. We suggest
future work conduct a careful requirements analysis, incl. looking at operator invocations
and taxonomies occurring in practice.

Coherence Properties of Operators We can often arrive at semantically equivalent di-
agrams by different ways of applying and parametrizing operators. In these cases, we are
interested in making these coherence properties accessible to the user, e.g., by making it
possible to treat semantically equivalent diagrams interchangably. Corresponding language
features are difficult to design and implement – even if we restrict ourselves to syntactic
equivalence. As an example, consider the pushout functor from Section 4.1 for which we
proved Push𝑛(Push𝑚(Σ)) = Push𝑛∘𝑚(Σ) as an equality on flat theories. This is a flat coher-
ence property, which fails to extend to a structured coherence property on named theories
because the left- and right-hand sides will yield differently named theories.23 Particularly
logic-independent operators such as pushout enjoy many flat coherence properties, incl. com-
mutation properties with other functors.

Treating semantically equal theories differently due to existence of names is a general
phenomenon of non-flat module systems. Possibly, the only viable solution might be to
automatically derive isomorphisms from left- to right-hand sides of flat coherence properties,
and to allow the user treating those isomorphisms transparently in syntax (i.e., by omitting
them). This is tricky to get right, especially in combination with all other structuring syntax
features of Mmt.

23 Technically, this is wrong, e.g., the shown identity with pushout can be made an identity with lifted
variants. But we exclude cases of artificially crafted naming functions here that would never occur in
practice.

REFERENCES 133

References

[agd21] Contributors of agda/agda-stdlib on GitHub. Agda standard library – Alge-
bra Structures. https://github.com/agda/agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/
src/Algebra/Structures.agda. 2021. url: https://github.com/agda/
agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/src/
Algebra/Structures.agda.

[AgdaAll21] Agda developers. The Agda standard library: All. Lists where all elements
satisfy a given property. https : / / github . com / agda / agda - stdlib /
blob / bc9c1b6a117fcb86b321113c0958ffc3b3526b4e / src / Data / List /
Relation/Unary/All.agda. 2021. url: %5Curl%7Bhttps://github.com/
agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/
src/Data/List/Relation/Unary/All.agda%7D.

[Ahm13] Amal Ahmed. “Logical Relations”. Oregon Programming Languages Sum-
mer School 2013. July 2013. url: https://www.cs.uoregon.edu/research/
summerschool/summer13/curriculum.html.

[Ast+02] E. Astesiano et al. “CASL – the Common Algebraic Specification Language”.
In: Theoretical Computer Science 286 (2002), pp. 153–196. url: http://
www.cofi.info.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development — Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, 2004.

[BLS18] Baldur Blöndal, Andres Löh, and Ryan Scott. “Deriving via: Or, How to
Turn Hand-Written Instances into an Anti-Pattern”. In: Proceedings of the
11th ACM SIGPLAN International Symposium on Haskell. Haskell 2018. St.
Louis, MO, USA: Association for Computing Machinery, 2018, pp. 55–67.
isbn: 9781450358354. doi: 10.1145/3242744.3242746.

[BS12] Stanley Burris and H. P. Sankappanavar. A Course in Universal Algebra.
The Millennium Edition. Vol. 78. Graduate Texts in Mathematics. Springer-
Verlag New York, 2012. isbn: 9780988055209.

[Bun93] Alexander Bunkenburg. “The Boom Hierarchy”. In: Functional Program-
ming. 1993. doi: 10.1007/978-1-4471-3236-3_1.

[CAK17] Jacques Carette, Musa Al-hassy, and Wolfram Kahl. “Theories and Datas-
tructures. “Two Sides of the Same Coin”, or “Library Design by Adjunc-
tion””. Accessed 2022-02-18. Aug. 28, 2017. url: %5Curl % 7Bhttps : / /
github.com/JacquesCarette/TheoriesAndDataStructures/blob/692cdcf7433c1533dfcbb1943daf35770fb01090/
TheoriesAndDataStructures.pdf%7D.

[Cap99] Venanzio Capretta. “Universal Algebra in Type Theory”. In: Theorem Prov-
ing in Higher Order Logics, 12th International Conference, TPHOLs ’99,
volume 1690 of LNCS. Springer-Verlag, 1999, pp. 131–148.

[Car+21] Jacques Carette et al. “Big Math and the One-Brain Barrier – The Tetra-
pod Model of Mathematical Knowledge”. In: Mathematical Intelligencer 43.1
(2021), pp. 78–87. doi: 10.1007/s00283-020-10006-0.

[CB16] David Christiansen and Edwin Brady. “Elaborator Reflection: Extending
Idris in Idris”. In: SIGPLAN Not. 51.9 (Sept. 2016), pp. 284–297. issn:
0362-1340. doi: 10.1145/3022670.2951932.

https://github.com/agda/agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/src/Algebra/Structures.agda
https://github.com/agda/agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/src/Algebra/Structures.agda
https://github.com/agda/agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/src/Algebra/Structures.agda
https://github.com/agda/agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/src/Algebra/Structures.agda
https://github.com/agda/agda-stdlib/blob/dd20869e959eb2eac3b8214ddf124b40cabc03e7/src/Algebra/Structures.agda
https://github.com/agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/src/Data/List/Relation/Unary/All.agda
https://github.com/agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/src/Data/List/Relation/Unary/All.agda
https://github.com/agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/src/Data/List/Relation/Unary/All.agda
%5Curl%7Bhttps://github.com/agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/src/Data/List/Relation/Unary/All.agda%7D
%5Curl%7Bhttps://github.com/agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/src/Data/List/Relation/Unary/All.agda%7D
%5Curl%7Bhttps://github.com/agda/agda-stdlib/blob/bc9c1b6a117fcb86b321113c0958ffc3b3526b4e/src/Data/List/Relation/Unary/All.agda%7D
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer13/curriculum.html
http://www.cofi.info
http://www.cofi.info
https://doi.org/10.1145/3242744.3242746
https://doi.org/10.1007/978-1-4471-3236-3_1
%5Curl%7Bhttps://github.com/JacquesCarette/TheoriesAndDataStructures/blob/692cdcf7433c1533dfcbb1943daf35770fb01090/TheoriesAndDataStructures.pdf%7D
%5Curl%7Bhttps://github.com/JacquesCarette/TheoriesAndDataStructures/blob/692cdcf7433c1533dfcbb1943daf35770fb01090/TheoriesAndDataStructures.pdf%7D
%5Curl%7Bhttps://github.com/JacquesCarette/TheoriesAndDataStructures/blob/692cdcf7433c1533dfcbb1943daf35770fb01090/TheoriesAndDataStructures.pdf%7D
https://doi.org/10.1007/s00283-020-10006-0
https://doi.org/10.1145/3022670.2951932

134 REFERENCES

[CFS20] Jacques Carette, William M. Farmer, and Yasmine Sharoda. “Leveraging
the Information Contained in Theory Presentations”. In: Intelligent Com-
puter Mathematics: 13th International Conference, CICM 2020, Bertinoro,
Italy, July 26–31, 2020, Proceedings. Bertinoro, Italy: Springer-Verlag, 2020,
pp. 55–70. isbn: 978-3-030-53517-9. doi: 10.1007/978-3-030-53518-6_4.

[Che20] Liang-Ting Chen. “Monadic typed tactic programming by reflection”. In:
Workshop on Type-driven Development (TyDe) 2019, at the 13th MathUI
Workshop 2021, Mathematical User Interaction, at the International Con-
ference on Functional Programming. 2020. url: https://tydeworkshop.
org/2019-abstracts/paper20.pdf (visited on 02/22/2022).

[CMR16] M. Codescu, T. Mossakowski, and Florian Rabe. “Selecting Colimits for Pa-
rameterisation and Networks of Specifications”. In: Workshop on Algebraic
Development Techniques. Ed. by M. Roggenbach and P. James. 2016.

[Cod+a] Mihai Codescu et al. “Project Abstract: Logic Atlas and Integrator (LATIN)”.
In: pp. 289–291. doi: 10.1007/978-3-642-22673-1_24.

[Cod+b] Mihai Codescu et al. “Towards Logical Frameworks in the Heterogeneous
Tool Set Hets”. In.

[Com20] The mathlib Community. “The Lean Mathematical Library”. In: Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs
and Proofs. CPP 2020. New Orleans, LA, USA: Association for Computing
Machinery, 2020, pp. 367–381. isbn: 9781450370974. doi: 10.1145/3372885.
3373824.

[Del00] David Delahaye. “A Tactic Language for the System Coq”. In: Logic for
Programming and Automated Reasoning. Ed. by Michel Parigot and Andrei
Voronkov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 85–95.
isbn: 978-3-540-44404-6. doi: 10.1007/3-540-44404-1_7.

[DeM21] William DeMeo. “The Agda Universal Algebra Library and Birkhoff’s The-
orem in Dependent Type Theory”. In: CoRR abs/2101.10166 (2021). source
code: https://gitlab.com/ualib/ualib.gitlab.io. url: https://
arxiv.org/abs/2101.10166.

[Ebn+17] Gabriel Ebner et al. “A Metaprogramming Framework for Formal Verifica-
tion”. In: Proc. ACM Program. Lang. 1.ICFP (Aug. 2017). doi: 10.1145/
3110278.

[FGT93] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. “IMPS: An
Interactive Mathematical Proof System”. In: Journal of Automated Reason-
ing 11.2 (Oct. 1993), pp. 213–248.

[Gar+09] François Garillot et al. “Packaging Mathematical Structures”. In: Theorem
Proving in Higher Order Logics. Ed. by Stefan Berghofer et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2009, pp. 327–342. isbn: 978-3-642-
03359-9.

[Geu+02] Herman Geuvers et al. “A Constructive Algebraic Hierarchy in Coq”. In:
Journal of Symbolic Computation 34.4 (2002), pp. 271–286. issn: 0747-7171.
doi: https://doi.org/10.1006/jsco.2002.0552.

[GGP18] Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano. “Formalization
of Universal Algebra in Agda”. In: Electronic Notes in Theoretical Com-
puter Science 338 (2018). The 12th Workshop on Logical and Semantic
Frameworks, with Applications (LSFA 2017), pp. 147–166. issn: 1571-0661.
doi: https://doi.org/10.1016/j.entcs.2018.10.010.

https://doi.org/10.1007/978-3-030-53518-6_4
https://tydeworkshop.org/2019-abstracts/paper20.pdf
https://tydeworkshop.org/2019-abstracts/paper20.pdf
https://doi.org/10.1007/978-3-642-22673-1_24
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/3-540-44404-1_7
https://gitlab.com/ualib/ualib.gitlab.io
https://arxiv.org/abs/2101.10166
https://arxiv.org/abs/2101.10166
https://doi.org/10.1145/3110278
https://doi.org/10.1145/3110278
https://doi.org/https://doi.org/10.1006/jsco.2002.0552
https://doi.org/https://doi.org/10.1016/j.entcs.2018.10.010

REFERENCES 135

[GM10] Georges Gonthier and Assia Mahboubi. “An introduction to small scale
reflection in Coq”. In: J. Formaliz. Reason. 3 (2010), pp. 95–152. doi: 10.
6092/issn.1972-5787/1979.

[Gog+93] J. Goguen et al. “Introducing OBJ”. In: Applications of Algebraic Specifi-
cation using OBJ. Ed. by J. Goguen, D. Coleman, and R. Gallimore. Cam-
bridge, 1993.

[Gon+] G. Gonthier et al. “A Machine-Checked Proof of the Odd Order Theorem”.
In: pp. 163–179.

[Gon08] Georges Gonthier. “Formal proof – The Four-Color Theorem”. In: Notices
of the AMS 55.11 (2008), pp. 1382–1393. url: http://www.ams.org/
notices/200811/tx081101382p.pdf.

[Hal+17] Thomas Hales et al. “A formal proof of the Kepler conjecture”. In: Forum
of Mathematics, Pi 5 (2017). doi: 10.1017/fmp.2017.1.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. “A framework for defin-
ing logics”. In: Journal of the Association for Computing Machinery 40.1
(1993), pp. 143–184.

[HP18] Matthieu Herrmann and Alain Prouté. On the dependent conjunction and
implication. 2018.

[HR20] Magne Haveraaen and Markus Roggenbach. “Specifying with syntactic the-
ory functors”. In: Journal of Logical and Algebraic Methods in Programming
113 (Apr. 2020). doi: 10.1016/j.jlamp.2020.100543.

[Jac95] Paul B. Jackson. “Enhancing the NUPRL proof development system and
applying it to computational abstract algebra”. In: 1995. url: https://
homepages.inf.ed.ac.uk/pbj/papers/thesis.pdf.

[Kai+18] Jan-Oliver Kaiser et al. “Mtac2: Typed Tactics for Backward Reasoning in
Coq”. In: Proc. ACM Program. Lang. 2.ICFP (July 2018). doi: 10.1145/
3236773.

[Koh+] Michael Kohlhase et al. “FrameIT: Detangling Knowledge Management
from Game Design in Serious Games”. In: pp. 173–189. doi: 10.1007/978-
3-030-53518-6_11.

[Koh+09] M. Kohlhase et al. Notations for Active Mathematical Documents. Tech. rep.
2009-1. Jacobs University Bremen, 2009.

[Koh14] Michael Kohlhase. “Mathematical Knowledge Management: Transcending
the One-Brain-Barrier with Theory Graphs”. In: EMS Newsletter (June
2014), pp. 22–27. url: https://kwarc.info/people/mkohlhase/papers/
ems13.pdf.

[KS15] Pepijn Kokke and Wouter Swierstra. “Auto in Agda. Programming Proof
Search Using Reflection”. In: Mathematics of Program Construction. Ed. by
Ralf Hinze and Janis Voigtländer. Cham: Springer International Publishing,
2015, pp. 276–301. isbn: 978-3-319-19797-5. doi: 10.1007/978- 3- 319-
19797-5_14.

[LATIN] LATIN2 – Logic Atlas Version 2. url: https://gl.mathhub.info/MMT/
LATIN2 (visited on 06/02/2017).

[LATIN2] LATIN2: Logic Atlas and Integrator. url: http://latin.omdoc.org (vis-
ited on 01/15/2020).

[LS19] Yannis Lilis and Anthony Savidis. “A Survey of Metaprogramming Lan-
guages”. In: ACM Comput. Surv. 52.6 (Oct. 2019). issn: 0360-0300. doi:
10.1145/3354584.

https://doi.org/10.6092/issn.1972-5787/1979
https://doi.org/10.6092/issn.1972-5787/1979
http://www.ams.org/notices/200811/tx081101382p.pdf
http://www.ams.org/notices/200811/tx081101382p.pdf
https://doi.org/10.1017/fmp.2017.1
https://doi.org/10.1016/j.jlamp.2020.100543
https://homepages.inf.ed.ac.uk/pbj/papers/thesis.pdf
https://homepages.inf.ed.ac.uk/pbj/papers/thesis.pdf
https://doi.org/10.1145/3236773
https://doi.org/10.1145/3236773
https://doi.org/10.1007/978-3-030-53518-6_11
https://doi.org/10.1007/978-3-030-53518-6_11
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://kwarc.info/people/mkohlhase/papers/ems13.pdf
https://doi.org/10.1007/978-3-319-19797-5_14
https://doi.org/10.1007/978-3-319-19797-5_14
https://gl.mathhub.info/MMT/LATIN2
https://gl.mathhub.info/MMT/LATIN2
http://latin.omdoc.org
https://doi.org/10.1145/3354584

136 REFERENCES

[Mak95] Michael Makkai. “First order logic with dependent sorts with Applications
to Category Theory. Preliminary version”. Nov. 6, 1995. url: https://
www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf (visited on
11/30/2021).

[mathcomp21] Contributors of math-comp/math-comp on GitHub. Mathematical Compo-
nents – Algebra Part of Algebraic Hierarchy. https://github.com/math-
comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/
mathcomp/algebra/ssralg.v. 2021. url: https://github.com/math-
comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/
mathcomp/algebra/ssralg.v.

[MMTa] MMT – Language and System for the Uniform Representation of Knowl-
edge. Project web site. url: https://uniformal.github.io/ (visited on
01/15/2019).

[MMTb] UniFormal/MMT – The MMT Language and System. url: https : / /
github.com/UniFormal/MMT (visited on 10/24/2017).

[MmtURI] MMT - URIs. url: https://uniformal.github.io/doc/language/uris.
html (visited on 09/02/2021).

[MR19] Dennis Müller and Florian Rabe. “Rapid Prototyping Formal Systems in
MMT: 5 Case Studies”. In: LFMTP 2019. Electronic Proceedings in The-
oretical Computer Science (EPTCS), 2019. url: https://kwarc.info/
people/frabe/Research/MR_prototyping_19.pdf.

[Naw+19] M. Saqib Nawaz et al. A Survey on Theorem Provers in Formal Methods.
2019.

[Nor09] Ulf Norell. “Dependently Typed Programming in Agda”. In: Proceedings of
the 4th International Workshop on Types in Language Design and Implemen-
tation. TLDI ’09. Savannah, GA, USA: Association for Computing Machin-
ery, 2009, pp. 1–2. isbn: 9781605584201. doi: 10.1145/1481861.1481862.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic. LNCS 2283. Springer, 2002.

[PD10] B. Pientka and J. Dunfield. “Beluga: A Framework for Programming and
Reasoning with Deductive Systems (System description)”. In: Automated
Reasoning. Ed. by J. Giesl and R. Hähnle. Springer, 2010, pp. 15–21.

[Péd19] Pierre-Marie Pédrot. “Ltac2: Tactical Warfare”. 2019. url: https://www.
xn--pdrot-bsa.fr/articles/coqpl2019.pdf.

[PS] Frank Pfenning and Carsten Schürmann. “System Description: Twelf — A
Meta-Logical Framework for Deductive Systems”. In: Proceedings of the 16th

Conference on Automated Deduction, pp. 202–206.
[Raba] Florian Rabe. “First-Order Logic with Dependent Types”. In: pp. 377–391.
[Rabb] Florian Rabe. “The MMT API: A Generic MKM System”. In: pp. 339–343.
[Rab17a] Florian Rabe. “How to Identify, Translate, and Combine Logics?” In: Jour-

nal of Logic and Computation 27.6 (2017), pp. 1753–1798.
[Rab17b] Florian Rabe. “Morphism Axioms”. In: Theoretical Computer Science 691

(2017), pp. 55–80.
[Rab21] F. Rabe. “A Language with Type-Dependent Equality”. In: Intelligent Com-

puter Mathematics. Ed. by F. Kamareddine and C. Sacerdoti Coen. Springer,
2021, pp. 211–227. doi: 10.1007/978-3-030-81097-9_18.

https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
https://github.com/math-comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/mathcomp/algebra/ssralg.v
https://github.com/math-comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/mathcomp/algebra/ssralg.v
https://github.com/math-comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/mathcomp/algebra/ssralg.v
https://github.com/math-comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/mathcomp/algebra/ssralg.v
https://github.com/math-comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/mathcomp/algebra/ssralg.v
https://github.com/math-comp/math-comp/blob/07830d201e29d208a5a4bf13e630468f03bfadd5/mathcomp/algebra/ssralg.v
https://uniformal.github.io/
https://github.com/UniFormal/MMT
https://github.com/UniFormal/MMT
https://uniformal.github.io/doc/language/uris.html
https://uniformal.github.io/doc/language/uris.html
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
https://doi.org/10.1145/1481861.1481862
https://www.xn--pdrot-bsa.fr/articles/coqpl2019.pdf
https://www.xn--pdrot-bsa.fr/articles/coqpl2019.pdf
https://doi.org/10.1007/978-3-030-81097-9_18

REFERENCES 137

[Rin+19] Talia Ringer et al. “QED at Large: A Survey of Engineering of Formally
Verified Software”. In: Foundations and Trends® in Programming Languages
5.2-3 (2019), pp. 102–281. issn: 2325-1131. doi: 10.1561/2500000045.

[RK13] Florian Rabe and Michael Kohlhase. “A Scalable Module System”. In: In-
formation & Computation 0.230 (2013), pp. 1–54. url: https://kwarc.
info/frabe/Research/mmt.pdf.

[Rou20] Navid Roux. Structure-Preserving Diagram Operators. Master Project Re-
port. July 17, 2020. url: https://gl.kwarc.info/supervision/projectarchive/-
/blob/master/2020/Roux_Navid.pdf.

[Rou21a] Navid Roux. “A Beginner’s Guide to Logical Relations for a Logical Frame-
work”. seminar paper. written as a student of the kwarc seminar. Mar. 22,
2021. url: https://gl.kwarc.info/supervision/seminar/- /blob/
master/WS2021/logrels/guide.pdf.

[Rou21b] Navid Roux. “A Beginner’s Guide to Logical Relations for a Logical Frame-
work (slides)”. seminar presentation. presented as a student of the kwarc
seminar. Jan. 27, 2021. url: https://gl.kwarc.info/supervision/
seminar/-/blob/master/WS2021/logrels/slides.pdf.

[RR20] Navid Roux and Florian Rabe. “Diagram Operators in a Logical Frame-
work”. Extended Abstract. 2020. url: https://lfmtp.org/workshops/
2020/inc/papers/LFMTP_2020_paper_9.pdf.

[RR21a] Florian Rabe and Navid Roux. “Modular Formalization of Formal Systems”.
under review. 2021. url: https://kwarc.info/people/frabe/Research/
RR_modlog_21.pdf.

[RR21b] Florian Rabe and Navid Roux. “Systematic Translation of Formalizations of
Type Theory from Intrinsic to Extrinsic Style”. In: Proceedings of the Work-
shop on Logical Frameworks: Meta-Theory and Practice (LFMTP). Ed. by
E. Pimentel and E. Tassi. Open Publishing Association, 2021. url: https:
//kwarc.info/people/frabe/Research/RR_soften_21.pdf.

[RR21c] Navid Roux and Florian Rabe. “Structure-Preserving Diagram Operators”.
In: Recent Trends in Algebraic Development Techniques. Ed. by Markus
Roggenbach. Vol. 12669. Lecture Notes in Computer Science. Springer In-
ternational Publishing, 2021, pp. 142–163. isbn: 978-3-030-73785-6. doi:
10.1007/978-3-030-73785-6_8.

[RS09] Florian Rabe and C. Schürmann. “A Practical Module System for LF”. In:
Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Prac-
tice (LFMTP). Ed. by J. Cheney and A. Felty. Vol. LFMTP’09. ACM In-
ternational Conference Proceeding Series. ACM Press, 2009, pp. 40–48.

[RS13] Florian Rabe and Kristina Sojakova. “Logical Relations for a Logical Frame-
work”. In: ACM Transactions on Computational Logic (2013). url: https:
//kwarc.info/frabe/Research/RS_logrels_12.pdf.

[RS19] Florian Rabe and Yasmine Sharoda. “Diagram Combinators in MMT”. In:
Intelligent Computer Mathematics. Ed. by Cezary Kaliszyk et al. Cham:
Springer International Publishing, 2019, pp. 211–226. isbn: 978-3-030-23250-
4. url: https://kwarc.info/people/frabe/Research/RS_diagops_19.
pdf.

[RV01] Alexandre Riazanov and Andrei Voronkov. “Vampire 1.1 (System Descrip-
tion)”. In: Proceedings of the First International Joint Conference on Au-

https://doi.org/10.1561/2500000045
https://kwarc.info/frabe/Research/mmt.pdf
https://kwarc.info/frabe/Research/mmt.pdf
https://gl.kwarc.info/supervision/projectarchive/-/blob/master/2020/Roux_Navid.pdf
https://gl.kwarc.info/supervision/projectarchive/-/blob/master/2020/Roux_Navid.pdf
https://gl.kwarc.info/supervision/seminar/-/blob/master/WS2021/logrels/guide.pdf
https://gl.kwarc.info/supervision/seminar/-/blob/master/WS2021/logrels/guide.pdf
https://gl.kwarc.info/supervision/seminar/-/blob/master/WS2021/logrels/slides.pdf
https://gl.kwarc.info/supervision/seminar/-/blob/master/WS2021/logrels/slides.pdf
https://lfmtp.org/workshops/2020/inc/papers/LFMTP_2020_paper_9.pdf
https://lfmtp.org/workshops/2020/inc/papers/LFMTP_2020_paper_9.pdf
https://kwarc.info/people/frabe/Research/RR_modlog_21.pdf
https://kwarc.info/people/frabe/Research/RR_modlog_21.pdf
https://kwarc.info/people/frabe/Research/RR_soften_21.pdf
https://kwarc.info/people/frabe/Research/RR_soften_21.pdf
https://doi.org/10.1007/978-3-030-73785-6_8
https://kwarc.info/frabe/Research/RS_logrels_12.pdf
https://kwarc.info/frabe/Research/RS_logrels_12.pdf
https://kwarc.info/people/frabe/Research/RS_diagops_19.pdf
https://kwarc.info/people/frabe/Research/RS_diagops_19.pdf

138 REFERENCES

tomated Reasoning. IJCAR ’01. Berlin, Heidelberg: Springer-Verlag, 2001,
pp. 376–380. isbn: 3540422544.

[SB18] Alexander Steen and Christoph Benzmüller. “The Higher-Order Prover Leo-
III”. In: Automated Reasoning. Ed. by Didier Galmiche, Stephan Schulz,
and Roberto Sebastiani. Cham: Springer International Publishing, 2018,
pp. 108–116. isbn: 978-3-319-94205-6. doi: 10.1007/978-3-319-94205-
6_8.

[SCV19] Stephan Schulz, Simon Cruanes, and Petar Vukmirović. “Faster, Higher,
Stronger: E 2.3”. In: Proc. of the 27th CADE, Natal, Brasil. Ed. by Pascal
Fontaine. LNAI 11716. Springer, 2019, pp. 495–507.

[Sha21] Yasmine Sharoda. “Leveraging Information Contained in Theory Presenta-
tions”. PhD thesis. 2021. url: http://hdl.handle.net/11375/26272.

[SJ95] Y. Srinivas and R. Jüllig. “Specware: Formal Support for Composing Soft-
ware”. In: Mathematics of Program Construction. Ed. by B. Möller. Springer,
1995.

[Sko19] Lau Skorstengaard. An Introduction to Logical Relations. 2019.
[Soj10] Kristina Sojakova. “Mechanically Verifying Logic Translations”. MA the-

sis. Jacobs University Bremen, 2010. url: https : / / gl . kwarc . info /
supervision/MSc- archive/blob/master/2010/sojakova_kristina.
pdf.

[Soz+19] Matthieu Sozeau et al. “Coq Coq Correct! Verification of Type Checking
and Erasure for Coq, in Coq”. In: Proc. ACM Program. Lang. 4.POPL (Dec.
2019). doi: 10.1145/3371076.

[Soz+20] Matthieu Sozeau et al. “The MetaCoq Project”. In: Journal of Automated
Reasoning (Feb. 2020). doi: 10.1007/s10817-019-09540-0.

[SP02] Tim Sheard and Simon Peyton Jones. “Template meta-programming for
Haskell”. In: Proceedings of the 2002 Haskell Workshop, Pittsburgh. Oct.
2002, pp. 1–16. url: https://www.microsoft.com/en- us/research/
publication/template-meta-programming-for-haskell/.

[SS08] C. Schürmann and J. Sarnat. “Structural Logical Relations”. In: 2008 23rd
Annual IEEE Symposium on Logic in Computer Science. 2008, pp. 69–80.
doi: 10.1109/LICS.2008.44. (Visited on 01/26/2020).

[SW11] Bas Spitters and Eelis van der Weegen. “Type classes for mathematics in
type theory†”. In: Mathematical Structures in Computer Science 21 (2011),
pp. 795–825. url: https://arxiv.org/pdf/1102.1323.pdf.

[Wec92] WolfgangWechler. Universal Algebra for Computer Scientists. EATCSMono-
graphs on Theoretical Computer Science. Berlin, Heidelberg: Springer, Berlin,
Heidelberg, 1992. isbn: 9783540542803. doi: 10.1007/978-3-642-76771-5.
(Visited on 10/22/2021).

[Wik22] Wikipedia contributors. Short-circuit evaluation — Wikipedia, The Free
Encyclopedia. https://en.wikipedia.org/w/index.php?title=Short-
circuit _ evaluation&oldid = 1067208237. [Online; accessed 3-February-
2022]. 2022.

[WS] Paul van der Walt and Wouter Swierstra. “Engineering Proof by Reflec-
tion in Agda”. In: IFL – 24th International Symposium on Implementa-
tion and Application of Functional Languages, pp. 157–173. url: https:
//hal.inria.fr/hal-00987610/PDF/ReflectionProofs.pdf.

https://doi.org/10.1007/978-3-319-94205-6_8
https://doi.org/10.1007/978-3-319-94205-6_8
http://hdl.handle.net/11375/26272
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2010/sojakova_kristina.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2010/sojakova_kristina.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2010/sojakova_kristina.pdf
https://doi.org/10.1145/3371076
https://doi.org/10.1007/s10817-019-09540-0
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://doi.org/10.1109/LICS.2008.44
https://arxiv.org/pdf/1102.1323.pdf
https://doi.org/10.1007/978-3-642-76771-5
https://en.wikipedia.org/w/index.php?title=Short-circuit_evaluation&oldid=1067208237
https://en.wikipedia.org/w/index.php?title=Short-circuit_evaluation&oldid=1067208237
https://hal.inria.fr/hal-00987610/PDF/ReflectionProofs.pdf
https://hal.inria.fr/hal-00987610/PDF/ReflectionProofs.pdf

	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Challenges & Objectives
	1.4 Contribution
	1.5 Incorporated Material

	2 Preliminaries
	2.1 MMT : A Module System over a Logical Framework
	2.1.1 Flat MMT /LF
	2.1.2 Structured MMT /LF

	2.2 Logical Relations for a Logical Framework

	3 A Framework of Diagram Operators
	3.1 Motivating Example: The Pushout Operator
	3.2 Linear Functors
	3.2.1 Main Definition
	3.2.2 Verification Criteria

	3.3 Linear Connectors
	3.3.1 Main Definition
	3.3.2 Verification Criteria

	3.4 Structure-Preserving Lifting
	3.5 Related Work

	4 Logic-Independent Operators
	4.1 Pushout
	4.1.1 Definition
	4.1.2 Examples
	4.1.3 Meta-Theoretical Properties

	4.2 Polymorphic Generalization
	4.2.1 Definition
	4.2.2 Application to Algebraic Hierarchy: Recovering Collection Data Types
	4.2.3 Application to FOL Formalizations: Recovering SFOL Formalizations
	4.2.4 Meta-Theoretical Properties

	4.3 Parameter Removal
	4.3.1 Definition
	4.3.2 Meta-Theoretical Properties

	4.4 Representing Logical Relations
	4.4.1 Total Logical Relations
	4.4.2 Examples
	4.4.3 Partial Logical Relations
	4.4.4 Related and Future Work: TODO

	4.5 Translating Formalizations of Type Theory from Intrinsic to Extrinsic Style
	4.5.1 Motivation of Case Study
	4.5.2 Heading Towards a Definition
	4.5.3 Definition

	5 Operators for Universal Algebra
	5.1 Introduction
	5.2 Representing Algebra Theories and Related Work
	5.2.1 Shallow and Deep Embeddings
	5.2.2 Representing Algebra Theories as MMT Theories
	5.2.3 Related Work
	5.2.4 Overarching Example: Algebraic Hiearchy in LATIN2: TODO

	5.3 Homomorphisms
	5.3.1 Preliminary Definition: on Definitionless
	5.3.2 Building Towards a Generalized Definition
	5.3.3 Final Definition: on PDFOL
	5.3.4 Examples
	5.3.5 Meta-Theoretical Properties

	5.4 Substructures
	5.4.1 Preliminary Definition: on Definitionless
	5.4.2 Building Towards a Generalized Definition
	5.4.3 Final Definition: on PFOL
	5.4.4 Examples
	5.4.5 Meta-Theoretical Properties

	5.5 Congruences
	5.5.1 on Definitionless
	5.5.2 Thoughts on a Generalized Definition

	5.6 Images of Homomorphisms
	5.6.1 on Definitionless
	5.6.2 Thoughts on a Generalized Definition

	5.7 Kernels of Homomorphisms
	5.7.1 on Definitionless
	5.7.2 Thoughts on a Generalized Definition

	5.8 Conclusion & Future Work
	5.8.1 Conclusion
	5.8.2 Future Work

	6 Implementation
	6.1 Walkthrough: Using and Developing Diagram Operators
	6.1.1 Library User's Perspective
	6.1.2 Library Developer's Perspective

	6.2 Class Hierarchy
	6.3 Design Decisions & Limitations

	7 Conclusion & Future Work
	7.1 Conclusion
	7.2 Limitations & Future Work

