A Modular Formalization of Set Theory

Annika Schmidt
Friedrich-Alexander-Universitéit Erlangen-Niirnberg

20. September 2021

Abstract

The development of a reliable and flexible program to support the automation of
reasoning gets more important considering the increasing amount of data. However, the
formalizations in such a program require design choices that are unnecessary in informal
mathematics, like the commitment to a specifc type system. Therefore formalizations
are hardly comparable, although from a user perspective they are equivalent. To in-
vestigate improvements, some common features are formalized in multiple ways and
variations. Especially interesting are morphisms that realize a feature in a different
type system.

The inspiration for this work is the LATIN project which had similar goals using the LF
framework in Twelf. However, MMT is used for the formalizations, because it has some
advantages compared to Twelf. Concretely, MMT has the two additional morphisms
realize and structure, new typing tricks, notations and roles (e.g. “role Simplify”). Fur-
thermore, MMT is build to use systematically different base languages to formalize
features.

The purpose of this paper is to introduce the method to formalize set theoretical features
in MMT. Additionally, the idea of transformations between different base languages is
partially realized. Furthermore the problems of such a high scaling program and solu-
tion approaches are discussed. The results of this work led to a new release of MMT’s
library LATIN2 and a graphical representation of it.

Declaration

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder &hnlicher Form
noch keiner anderen Priifungsbehdrde vorgelegen hat und von dieser als Teil einer Prii-
fungsleistung angenommen wurde. Alle Ausfiihrungen, die wortlich oder sinngeméf iiber-
nommen wurden, sind als solche gekennzeichnet.

Erlangen, 20.09.2021

Annika Schmidt

1 Introduction

Motivation Normally mathematicians do not give an exact definition of their theoretical
foundation (e.g. axiomatic set theory). Instead they leave the foundation implicit and just
assume the foundation is available, in which all the advanced concepts they want to use have
been defined in an indefinite way.

This is a problem for theorem provers which have one specific foundational language, that
cannot be changed. For example a major design decision in the development of proof assis-
tants is, whether the foundational language should be based on set theory or type theory.
Even then there are numerous type theories and variants of set theory which can be chosen.
Because every theorem prover uses a different foundation, the transmission of formalizations
between two theorem provers is difficult. This does not only cause redundant work, but it
also slows down the progress of formalizing mathematics in general.

Logical frameworks have been introduced to address this problem, e.g. the Twelf imple-
mentation of LF. In a logical framework we can formalize all foundations in parallel and
then develop formal translations between them. In particular we can capture the semantics
of type theory as the translation of type theory to set theory.

The Twelf module system by Rabe and Schiirmann [RS09] was constructed to support the
development of large collections of formalizations of different foundations and translations
between them. This system was used in the LATIN project [Cod+11] to build an atlas of
logics, translations and associated topics.

The LATINZ library is a modern reimplementation of LATIN’s library using the latest
support features in MMT [Rab20|. The present thesis is a central part of the LATIN2 project
by systematically developing formalization of set theory and the semantics of the various
type theories in LATIN2 translated in set theory.

Contribution More concretely, the present work is a formalization of set theory as a theory
graph containing more than 70 different theories and additionally multiple views. These
formalizations are modular which allows reusing them and build different variants of set the-
ory. For example, Zermelo-Fraenkel set theory can be obtained by combining the modules
for basic definitions of set theory, the necessary axioms and the features representing their
realizations. Optionally, multiple desired features can be added as long as a valid realization
for them exists.

For example, a necessary axiom would be the pairing axiom, its realization are unordered
pairs and an additional feature based on unordered pairs could be singletons.

More precisely, the formalization includes views that show how various set theoretical fea-
tures can be realized in terms of each other. For example, unordered pairs realize the pairing
axiom, which is expressed as a view. Another example is that the feature for singletons can

be realized by the feature for unordered pairs, if the unordered pair containing twice the
element a is interpreted as the singleton a.

A small sketch of this idea is shown in figure 1, where blue rectangles represent collections
of theories and purple ones with rounded corners display the (example) theories. Normal
black lines represent that at least one theory of the collection is included in the collection
to which the arrow points. If the arrows starts at a theory and ends in a collection, that
theory is part of the collection. The bigger white arrows represent views, where the theory
with the starting point is used to realize the theory at the arrow end.

L

PairingAx UnorderedPairs [Singletons]

pairing_axiom uopair ; set — set — set singleton ; set — set J
Y Y ¥
¥

Axioms Features Sethase

¥ ¥

ZFC

Figure 1: Sketch for ZFC

When systematically refactoring individual features of set theory into their own theories, in
a way that abstracts from the set theoretical foundation, we notice a gradual transition from
formalizations of set theory to formalizations of type theory. For example, if the feature of
Cartesian products is formalized in its own abstract theory, it is isomorphic to the feature
of product types in type theory.

Contrary to the usual dichotomy of type and set theory, this approach shows them to be
just different ways of interpreting the same feature. In particular, the views defining the
semantics of type theory in set theory add up just being structurally similar to the views
relating different language features. For example, if types are interpreted as sets, product
types are equivalent to the Cartesian product.

This work is one of the first major case studies evaluating recent features of MMT. And
thus provides valuable feedback to the design of MMT as a whole. In particular, we had to
improve MMT regarding issues that become most apparent at large scale, such as the orga-
nization of content into packages and files as well as build processes and the management of
names for large libraries.

Overview Section 2 discusses related work. In section 3 the syntax and morphisms in
MMT/LF are explained using some examples from set theory. The following sections 4 and
5 describe our formalization of set theory in MMT and transformations of various features
into set theory. Lastly, section 7 recaps our work and outlines future work.

2 Related Work

This work is mostly about the formalization of set theory and transformations of type the-
ory into set theory. Therefore it is helpful to take a look at the five systems Cog, Lean,
Isabelle/ZF, Mizar and Nuprl. Information about modularity and module systems has al-
ready been given by Rabe and Kohlhase in [RK13|.

Coq The formal language of Coq is Calculus of Inductive Constructions (CIC) which is
based on type theory. The library Sets contains set theoretical features in Coq. Within this
library, often a variable U is used to denote the universe that contains all elements. Since U
is just formalized as a type, each element of the universe has type U.

The type for sets is Ensemble which is a function that receives an element of type U and
returns a Prop. Basically, Ensemble has already an inbuilt membership function, but still
an explicit membership function In is defined as A x with A : Ensemble and x : U. Features
of type Ensemble are formalized with natural deduction rules [Cst; Cty; Cmo; RK13|.

Furthermore Coq has formalizations for the properties of features in form of lemmas or
definitions. Often these are separated from the formalization of the feature itself. For some
features Coq introduces a new type, like relations get the type Relation which is defined as
U — U — Prop. Another example would be nat for the Peano natural numbers, which is
already defined in Init using the abstract keyword Set. Set is also used for Coq’s approach
to migrate sets to type by interpreting Set as Type.

Moreover Coq provides useful definitions for set theoretic features like Disjoint and Same__ set.
The latter is based on the subset relation Included and is used to define the extensionality
axiom for Ensembles. However, this seems to be the only axiom for set theory in Coq’s
standard library. Further implementations of set theory in Coq have been performed in
e.g. [Kail2| or [SY20]. A formalization for ZFC in Coq is provided at [Czf] [Cst].

Lean Like Coq the Lean theorem prover uses the Calculus of Inductive Constructions and is
based on dependent type theory. Lean has different levels for the design of set theory. The
basic level is in its core library, where the type for set and some set theoretic features are
formalized. First of all, two universes v and v are introduced that contain all elements. Then
set is defined as o — Prop with « : Type u and therefore « is an element of the universe w.
The membership function and subsets are defined just like in Coq.

In the core library features like sep for separation are defined using the set builder notation,
e.g. {ala € s A p a}. Therefore it seems like Lean might have an even deeper level which
supports the common handwritten notations [Lpr; Lwh; AEU18; Lma; Lin; Lse].

The next level is located in the mathematical library, where the datatype set is defined
in more detail. This includes lemmas and properties for the features that were defined in
core as well as the introduction of new features. For example, the Cartesian product is
defined in this level together with its properties.

The final level is a model of ZFC, for which pre-sets are defined. Later in the formalization,
ZFC sets are defined with pre-sets and then they are used to define classes. While pre-sets
are defined, the axioms for ZFC get formalized as well |Lzf; Lax; Lma; Lse].

Isabelle/ZF In general, Isabelle is based on simple type theory. However, Isabelle/ZF imi-
tates untyped set theory by using type i for all sets which is defined as a term. Isabelle/ZF
supports axiomatic formalizations, e.g. for the membership relation or ZF axioms. Still
most of the features have a definition that either depends on first-order logic or previously
formalized features.

Natural deduction rules and some properties of the features are formalized as lemmas. For
the proofs of the lemmas abstract definitions of the features and schemes for an automated
theorem prover are used. This approach can be useful for more modular systems and could

be interesting for MMT as well [RK13; Wen21b; Wen21la; Wen21c; Ido; Izf; Ipu].

There exists a formalization of ZF(C) in Isabelle/HOL as well which formalizes ZF(C) as
a HOL type. Interestingly there is already a theory Set which formalizes sets as predi-
cates among the imported theories of HOLZF, but in HOLZF the new type ZF is declared
and used for sets. Additionally, the feature Elem is axiomatically defined with the type
ZF — ZF — bool. Therefore Elem receives two sets © and A and returns whether x is an
element of A which is equivalent to a membership function.

Features in HOLZF get either defined axiomatically or with previously formalized features.
In general the whole structure of HOLZF is similar to the one in e.g. ZF Base of Isabelle/ZF.
Still there appears to be no connection between these two theories, except that they formal-
ize the same set theory in different variants [Wen21b; Wen21a; Wen21c; Ido; Izf; Tho].

Mizar Although Mizar is based on untyped set theory, it has a type system that can be
interpreted as soft typing. The Mizar Mathematical Library (MML) is based on Tarski-
Grothendieck set theory (TG) and first-order logic. The axioms of TG are formalized twice:
once completely axiomatically and then as features that get proven using the axioms. Addi-
tionally, properties of the features are defined and proven.

Mizar has numerous formalizations of features with their properties, lemmas and models.
However, all formalizations except the TG axioms are not axiomatically. Instead there are
proofs that refer to previously defined features [Wie07; Mmm; Mgr; Min]|.

At the start of a Mizar article, the environment is defined which is basically a series of
includes of vocabulary, notations, theorems and more. Then variables might be reserved to
represent an element of a special type, e.g. set. Often in a formalization a statement about

the type of a variable is made. For example, “for x being set” or “let x be set”.

In order to have a meaningful soft-type system, it is necessary to define the types. For exam-
ple, for ordered pairs a new type pair is introduced and defined as exists x1, 2 such that
x = [x1,22]. The interpretation of [z1,22] as Kuratowski pair has already been defined
together with the TG features that realize the axioms [Wie07; Mmm; Mgr; Min|.

Nuprl Nuprl is based on an extended version of Martin-Lof’s intuitionistic type theory,
but its logic is designed in such a way that its primitives can build a set theory with a simi-
lar expressiveness to ZFC on top of the type theory. Interestingly, the membership relation
x € T is defined for types instead of sets to denote that an object x belongs to type T. In
general it seems like types and sets are basically the same in Nuprl.

This idea is already supported in Nuprl’s core library, where e.g. True is defined as 0 € Z.
Furthermore, subtype is defined as Vo : S.x € T which is equivalent to the definition of
subsets in set theory [Kre02; Nov; Nma; Nbr; Ner; Neq; Nty].

Moreover, other set theoretic features are formalized in Nuprl’s type theory as well. Some
examples are singletons, Cartesian products and disjoint union that all work on types instead
of sets.

Properties of features are stated as theorems that get proven using subgoals. Since Nuprl
tends to have a documentation for its features, the properties are often just part of the
documentation. Additionally, the documentation refers to sections that are required by a
feature and mostly these sections belong to the Nuprl standard library [Kre02; Nov; Nma;
Nbr; Ner; Neq; Nty].

3 Preliminaries

The “Meta Meta Tool” (or MMT) gets developed at FAU Erlangen-Niirnberg. It is a frame-
work that is generic enough to design logical frameworks. Additionally MMT has a standard
library that already contains some logical frameworks. The most popular one is the Edin-
burgh Logical Framework which is abbreviated as LF. In case the reader is not familiar with
LF it is recommended to take a look at [HHP93|.

Thus the term MMT/LF refers to the logical framework LF which is used in the MMT en-
vironment. Therefore typical LF features can be used with MMT/LF’s syntax. A
A-abstraction A4t is written as [x : Alt, where A is a type, z is of type A and ¢ is a term.
Correspondingly, the dependent function type Il,.4B is noted as {x : A}B which can be
abbreviated as A — B. Of course types, inferable brackets and arguments can be omitted
as well. Figure 2 shows the grammar of MMT/LF. The MMT/LF specific features are ex-
plained in more detail below [IR11; Rab20; RR21; RK13].

A MMT document consists of multiple declarations. The two most important declaration
types are theory declarations and constant declarations. The former has the keyword theory

Im has to be a previously defined morphism or an implicitly generated identity morphism

A n= diagrams
| A, theory T := {6} theory declaration
| A,view S — T := {V} view declaration

© n= - declarations in a theory
| O, Al[=t] optionally typed or defined constant
| ©,include S|O,realize S include/realization of a theory
| ©,[total] structure s : S := {1} optionally total structure

W, n=]9, c = t|9,include m! declarations in a morphism
| 9, [total] structure s : S := {¢} optionally total structure

r n= Tz A contexts

t, A f = clzltypelkind| Az at| T, 4B ft MMT/LF expressions

Figure 2: MMT/LF grammar [RR21; RK13]

and is followed by a local name T'. Optionally it can have a type M which is a meta-theory
(see [Rab20]). Finally, a theory declaration has a body © which consists of constant decla-
rations and morphisms. The syntax of a theory declaration is theory T[: M| = ©.

A constant declaration has no keyword and appears normally only within the body of a
theory declaration. Similarly to a theory declaration, the constant declaration consists of a
local name ¢ and an optional type A. Also, it has an optional definiens ¢ and a notation N
which is often used to introduce a mathematical symbol. The syntax of a constant definition
is c[: A][= t][#N]. Although only the local name c is required, it is common to give at least
the type A or a definiens ¢ as well [IR11; Rab20; RR21|.

Additionally, MMT supports the theory morphisms include, realize, view and structure which
are indicated by their corresponding keywords. If a theory T includes a previously defined
theory S all declarations and includes made in S are available in T" as well. An include can
be used any time definitions of another theory S are needed.

A similar morphism is realize. Similar to include, all declarations of S can be used in T,
if a theory T realizes a previously defined theory S. However, every declaration in S that
has no definition has to be defined in 7. Even includes in S have to be defined in T', but
mostly the identity morphisms of the theories just get included in 7" as well. The realize
morphism is useful, if a declaration can have multiple different definitions. In the exam-
ple 3 KuratowskiPairs realizes OrderedPairs, since it is wanted to keep all properties of
OrderedPairs. However, pair should not be defined directly in OrderedPairs, since there
are many definitions for pairs and some users might prefer Wiener’s definition of a pair [IR11;
RR21; SMO0§].

The first named morphism is view which has a domain theory S and a codomain theory
T. A view v with domain S and codomain T is basically the same as if T realizes S. Still
a view is different from a realize, since it is not written within the theory T' it does not get
included whenever T' is included in a theory U. Additionally, a view might allow multiple

codomains in future versions of MMT. For now, multiple codomains can still be imitated
by creating a new theory C' that includes all codomains. Then C' is used as the codomain
of the view. Therefore a view should be used, if there are either multiple codomains or the
definition should not be bound to a theory 7" [IR11; RR21|.

In example 3 there is the view SelfPair with domain Singletons and codomain Unordered-
Pairs. This could be done as a realize in Singletons, but then singleton would always be
defined with UnorderedPairs and therefore a dependency would be created. When using a
view there is no direct dependency between both theories. If Singletons should be included
with the definition in SelfPair, this is possible by writing include Singletons = SelfPair
[IR11; RR21|.

theory Singletons = theory KuratowskiPairs =
singleton : set — set include Singletons
include UnorderedPairs
theory UnorderedPairs = realize OrderedPairs
uopair : set — set — set pair = |a, b] uopair (singleton a) (uopair a b)
theory OrderedPairs = view SelfPair : Singletons — UnorderedPairs =
pair : set — set — set singleton = [a] uopair a a

Figure 3: Example for morphisms in MmT/LF

The last morphism is structure which is also named. Theory T' can have a structure referring
to a previously defined theory S. A total structure is basically the same as a realize, but
every declaration has to be called using the structure name. In the example 4 the refl in
the structure eq would be called using eq/refl. In a realize, it would be called just using refl.
If urefl would have a notation in RelationRefl, it is recommended to repeat the notation
definition in the structure. Otherwise there might occur an error when using the build script.
Another difference is that a structure which is not total does not have to define everything

of S. Therefore it can be useful, when not all undefined declarations of S shall be defined in
T or when the defined declarations should not be used by default [IR11; RR21].

4 Formalization of Set Theory

For mathematicians set theory is one of the most important concepts. Therefore a theorem
prover should provide at least some set-theoretic features, if it wants to gain popularity.
MMT’s predecessor Twelf already implemented some features of ZFC. However, these for-
malizations are not modular and therefore it was not possible to translate them exactly into
MwmT/LF. Still they provided assistance regarding proofs and an overview of some important

features. Of course, there also might have been some inspiration of the theorem provers that
have been discussed in Related Work [Sall9; Twe; IR11].

theory RelationRefl = theory UntypedEquality =

carrier : type # ¢ include UntypedLogic

rel: c—>c—c#$ uequal : term — term — term # ="

refl : {z} 28« urefl : {z} 2z ="x

total structure eq : RelationRefl =

theory UntypedLogic = carrier = term

prop : type rel = [z,y] 2z ="y

ded : prop — type # + refl = [x] urefl

term : type

Figure 4: Example for structures in MMT/LF

The graph in figure 5 displays an overview of the contents in this chapter, where each
rectangle represents a collection of theories. FOL stands for first-order logic on which set
theory is based. Although all remaining collections are part of set theory, Type Base will
not be discussed until section Transformations into set theory. If an arrow points toward a
collection, at least one theory of this collection is dependent on a theory in the collection
with the starting point. For example, Finite Sets is dependent on Set Base. Additionally,
the dotted arrow indicates that Cartesian product is realized in Pair Definitions.

4.1 Basics of set theory

There exist different variants of set theory. Beside the distinction of naive and aziomatic
set theory in general, the latter can be divided into multiple variants. Some of the most
famous axiomatic set theories are Zermelo-Fraenkel set theory with or without the choice
axiom (ZFC or ZF) and Tarski-Grothendieck set theory (TG). However, MMT shall be as
independent of a specific set theory as possible. Therefore multiple different set theories can
be formalized and features are defined axiomatically whenever this is practicable. Thus every
user can work with his own desired set theory and does not need to redefine each feature
[IR11; Pin14; Wie07].

Set Base Although there are different set theories, they have some characteristics in com-
mon. First of all they need a definition of a set. Since the formalizations of set theory are
based on first-order logic, in MMT a set is defined as a term. Therefore all operations of
first-order logic can be applied to sets as well.

Also, membership needs to be formalized which determines, whether an element belongs to
a set or not. In MMT this is just an abstract formalization [IR11; Pinl4; Sall9].

Other important features are subsets and the equality of sets which is normally defined

using the extensionality axiom. These can either be considered individually for each fur-
ther feature or they get added to the core definitions of set theory. The former approach is

10

FoL

set_theary
Set Base
|
¥ ¥
Finite Sets Type Base
=TT
Y Y h Y A
Qperations Lattice Operations Axioms Powersets
L i_l
Y Y i Y
Relations Cartesian Product
L
Y Y ¥ v \r\\r\r\riir
Fair Definitions Wiews Features
L
*i\r YYYY
ZFC
¥ +_1

MNats

Figure 5: Overview of set theory

11

called “cross-cutting” and has the benefit that the specific set theories are not required to
implement subsets and extensionality. However, this might be needless, because subsets and
extensionality are key features of set theory and it is very unlikely that a specific set theory
does not use them.

The downside of cross-cutting is an impractical amount of additional theories. Every time a
later formalized feature has a property regarding subsets or extensionality, a new theory for
this property has to be defined. Therefore the number of theories would grow faster than
necessary which could soon be confusing. Thus the MMT formalization includes subsets and
extensionality in the basic definitions for set theories which are done in setbase.mmt [IR11;
Pinl14; Sal19].

theory SetDefinitions =
set — term
in : set — set — prop # €

theory ExtensionalityAx =
include SetDefinitions
isextensional = [A, B|(V¢|z](r€e A<z e B)) < A="B
extensionality axiom : {A, B} |- isextensional A B

theory SubsetDefinitions =
include SetDefinitions

subset : set — set — prop # <
= [A, BVzlre A=2€ B

theory SetBase =
include SetDefinitions
include ExtensionalityAx
include SubsetDefinitions
include UniverseNonEmpty

Figure 6: Excerpt of setbase.mmit

An excerpt of setbase.mmt is given in figure 6. It contains the most important concepts
of set theory that result in the theory SetBase. The missing theory UniverseNonEmpty
had already been defined in MMT’s type theory. It allows an MMT user to introduce fresh
variables within a proof. The remaining included theories in SetBase are only sketched and
might consist of more declarations. However, natural deduction rules and further definitions
for proving are not relevant for examples and therefore will be usually skipped.

Also, it should be mentioned that setbase.mmt provides some additional theories that de-
fine properties of sets like being empty. These definitions are not included in SetBase, but

12

they are useful for the formalization of some features which include their required definitions.

[ErmptyDefinitions SetDefinitions RelationDerinitions

. . < _ - islefttotal, isrighttotal

:]S:r:r;ﬁ pt. S':t”_n'nﬁ?r?] o se_t ;etteﬂ et — pro isleftunigue, isrightunigue
¥.all ¥ = prop isfunction, funZrel

Y | l| ¢

[DigjointDefinitions] [SubsetDefinitions] ExtensionalityAx]
{aredisjuint, ispwdisjoint J {; cset — set — prop extensionality_axiom J
SubsetExtensionality]
{subset_eq J
l Y ¥
[SetBase] [LIniverseMonEmpty
LUniv_nonempty

Figure 7: Overview of setbase.mmt

The graph 7 displays the theories that just have been defined. Purple rectangles with rounded
edges represent theories which are formalized in setbase.mmt. Yellow rectangles illustrate
theories that are not part of this MMT file. However, some violet theories include the yellow
ones, therefore they are necessary in the graph. The includes are represented as arrows,
where the included file is the starting point. For further graphs analogous interpretations
can be used.

ZFC axioms Although MMT shall be independent of a specific set theory, it is neces-
sary to use a set theory for consistency. Therefore a version of ZFC that is similar to the one
in Twelf is formalized in MMT. The used axioms of ZFC are [Twe; IR11; Hal60; Wel20]:

e Extensionality: VAVB(Vz.xe A< reB)< A=B

Set Existence: Jz true (included to reduce the dependency on the infinity axiom)

Unordered Pairing: VAVB3Z(Vx.x e Z < v =Av 2 = B)

(General) Union: VAIZ(Vzx.x e Z < 3X. X e Anze X)

13

e Powerset: VAIZ(VB.Be Z < (Vx.x € B=z € A))

e Comprehension: VAIZ(Vz.x € Z < x € A A P(x)), where P is a unary predicate that
may contain free variables

e Replacement: VA(Vo.ox € A = Fy.f(r,y)) = 3Z(Vyy € Z = Iz € A A f(2,7)),
where 3' abbreviates the quantifier for unique existence and f is a binary predicate
that may contain free variables

e Regularity: VA(Sz.x € A) = 3IB.Be AA —(Jx.x e Anz e B)

e Infinity: JA(J € A A Vo.x € A = succ(z) € A), where ¢J is the empty set and succ
is a successor function (normally succ(x) = x U {x}; this means succ is the union of z
and the set containing z)

e Choice: Let A be a family of pairwise disjoint non-empty sets, then
VAICVX.X € A = F'c.ce C A ce X, where 3' abbreviates the quantifier for unique
existence

In general the formalizations of axioms are based on SetBase and are located in azioms.mmit.
However, extensionality is part of SetBase and set existence is equivalent to UniverseNon-
Empty and therefore not formalized again. Whenever it is practical natural deduction rules
for an axiom are defined together with the axiom itself. To avoid inconsistencies, the rules
need to be proven.

Even though all axioms belong to ZFC by now, there exists a separate file for ZFC. Since
other set theories shall be formalized as well, it can be helpful to reuse some of the axioms.
Especially, if an individual set theory only differs slightly from an already existing one.

4.2 Features without element construction

Now that the foundation is done, features for set theory can be formalized. However, there
are some different types of features. Also, sometimes it makes sense to locate features in
different MMT files in order to make the MMT files clearer.

Finite Sets The first group of features are finite sets. Admittedly this name might be
irritating, since most features result in finite sets. Therefore a name change to “countable
sets” is worth considering, but finite sets seems to be more common.

Finite sets contain the empty set, singletons and unordered pairs which are also called dou-
bletons. Accordingly each of these features creates a set containing exactly no, one or two
distinguishable elements. Apart from the empty set which has no arguments, every finite
set gets its elements as arguments. Of course there could be formalized an infinite amount
of features of this sort, but in most cases these are sufficient [Pin14; Sal19; IR11].

In 3 the theories for singletons and unordered pairs have been just sketched. Figure 8 shows
how the theory for unordered pairs actually looks like in MMT. After the include of SetBase

14

theory UnorderedPairs =
include SetBase
uopair : set — set — set
uopairll : {A, B} + A € uopair A B
uopairlr : {A, B} - B € uopair A B
uopairE : {A, B,z,C} + x € uopair A B —
(Fe="A->+C)>(Fz="B-FC)—-+C
uopair _comm : {A, B} - uopair A B =" uopair B A = ... (proof omitted)

Figure 8: Theory UnorderedPairs

the type of an unordered pair gets defined. Then there are two introduction rules for natural
deduction which state that both arguments of an unordered pair are actually elements of
the unordered pair. For the elimination rule it would be sufficient to infer that if = is an
element of the unordered pair A B, then x has to be either A or B. However, in actual
proofs it would be necessary to eliminate the disjunction as well. Therefore the disjunction
elimination is already build into the elimination for an unordered pair. Lastly, an unordered
pair is commutative which gets proven using extensionality. It shall be noted that neither the
unordered pair itself nor its natural deduction rules have a proof. Since these features shall
be defined axiomatically to support modularity, it is impossible to proof this now [Pinl4;
Sall9; IR11].

[EmptyDefinitions] SetBase

isempty : set — prop
nonempty, all_nonempty

v #] ¥ | 1 v

Empty S et } Singletons [UnorderedPairs

& set J singleton : set — set [uapair: set — set — sat J

— T

Figure 9: Overview of finite sets.mmit

Powerset The power set of a set A is the set containing all subsets of A. This offers two
options for the formalization: either referring to subsets or to indirectly formalize subsets
again. The latter would be possible in a set theory without subsets as well. However, it
would probably not be rational to have power sets in a set theory without the concept of
subsets. Therefore this consideration is meaningless, but the aspect of usability is not. If the
variant with subsets is chosen, then an extra proof step to show the subset relation might
be necessary. The variant without subsets does not need this extra step. At least, if its

15

argument is not already a subset relation.

Since both variants can be beneficial, both are formalized. This does not cause much more
work, because only the natural deduction rules have to be formalized in both variants. The
second variant can even be proven using the first variant, which is useful for realizations
[Pin14; IR11].

‘ SetBase Fowersets PowersetsEmpty Empty Set |

P set — set powerset_empty @ set

Y
Y
]

Figure 10: Overview of powersets.mmt

Lattice Operations Here lattice operations mean union and intersection, general union
and intersection (labeled as “BigUnion” and “Biglntersection”), difference and complement.
These operations are some of the most typical operations of set theory that should never
be left out. BigUnion is the union operation for a family of sets and correspondingly Big-
Intersection is the intersection operation for a family of sets. However, the formalization of
these features is still axiomatically. Therefore there is no dependency between the general
operations and union or intersection. Due to the fact that there cannot be a universal set
containing all other sets, difference and complement are nearly identical in their formaliza-
tion. They only differ noticeably in their properties [Pin14; Sall9; IR11].

theory EmptySet =
include SetBase
emptyset : set #

theory Union =
include SetBase
union : set — set — set # 1 U 2

theory UnionEmpty =
include Union
include EmptySet
union_empty : {A} - Au @ =" A = ... (proof omitted)

Figure 11: Sketch of the theory UnionEmpty and its included theories

Some features have properties that rely another feature. An example for this is union_ empty
which states that a union of a set A with the empty set results in A. Basically there a three
options to formalize this property. First would be to formalize this in the theory EmptySet,
then Union would have to be included there. Second is the formalization in the theory

16

Union, where EmptySet would have to be included. The third option is to do cross-cutting
and create a new theory UnionEmpty which includes both EmptySet and Union. The only
purpose of UnionEmpty would be to define properties that solely rely on these two theories.
Since a modular formalization is anticipated, the last option is preferably, because it does
not create a preventable dependency between the two features. However, it creates an ad-
ditional theory which has to be included every time this property is needed. Fortunately,
these properties are used seldom and since it can be defined easily without creating further
dependencies, it does not produce much extra work. The formalization of UnionEmpty is
sketched in figure 11 [Pinl4; Sall9].

‘ BigUnion | | SetBase | [pomesscon | U BRI
— . isempty . set — prop
U set — set N sel — set nonempty, all_nonempty
]

\
l Y ‘ v ¢

Difference ‘ Differencelntersection ‘ Intersection ‘ Complementintersection | Complement | ComplementUnion | Union
> —— N ——
~ o set — set — sat dif_inter st — set — set comp_inter ¢ st — st — set comp_union u st — set — set
DifferenceEmpty IntersectionEmpty ST A UnionEmpty
dif_empty, dif_id inter_empty Egmgiﬁm\?tevr'se union_empty
- - X —y - A

EmptySet

Figure 12: Overview of lattice_ operations.mmt

Operations The operations filter, replace, image, symmetric difference, adjoin and remove
are not formalized in a different way than lattice operations. Still there had to be different
files to increase the performance and maintainability of the corresponding MMT files. Filter
and replace are the corresponding features to the comprehension and replacement axiom.
Image does not rely on set theory and therefore could be realized from a typed theory in a
later version. Nearest to the lattice operations are symmetric difference, adjoin and remove,
since they are similar set modifications. Therefore they could be added to lattice operations,
but if more similar features get formalized, the perfomance of lattice operations might de-
crease a lot. Thus for the moment, all these features belong to operations.mmt |[Pinl4; IR11].

Scheme for features without element construction Each feature mentioned in this
chapter does not create new elements. This means that every element in the resulting set
is either an input set or some kind of element of an input set. The feature just “picks”
the desired elements from its arguments. If such a feature shall be formalized in MMT, the
following scheme can be useful:

1. State the type of the feature without defining it.

17

RelationDefinitions |
Replace

| Adjoin SetBase —
i o (e eat islefttotal, isrighttota
adjoin ; set — set — set B - rep'l;ce .t_{A.s?t,fiselt A =l " B isleftunigue, isrightunique
< EGE0) EU —= isfunction, fun2rel

] ‘
v ¥

‘ Filter ‘ | SymmetricDifference ‘

‘ | : set — (set — prop) — set

|ﬂ.:set—set—set ‘

h +

Y

| Remove | | Image ‘ ‘ SymmetricDifferenceEmpty ‘

remove ; set — set — set | |image : (set — set) — st — set ‘symd'rr_id, sy midif_empty ‘
| ImageEmpty Empty S et ‘
|image_empt5r I @ oset ‘

Figure 13: Overview of operations.mmt

2. Provide rules for natural deduction without proving them:

(a) At least one rule to introduce the type.
(b) At least one rule to eliminate the type.

3. Define properties of this feature that are independent of other features (except the
features of SetBase).

4. Define properties that rely on this and other features in additional theories.

If the feature shall not be formalized axiomatically, a definition has to be added in 1 and
2. Steps 3 and 4 should be proven in either case. Figure 14 demonstrates how this scheme
applies for Union. The definition of UnionEmpty in figure 11 is equivalent to step 4 [Pinl4;
Sall9; IR11].

4.3 Features with element construction

Sometimes a “normal” set is not expressive enough. Mostly this is because sets are unordered
and do not allow duplicates. Then it is necessary to construct a new element which is based
on sets but still imitates the desired property [Pinl4; Sall9].

Cartesian Product The Cartesian product of two sets A and B is the set consisting of all
pairs a b, where a € A and b € B. Assuming it does not need a new element, the pairs could
be build using unordered pairs. However, when it comes to the elimination rule it would be
impossible to determine, whether a was originally an element of set A or set B. Therefore

18

theory Union =
include SetBase
// Step 1: stating the type (and a notation)
union : set — set — set # 1 U 2
// Step 2(a): introduction rules
unionll : {A,B,z} -2z€A—>+z€AUB
unionlr : {A,B,z}+2reB >z AuB
// Step 2(b): elimination rule
unionE : {A,B,2,C}+2eAuB—>(+reA—>+C)—> (FxeB -+ C)—+C
// Step 3: definition of properties
union_subl : {A,B} - A< Au B = ... (proof omitted)
union_idem : {A} - Au A=*A = ... (proof omitted)

Figure 14: Application of the scheme for Union

an ordered pair has to be used, since it allows to distinguish the elements based on their
order |Pinl14].

There are different definitions for an ordered pair (a,b). Wiener defined it 1914 as

(a,b) = {{{a}, T}, {{b}}}, whereas later Kuratowski chose (a,b) = {{a}, {a, b}}. While Kura-
towski’s definition is better readable and independent of the empty set, Wiener’s definition
does not need a case distinction to check whether a = b. Overall there are various definitions
for ordered pairs, often it is just a slight change of Wiener’s or Kuratowski’s variant. Since
so many varations exist, MMT should not be fixed on a single definition but instead support
multiple variants. As hinted in figure 3 MMT has a realization of Kuratowski pairs and
Wiener pairs. The corresponding files are located in the subfolder pair definitions [Pinl4;
SMO08|.

Since MMT strives for modularity there exists an abstract theory OrderedPairs (Figure 15),
which just gets realized as a Kuratowski pair or a Wiener pair. The formalization of
OrderedPairs starts with declarations to construct and deconstruct an ordered pair. The
deconstructions pil and pi2 select the first and second element of the ordered pair. However,
these declarations cannot be defined without an exact definition of pair. Therefore rules have
to be formalized that specify the interactions of the pair construction and deconstruction.
The computation rules determine that pil applied to an ordered pair (a,b) results in a and
correspondingly pi2 leads to b. However, this rule has to be proven in the realizations, when
the definition of pair is known. To assure the next two rules are meaningful, they shall only
be used for pairs. That is why a auxiliary function ispair gets defined. The representation
rule states that a pair p is equal to the ordered pair (pil p,pi2 p). Finally, the extensional-
ity rule defines that two pairs are equal, if they have the same first and second component
[Pin14; SMOS§; IR11].

19

theory OrderedPairs =
include SetBase
pair : set — set — set # 1 ,* 2
pil : set — set # 1qu
pi2 : set — set # lou

ispair : set — prop = [p|3“[a]3“[b]p =" (a,"b)

compL : {a,b} I (a," b)1« =" a
compR : {a,b} - (a," b)ou ="b

repr : {p} I ispair p —F p =" (p1u," pou) = ... (proof omitted)
ext : {p,q} F ispair p —F ispair ¢ —F p1u =" g1u —F pou =" gou > p ="¢
= ... (proof omitted)

pair_inj: {A,B,C, D} (A*B) =" (C"*D) -+ A="CAB=*D
= ... (proof omitted)

Figure 15: MMT formalization of ordered pairs

theory CartesianProduct =
include OrderedPairs
prod : set — set — set # 1 x* 2
prodl : {A,B,a,b} -ae A—F+be B —F (a,"b) e Ax" B
prodEl : {A,B,p} -+ pe A x" B —F pju € A # 4 prodEl
prodEr : {A, B,p} - pe A x" B — pyu € B # 4 prodEr
prodE : {A, B,p} - pe A x* B —} ispair p # 4 prodE

Figure 16: MMT formalization of the Cartesian product

With the abstract formalization of OrderedPairs, the Cartesian product can be imple-
mented. However, the formalization follows the scheme for features without element con-
struction. The only notable difference is that OrderedPairs are included and are used as
the element. Figure 16 displays the formalization of CartesianProduct [Pinl4; SM08; IR11].

Also, using OrderedPairs the dependent product (labeled as “Sigma”) can be formalized.
The dependent product is nearly the same as the Cartesian product, but the second com-
ponent of the ordered pair is dependent on the first component. Additionally, there exists
a modification of sigma which requires a proof that the first component is an element of its
first argument. This modification is useful for transformations in section 5.

Another feature that is dependent on OrderedPairs is called img. Img is a different variant
of image that works on sets R where the elements are ordered pairs. Then img gets an argu-
ment a that represents the first component of an ordered pair. It generates a set containing

20

all components b that satisfy (a,“b) € R [Pinl4; SM0§; IR11].

‘ Sigmaiod | SetBase [Img l
& (A set} i - — —
[} F xeA — set) — set ||mg - e = ‘
X)
v
OrderedP airs
| Sigma | Cartinter Intersection ‘
< v get — 58t — set <
‘E' : st — (set — set) — set o set — set cart_interBC, cart_inter r o set — set — set ‘
¥ . set — set
3
Y L4
| SigmaEmpty | CartesianProduct Cartlnion
L.
{sigma_emptyﬂ, sigma_emptyB J w o oset — set — set cart_unionBC
‘ EmptySet CartEmpty Union
L
‘ @ get cart_emptyA, cart_emptyB W oset — set — szet

Figure 17: Overview of cartesian_ product.mmt

Scheme for element construction The generation of a new element in set theory follows
always the same scheme. This can be either done in an extra theory, like in OrderedPairs,
or in the theory requiring this element, like CartesianProduct. For the modularity of MMT
it is advisable to create a new theory. However, both schemes could be combined to formalize
features with element construction in a single theory. In any case the following steps should
be considered for the definition of a new element:

1. Provide element constructor(s) and deconstructor(s).

(a) State the type of the constructor without defining it.
(b) State the type of the deconstructor without defining it.

2. Define an auxiliary function that checks, whether an element is of this newly defined
Lttype”.

3. State the rules defining the behaviour of the constructor and destructor.

(a) Computation: Apply the destructor to a newly constructed element and compute
the result.

(b) Representation: Reconstruct an element using its components.

21

(c) Extensionality: Define that two elements are equal, if they have the same com-
ponents.

4. Define properties of the element that are independent of other features (except the
features of SetBase).

5. (Define properties that rely on this element and other features in additional theories.)

The proof of step 3(a) is impossible without a definition of constructor and destructor. The
remaining rules 3(b) and 3(c) can be proven, if step 2 can be proven in an axiomatic formal-
ization. Otherwise each proof has to be done in a realization of this element [IR11].

An example for this scheme is OrderedPairs which formalization is shown in figure 15.
However, there does not exist an example of step 5 by now. Still it might be possible that an
element might have a special interaction with e.g. the empty set. Considering the definition
of Kuratowski pairs there could be a property that if a and b are equal, then (a,b) = {{a}}.
This property uses singletons, but Kuratowski’s definition uses singletons anyway and there-
fore no new theory would be needed. Still the last step of the scheme is worth considering.
Optionally, steps 1(a) and (b) (and therefore step 3(a)) can be defined, if no axiomatic for-
malization is wanted. The remaining steps can also be proven in an axiomatic formalization
of OrderedPairs [Pinl4; SMOS; IR11].

Relations Another feature that needs a new element is the set of all relations of the sets A
and B. Apparently every relation of A and B has to be an element of this set. Therefore
the element constructor needs to create a specific relation with a binary predicate P and
the deconstructor checks, whether two elements a and b belong to this relation. In contrast
to OrderedPairs, the deconstructor of TheRelation does not return the components of a
relation, but rather the membership in that relation [Pin14; IR11].

Then the auxiliary function isrelAB is formalized which preferably would be done similar
to ispair in OrderedPairs. However, this would result in an expression with an existential
quantification of a predicate. Since set theory is based on first-order logic, such an expression
is not allowed. Therefore isrelAB has to be defined later, when TheRelation gets realized.
The rules describing the behaviour of the constructor and destructor are formalized accord-
ing to the scheme step 3. Because isrelAB is not defined, the rules cannot be proven in
TheRelation.

Apart from that, TheRelation specifies the relation definitions that have been formalized
in setbase.mmt. In setbase.mmt the definitions had to be done rather abstract, because
it cannot refer to TheRelation to avoid cyclic dependencies. Therefore TheRelation has
declarations that adjust the relation definitions by providing the destructor inRel as an ar-
gument [Pinl4; IR11].

With the element TheRelation the feature for relations can be formalized. Relations is
the set containing all relations of two sets A and B. It can be formalized according to the

22

scheme for features without element construction. The only difference is, that it includes
TheRelation as its elements. Additionally, the two features for the sets of all partial func-
tions and all functions on the sets A and B can be formalized exactly the same. Then the set
of all partial functions on A and B contains all right-unique relations. The set of all functions
on A and B consists of all relations that are right-unique and left-total. The three features
for relations, partial functions and functions on A and B are all formalized axiomatically
[Pin14; TR11].

Since basically every function is just a relation, TheRelation should be enough. However,
it can be quite complex to express functions with TheRelation, especially when a function
shall be applied to an element. Therefore another element called lambda function is intro-
duced that can be used similarly to a function in practice.

The function that is build with its constructor creates a set that equals a relation generated
by TheRelation. In contrast to TheRelation, the deconstructor returns the element that is
the result of the function application. Since lambda function shall only be used to represent
functions, the rules 3(b) and 3(c) require functions to be provable. Also, the function prop-
erties could be helpful to proof a resemblance of the deconstructors apply and inRel [IR11].

‘ RelationDefinitions |

| Relations ‘ | SetBase ‘
‘ islefttotal, isrighttotal

isleftunique, isrightunique
isfunction, fun2rel

¥ *—‘

| PartialFunctions TheRelation]

rel : set — set — set ‘ |

A

LambdaF unction

pfunc : set — set — set Lg [theRel: set — set — >l emt . .
(st — set — prop) — set Mo oset (set sef) set

inRel : set — set — set — prop T e

Y 4
| Functions ‘ Image Lambdalmage |
L.
func ;. set — set — set ‘ image ; (set — sef) — set — set lambda_rel |

Figure 18: Overview of relations.mmit

4.4 Building ZFC

The axioms of ZFC have already been stated in section 4.1. However, it also has been
mentioned that the axioms and the formalization of ZFC are located in different MMT files.
Therefore the structure and issues of zfc.mmt shall be explained in more detail [IR11].

23

First a theory ZFBase is created that solely includes SetBase and the axioms that ZF is
based on. The only exception is the infinity axiom that relies on empty set and cannot be
included before empty set has been realized. Otherwise there would be a morphism error in
MMT. Then the theory ZF is build that contains the features that are strongly connected to
the axioms in ZFBase. Empty set gets realized in ZFBase such that the infinity axiom can be
included. An example for another feature in ZFBase is UnorderedPairs, which is essentially
the feature defined by the axiom Unordered Pairing. Based on ZF the theory ZFFeatures is
generated which consists of all features that can be realized using ZF. The same idea applies
for ZFC.

The separation of the theories is not necessary, but it might be helpful to keep track of the
dependencies. While features of ZFFeatures can be removed relatively loosely, a removed
feature in ZF indicates that probably an axiom is not needed. Also, there could be multiple
theories similar to ZFFeatures that contain different features. Then the modularity of ZF
could be useful, since it could be reused as the foundation of these theories.

Until now an important aspect has been disregarded. Because features are formalized ax-
iomatically, they cannot be included in ZF and ZFFeatures without a realization. Otherwise
just new axioms would be added to ZF, which is pointless.

For the purpose of modularity views are created to realize features independently of ZF(C).
There has to be at least one view for each feature in order to include it in ZF(C). Sometimes
it is possible that a feature could be realized by multiple different views and one of these
views has to be chosen [IR11].

Figure 19 is an overview of the views between set theoretic features. The axioms in SetBase,
inclusions of elements like OrderedPairs and extra theories for multiple codomains are ig-
nored in the graph. Each arrow represents a view, where the arrow points towards the
domain. If the view has multiple codomains, the arrow has multiple starting points that are
combined in one line. For example, Singletons and Adjoin are the codomains for a view
with the domain UnorderedPairs.

A huge problem in this graph is that especially the theory Filter can be used in numerous
views as (part of) a codomain to realize another feature. Therefore there are many lines
that have a connection to Filter which makes the graph confusing. Another problem is
that some features rely on multiple codomains which is hard to illustrate and leads to many
crossing lines. However, the main issue is that the flexible formalization of views leads to a
high connectivity between different theories. Therefore, the more theories and accordingly
views are formalized, the more complicated the graph gets.

Fortunately, a complicated graph does neither affect the formalization nor the usability.
Therefore the formalization of ZF(C) can be continued using one view for each feature.
For example, for the realization of Singletons either the view SelfPair with codomain
UnorderedPairs or a view with the codomains Adjoin and EmptySet can be chosen. How-
ever, these might not be the only possibilities to realize Singletons.

24

PairingAx

pairing_axiom

e —

_ RegularityAx

7 UnorderedPairs

regularity_axiom

7 uopair : set — set — set

Acyelic

UnionAx

union_aciom

i

BigUnien

U set — set

ReplacementAx

replacement_axiom

Replace

Image

replace : {A:set, fiset — set}
+ (isfunction fun2rel f) A) — set

R A

SigmaMod

image : (set — sef) — set — set

B (A sef)
({x} - x<A — set) — st

ComprehensionAx

Sigma

comprehension_axiom

—

B set — (sat — saf) — set

7 Fiker 7

CartesianProduct 7

T : st — (set — prop) — set

T set — set — set 7

in_acyclic

PowersetAx

powerset_axiom

b

Powersets

o set— set

Img
img : set — set — set

TheRelation

theRel: set — set —
(set — set — prop) — sat
inRel : set — set — set — prop

Relations

rel : set — set — set
I

LambdaFunction

M o set — (set — set) — set
@ : set— set — set

PartialFunctions

piunc : set — set — set

mw [__
1
i Biglnterseetion _ i Union _ Difference
73 rset — set _ U set — set — set _ ~ i set — set — set
I : I C
_ Intersection _ SymmetricDifference 7 Complement _
n:set — set — set _b.wm_l.mmﬁl.mm.— 7 € set — set — set _
I T
EmptySet
@ set
Singletons 7
ingleton : set — set
I
Adioin _

adjoin : set — set — set

remove : set — set — set

Functions

fune : set — set — set

in MMT

1ewWs

: Overview of v

Figure 19

25

The formalization of the view SelfPair has already been sketched in figure 3. When
Singletons are included in ZFFeatures, the view SelfPair has to be stated as the realiza-
tion of Singletons. Of course, this creates dependencies within ZFFeatures and therefore
the order of its features is partially fixed. However, this also assures that features are not
included before they can be proven in ZF(C) [IR11].

theory ZFBase =
include SetBase
include PairingAx
include UnionAx

theory ZF =
include ZFBase
include UnorderedPairs = UopairFromAx
include BigUnion = BigUnionFromAx

theory ZFFeatures =
include ZF
include Singletons = SelfPair
include Union = UnionAsBigUnion
include Adjoin = AdjoinUnion

Figure 20: Excerpt of the formalization of zfc.mmt

Figure 20 displays an example of the idea of zfc.mmt which is illustrated in the graph in
figure 21. For this example ZFBase consists of SetBase and the axioms Unordered Pairing
(PairingAx) and (General) Union (UnionAx). In ZF the features UnorderedPairs and the
general union BigUnion are included with the realization from their corresponding views.
UopairFromAx is the view that defines UnorderedPairs using PairingAx and accordingly
BigUnionFromAx realizes BigUnion with UnionAx. To keep this example simple, the formal-
izations of features and their views have been omitted.

In ZFFeatures further features are defined on the basis of ZF. The view SelfPair de-
fines Singletons as UnorderedPairs and UnionAsBigUnion realizes Union as the BigUnion
of UnorderedPairs. Within the view AdjoinUnion Adjoin is defined using Union and
Singletons. Since these two features are not part of ZF, it is necessary to include them
before Adjoin can be included [IR11].

Though this concept is great for modularity, there are some downsides. First of all, since
views cannot have multiple codomains by now, there needs to be an extra theory C' for the
codomains of a view. This additional theory has to be included in ZFFeatures before the
view can be used. This is a manageable but nonetheless annoying problem. In the example
20 there would be additional theories BigUnionUnorderedPairs and UnionSingleton that

26

‘ SetBase | | LInionAx ‘ | PairingAx |
[J luninn_axinm J {pairing_axinm
¥ ¥ ¥ V lL
‘ ZF Base | | Biglnion ‘ UnorderedPairs |
[J {U s set — set J uopair: set — set — set
4 4 v V iL
| ZF | | Lnion | Singletons

singleton : set — set

‘ ‘ ‘u:set—-set—-set ‘

\%7:11

| Adjoin

[adjnin get — set — set J
]
Y Y ¥

ZFF eatures

Y

T
—

Figure 21: Graphical visualization of the formalization in figure 20

include all codomains of the corresponding view.

Another issue occurs because of the axiomatic formalization of elements. For example,
when Kuratowski’s definition should be used for ordered pairs, this leads to morphism errors
in ZFFeatures as soon as the Cartesian product or dependent product is realized. Just the
inclusion does not lead to an error, therefore the problem is related to the view to realize
the features. A view needs to realize all undefined declarations of its domain. Consequently,
if the domain is the Cartesian product, OrderedPairs have to be realized as well. Since no
specific definition of OrderedPairs shall be given, the identity morphism is used. However,
as soon as OrderedPairs are realized as e.g. Kuratowski pairs, MMT has two morphisms
for OrderedPairs that are not equal. This creates the morphism error. The temporarily
solution for this problem is to use the abstract OrderedPairs instead of a realization [Pinl4;
SMO08; IR11].

The last is a performance issue. If every include has a realization, MMT checks all of them,
whenever ZFFeatures is referred. Even if no changes have been made to ZFFeatures and

27

it is just included in another theory, MMT gets really slow. Therefore all realizations of the
includes are commented out, until a better solution for this problem is found. Mostly, the
realizations are not necessary except to show that ZF(C) is built correctly. Also, if a realiza-
tion is needed in a ZFFeatures based theory, it can be explicitly added in the corresponding
theory.

For example, the theory NatNums which formalizes the natural numbers in set theory includes
ZFFeatures. For the definition of natural numbers, the successor function s = [n]n U {n} is
used that defines the successor of the natural number n as the union of n and the singleton
of n. This successor function would be equivalent to the realization of the feature adjoin in
ZFFeatures. Since realizations in ZFFeatures are not possible because of the performance
issues, this realization of adjoin is added directly in NatNums [I[R11; Pin14].

5 'Transformations into set theory

Set theory is a very powerful concept, if it is slightly modified. Twelf already has some trans-
formations, where types are realized as sets and even data types like Booleans are expressed
with set theory. These formalizations are used as a model for the MMT transformations into
set theory [Twe; IR11].

5.1 Preliminaries

Since set theory is untyped, a few declarations are necessary in order to realize types. There-
fore the notions of Class and Elem are formalized. A Class P is the class of all sets that
satisfy an unary predicate P. An element of a Class P (celem) is like a pair (z,p), where
x is a set and p is a proof that x satisfies P. The operation cwhich applied to this element
returns the set x and the application of cwhy leads to the proof p. Therefore these operations
are similar to pil and pi2 of ordered pairs.

Elem of the set A is basically the Class of all sets that are elements of A. Thus, Elem A
represents all elements of A. For Elem the operations elem, which and why are defined with
the corresponding Class operations. The MMT formalization of this is shown in figure 22
[IR11].

Additionally, the property ceq which is formalized for a Class. This property states that a
term with a proof is equal to the original term. Correspondingly, eq which is defined for
Elem. However, eq which has the MMT feature “role Simplify”. According to the name,
role Simplify uses eq which as a simplification rule. Therefore, every time a term consists
of “which (elem z p)”, MMT simplifies this term automatically to z. Often this makes proofs
a lot easier, but sometimes this can be a downside as well. Especially, if something of the
form “which (elem x p)” shall be the result of a proof. The advantages and disadvantages of
this decision will be continued in more detail in section 5.3 [IR11].

Another feature for Elem is equality, which states that two elements of Elem A are equal, if

28

theory TypeBase =
include SetBase

Class : (set — prop) — type

celem : {P,z} + P x — Class P

cwhich : {P} Class P — set

cwhy : {P,c: Class P} (P(cwhich P ¢)) # cwhy 1 2

ceq_which : {P,z,p} - (cwhich P(celem P z p)) ="z

Elem : set — type = [A] Class [z]x € A

elem : {A,z} 2 € A— Elem A # elem 2 3
= [A, z,p] celem ([ulue A) zp

which : {A} Elem A — set # which 2
= [A, e] cwhich ([z]re A) e

why : {A,e: Elem A} - which e e A # why 2
= [A,e] ewhy ([z]ze A)e

eq_which : {A,z,p:+ x € A} - which (elem z p) ="z
= [A, z,p| ceq_which

= [A, e, d] which e =" which d

Figure 22: Formalization of Class and Elem in MMT

their set is equal. The proofs of the elements can be left out, because there can be multiple
proofs for a set being an element of A. Therefore untyped equality and the which operation
are enough to define the equality. However, for the transformations some additional decla-
rations to use this equality have to be formalized. Mostly they state that if two elements
of Elem A are equal and one of them satisfies a predicate, the other element fulfills that
predicate as well [IR11].

5.2 Transformations

The transformations of type theory (and logic) into set theory shall have a similar structure
as type theory. On the one hand this helps to keep an overview of the files and on the other
hand the modularity of type theory is reused.

Fundamentals First of all type related theories that are located in fundamentals have

to be transformed into set theory. Figure 23 displays a short version of this. In MMT this
is done in multiple theories that build on each other, but for simplification the example is

29

reduced to two theories. TypedFund represents the theories for “normal” type theory, while
SoftTypedFund combines the theories for soft-typed theory. It shall be noted that the ex-
ample skips some includes as well, especially if the corresponding theories are part of the
first-order logic on which set theory is based.

TypedFund and SoftTypedFund include TypeBase and in both theories ¢p, which represents
the type, is defined as a set. In TypedFund a term (tm) of type A is equal to Elem A and the
typed equality tequal corresponds to Eq. Furthermore, trefl and tcongB are represented by
the matching operations in TypeBase. SoftTypedFund’s only further addition is to define of
as the membership operation in. In soft-typed theory “x of A” states that a term x is of the
specific type A.

theory TypedFund = theory SoftTypedFund =
include TypeBase include TypeBase
realize TypedEqualityND realize SoftTypedLogic
tp = set tp = set
tm = [A] Elem A of =in
tequal = Eq

trefl = [A, e : Elem A] Refl
tcongB = EqcongB

Figure 23: Short version of fundamentals transformed.mmt

Product Types In type theory there are multiple variants of product types which are sim-
ilar to the Cartesian and dependent product. The transformations of SimpleProducts into
the CartesianProduct will be explained in more detail.

At first the type simpprod is defined as the CartesianProduct of two sets A and B. Since
tp has been defined as set, this step is trivial [IR11].

Now OrderedPairs have to be defined with the CartesianProduct as their type. According
to TypedFund a term of type A is equivalent to Elem A. Therefore the transformation of
simppair has the type {A, B} Elem A — Elem B — Elem A x*B which MMT can infer. The
arguments a : Elem A and b : Elem B are used to generate a new Elem A x* B. The pair
(which a,“ which b) matches the set of the Elem and the proof is prodl (why a)(why b)).

The transformation of the destructors simppil and simppi2 follows a similar procedure.
They get an Elem A x™ B as an argument and generate an Elem A (respectively Elem B).
The associated theory SimpleProductsTransformation in figure 24 displays the MMT code.
However, in the actual MMT file these definitions are distributed in multiple theories [IR11].

Of course, SimpleProducts has also formalizations for the computation, representation and
extensionality rules of OrderedPairs which are called computel, compute2, expand and ex-
ten correspondingly. The transformations of these are straightforward, because they can be
directly transformed into their set theoretic equivalents [IR11].

30

theory SimpleProductsTransformation =
include TypedFund
include CartesianProduct

simpprod = [A, B] A x" B
simppair = [A, B,a : Elem A, b : Elem B]|
elem (which a,* which b) (prodl (why a) (why b))
simppil = [A, B, e : Elem (A x" B)] elem ((which €);.) ((why e) prodEl)
simppi2 = [A, B, e : Elem (A x" B)] elem ((which €)su) ((why e) prodEr)

computel = [A, B,a : Elem A, b : Elem B] compL
compute2 = [A, B,a : Elem A,b: Elem B] compR
expand = [A, B, e : Elem (A x* B)] eq/sym (repr ((why e) prodE))
exten = [A, B,e: Elem (A x* B),d : Elem (A x“ B),p,q]
ext ((why e) prodE) ((why d) prodE) p ¢

Figure 24: Transformation of SimpleProducts into set theory

Dependent Product Types Another type is for dependent products with Sigma as the
corresponding feature in set theory. However, Sigma had to be changed in order to transform
DependentProducts into set theory. Since in type theory B(a) is only defined for an a of
type A, but in set theory B(a) for —a € A is possible as well. Although the result would still
not be part of Sigma.

To get a valid transformation of DependentProducts, either a case distinction for a € A
and —a € A has to be performed or Sigma has to be rewritten such that B requires that a
is an element of A. The former option was discarded, because it would make the transfor-
mations more complex and the case —a € A would still be hard to define. Instead SigmaMod
got introduced which is a modification of Sigma. SigmaMod is formalized such that B gets
an additional argument - a € A to solve this issue. It should be noted, that Sigma can be
realized using SigmaMod. However, it is impossible to realize SigmaMod with Sigma.

Figure 25 displays short versions of the MMT formalizations for SigmaMod, Dependent-
Products and the transformation DependentProductsTransformation. The transforma-
tions of the natural deduction rules are similar to the ones for SimpleProducts.

Typed Existential Quantification Types do not only occur in type theory, but also in
logic. An interesting examples of typed first-order logic is existential quantification. The
transformation depends highly on the first-order logic on which set theory is based, because

it contains dependent propositional logic.

In general, TypedExistentialQuantification shall be represented as the untyped exis-

31

theory SigmaMod = theory DependentProductsTransformation =
sigma : {A : set} include TypedFund
({z} 2z e A— set) — set include SigmaMod

theory DependentProducts = realize DependentProducts
depprod : {A}(tm A — tp) - tp depprod = [A, B : (Elem A — set)]
sigma A([z,p] B(elem z p))

Figure 25: MMT formalizations to transform DependentProducts into SigmaMod

tential quantifier. However, tm A has to be transformed into Elem A and therefore set
theory is necessary. Since texists does neither get an Elem A nor a proof that some x is an
element of A, there is no possibility to generate an Elem A without using the dependent
conjunction. Figure 26 shows how the formalization looks like in MMT. The dependent
conjunction is written as “A?” in infix notation [IR11].

theory TypedExistentialQuantification =
texists : {A}(tm A — prop) — prop # 3* 2
texistsl : {A, P}{z : tmA} - Pz —+ 3'P
texistsE : {A, P,C} +3'P - ({x:tm A} - Px -+ C) >+ C

theory TypedExistentialTransformation =
include TypedFund

realize TypedExistentialQuantification
texists = [A, P : (Elem A — prop)] uexists [z](x € A) A? ([p]P (elem z p))
texists] = [A, P : (Elem A — prop), e : Elem A, p]
uexistsl (which e) (dandI (why e) (simpP P equivEl p))
texistsE = [A, P,C, p, Q] p uexistsE ([z,pz] @ (elem x (pxr dandEl)) (px dandEr))

Figure 26: Transformation of the TypedExistentialQuantification into set theory

Scheme for transformations into set theory Like the formalizations of features and
elements in section 4, transformations into set theory are also formalized according to a
scheme. Although this scheme might vary depending on the feature that shall be formalized,
it can still be used as an orientation. Especially, if these transformations shall be automated
in the future. In this scheme, F' stands for the feature that shall be transformed.

1. Check whether a feature S exists that resembles the type of F. If there exists no
suitable feature, S has to be formalized first (see schemes in section 4).

2. Create a new theory T for the transformation. T includes S and realizes F'. Alterna-
tively, the transformation could be formalized as a view.

32

Step SimpleProducts DependentProducts | TypedExistentialQuantification
1 CartesianProduct SigmaMod ExistentialQuantification
2 ...-Transformation | ...-Transformation ...~ Transformation

3 simpprod = prod

depprod = sigma
(modified version)

texists = uexists

4(a) ordered pairs

ordered pairs

results in prop and
therefore creates no elem

4(b) | simppair & prodl
simppil = prodEl
simppi2 = prodEr

deppair = sigmal
deppil = sigmakl
deppi2 = sigmakr

texists] & uexists]
texistsE &= uexistsE

) computel = compL

computel = compL

no properties

Table 1: Transformations of SimpleProducts, DependentProducts and
TypedExistentialQuantification with the corresponding steps of the scheme

3. Define the type of F' as the feature S. If F is a dependent type, perhaps S has to be
rewritten to match it. Alternatively, a new feature F'"Mod for the modified version of
F' can be introduced. If F' has a predicate operating on a term of type A, it might be

necessary to use dependent propositional logic.

4. Define the natural deduction rules of F':

(a) The set of elem corresponds to the element of S. Use which whenever the set
of an argument of type FElem is needed. This step does not apply, if no elem is

created.

(b) The proof of elem makes use of the corresponding natural deduction rule of S.
In any case the proof has to introduce/eliminate an element of the transformed
type. Use why whenever the proof of an argument of type Elem is needed. If no
elem is created, only this proof is used as definition.

5. Transform undefined properties of F' considering the previous definitions.

As an addition to step 4, it should be noted that there is no case distinction whether or
not S is feature with constructed elements. In either case the natural deduction rules of F
resemble the natural deduction rules of S.
Because this scheme is really dependent on F', table 1 is used to point out the steps for
the transformations of SimpleProducts, DependentProducts and TypedExistentialQuan-

tification.

5.3 Advantages and disadvantages of using “role Simplify”

As already mentioned before, the decision to give eq which the role Simplify needs to be
looked at in more detail. The transformations before are helpful as they can serve as exam-

33

ples to get a better understanding for the benefits and issues.

Gain of role Simplify Transforming computel of Product Types without simplification is
more complicated. computel states for a :tm A and b: tm B:

- simppil (simppair a b) =" a

To get a better understanding, already defined parts of this expression get transformed into
set theory. This result that has to be proven for a : Elem A and b : Elem B is:

 elem ((which (elem (which a,” which b)(prodl (why a)(why b))))1«)
((why (elem (which a," which b)(prodI (why a)(why b)))) prodEl) Eq a

Since “e Eq d” is equivalent to “which e =" which d”’, eq which can be used to reduce the
expression every time “which (elem x p)” appears. However, this has to be done manually
and is not performed by MMT automatically. Therefore eq which needs the proof of the
Elem as an argument. Then eq which has to be combined with e.g. ucongP and the exact
predicate P for reduction. This has to be done twice until it is possible to apply compL which
is accessed using transitivity. An accepted transformation for computel without Simplify is
shown in figure 27.

theory SimpleProductsTransformationWithoutSimplify —
computel = [A, B,a : Elem A,b: Elem B] ((eq_which (prodl (why a) (why b)))
ucongP ([x] which (elem ((which (elem (which a,* which b)
(prodI (why a) (why))))xe)
((why elem (which a,* which b) (prodl (why a) (why b))) prodEl)) =* (z14))
(eq_which (why (elem (which @, which b) (prodI (why a) (why b))) prodEl)))
eq/trans complL

Figure 27: Transformation of computel without automatical simplification

Admittedly, this proof would not look that complicated, if eq which would not need an
argument and the predicate for ucongP would not have to be specified. However, the idea of
the proof is basically the same as what the automatical simplification does. As a comparison,
the steps of the simplification shall be pointed out, starting with the equation that has to
be proven:

+ which (elem ((which (elem (which a," which b)(prodl (why a)(why 0))));«)
((why (elem (which a," which b)(prodl (why a)(why b)))) prodEl)) =" which a

The first simplification reduces the expression to:

- (which (elem (which a,” which b)(prodl (why a)(why b))));« =" which a

34

The result of the next simplification is of the same form as compL which completes the proof:
 (which a," which b);. =" which a

Disadvantages of role Simplify The transformation of the natural deduction rules of
TypedExistentialQuantification (figure 26) have not been discussed. While tezistsE is
basically the transformation that could be expected, texistsI uses simpP which has not been
defined by now. Essentially simpP states that a predicate P applied to some e : Elem A is
equivalent to P applied to “elem (which e) (why e)”.

This statement cannot be defined as long as eq which is used as a simplification rule. For
the proof it would be necessary to use the equality defined by eq which. But whenever
eq_which is written, it gets immediately simplified to “which e =" which e”. Since it is not
possible to turn simplify off, eq which is basically just another name for the reflexivity of
untyped equality.

As a consequence, declarations like simpP and simpF (similar to simpP, but for functions
and not predicates) have been added to TypeBase. These declarations can be used to define
further transformations that could not be defined otherwise.

Since the declarations cannot be defined, they are basically axioms. In actual fact the ad-
dition of new axioms to a set theory is risky, because it could lead to paradoxes. In this
specific case it should not lead to a problem, because the statements would be proveable, if
eq_which had not been defined as role Simplify.

Another issue with role Simplify is related to transformations as well. Whenever a fea-
ture has a declaration with role Simplify, the declaration and the simplification rule need to
be defined. While the declaration itself is relatively easy to transform, it is unkown how to
realize its simplification rule. Therefore some transformations are not complete which might
lead to errors in later formalizations.

Opinion on the use of role Simplify In general, it can be concluded that defining
eq_which with role Simplify is useful. It saves a lot of time formalizing the transformations
and the results are much better readable. Since additional declarations like simpP and simpF
solve the greatest issue. The downside of defining them axiomatically is negligible, because
the statements would be provable with eq which.

The issue that the simplification rule has to be realized is not a concern for eq which. On
the one hand TypeBase and therefore eq which should not have to be realized, especially
because eq which is already defined as ceq which. On the other hand eq which has no
further influence on other features that have been defined as role Simplify. Therefore this
problem is independent of the formalization of eq which.

35

6 Library Management

While adding MMT files to LATIN2 in sections 4 and 5, some problems occurred that were
related to the high scalability of MMT. The first issue arised because of the amount of files
and their dependencies. Therefore it was necessary to (re-)organize the files with regard to
their dependencies and their scientific area. The next problem was also related to the number
of files. Since this number is growing, it gets harder to build all files manually and a build
script was required. The last issue emerged because different concepts have formalizations
of similar features that share their notation or name. This led to disambiguity problems,
when views between two concepts were created.

6.1 Organization of MMT files

Due to the many files and theories in MMT, the dependencies are sometimes unclear. There-
fore the build order of the MMT library LATIN2 was hard to figure out. To reduce the
problem, a bit of reorganization was necessary. However, this section might leave out less
interesting files.

A simplified version of the resulting dependency graph is shown in figure 28. In this graph,
blue rectangles visualize collections of theories. The arrows point towards the collection that
is dependent on the collection with the starting point. For simplification, collections that are
equivalent to subfolders are named similar to <folder name/subfolder name>. Additionally,
implicit dependencies have not been illustrated, like e.g. Logic/Fol Like being dependent on
Fundamentals.

fundamentals As the folder name suggests, fundamentals is the root of LATIN2. In the
file concepts.mmt concepts like Propositions, Terms and Types are formalized that are used
by nearly every other theory. However, relations.mmt, which defines the type and properties
of relations, is independent of concepts.mmt. These two files are necessary to formalize the
remaining files of fundamentals.

One of the more important files is base_ languages.mmt which formalizes differently typed
logics. It is required to define equality.mmt that is necessary to formalize equality for types
in type_ equality.mmt and subtyping.mmdt.

logic/propositional Another very significant folder is logic. It is separated into subfolders
to get a better overview of the different types of logic and dependencies within the folder.
Propositional contains every file belonging to propositional logic which is often the basis for
further logics. Its most important file is pl.mmt that defines connectives in propositional
logic. Every other file in this subfolder is dependent on pl.mmt and formalizes variations
and additions to propositional logic.

logic/fol like First-order logic depends on propositional logic. In fol_like there are three

main versions to formalize differently typed first-order logic. In fol.mmt untyped quantifiers
and description operators are formalized. The typed variants of these features are formalized

36

Figure 28: Simplified overview of dependencies in LATIN2

37

in sfol.mmt. While fol. mmt and sfol. mmt are independent of each other, stfol.mmt relies on
fol.mmt. The formalizations of stfol.mmt define soft-typed first-order logic.

A part of the remaining files in fol like formalizes variations and additions to fol.mmt which
are similar to the ones in propositional logic. The other remaining files are based on sfol.mmdt.
For example, booleans.mmft is defined using sfol. mmt. Then pl-sfol.mmt sketches how propo-
sitional logic could be transformed into typed first-order logic.

type theory Some subfolders in logic have not been considered, because they rely on
(parts of) type theory. Since power types.mmt relies on parts of logic, logic and type theory
have a cyclic dependency that could be solved by splitting the different logics.

Most files in type theory are independent of each other and their names are self explana-
tory. For example, nonempty.mmt formalizes that neither the universe nor types are empty
and therefore fresh elements can be picked. Another example is function types.mmt which
formalizes typed and soft-typed types for “simple” and dependent functions. This file is nec-
essary for type_ erasure.mmt that contains views to transform typed features into soft-typed
features.

logic/hol like Using type theory, higher-order logic is formalized in hol.mmt. The variant
hol _andrews.mmt realizes a theory of hol.mmt and is therefore dependent on it.
logic/model theory Based on higher-order logic is model _theory. For now only Kripke
models are formalized in kripke.mmt. The variants kripke dynamic.mmt and kripke multi-
modal.mmt rely on kripke.mmt as well as fol like.

category theory Category _theory contains exactly one file category.mmt which formal-
izes a category. However, this file is necessary for the remaining files of type theory.

type theory/endofunctors Before endofunctors have been ignored, but now all of their
requirements are formalized. endofunctors.mmt is the root of this subfolder and based on it
is endomagmas.mmt. The file collection types.mmt that defines different collections as well
as lists and multisets is dependent on endomagmas.mmt. The last file monads.mmt relies on
endofunctors.mmt and higher-order logic.

set theory Set_theory is based on fol like. Within set_ theory, setbase.mmt is the root
that formalizes basic definitions like Sets. The formalizations of the features (see sections 4.2
and 4.3) solely rely on setbase.mmt. The subfolder pair definitions contains the realizations
of ordered pairs and is therefore dependent on multiple features. axioms.mmt depends on
finite_ sets.mmt, because the formalization of the infinity axiom relies on the empty set. The
subfolder views features is dependent on features and axioms, since it contains multiple
views to realize features with axioms and other features.

The file typebase.mmt contains the declarations of Class and Elem which are necessary to
interpret type theory in set theory. With typebase.mmt datatypes like nat.mmt and bool.mmt
can be formalized. Finally, zfc.mmt defines ZFC with axioms and all features are realized
with views. Additionally, a typed version of ZFC is formalized.

38

logic extensions As the name suggests, this folder is dependent on logic. Within logic_ ex-
tensions Conterts and other logical extensions are formalized with the goal of creating pro-
log.mmt. Overall the dependencies in smaller folders are relatively straightforward, which is
why they are omitted here.

algebra Algebra is dependent on typed first-order logic and has its own declarations of
Sets, Relations and Magmas, although most of these are already formalized similarly in
another folder. Based on magmas.mmt different algebraic concepts like groups.mmt and
ringoids.mmt are defined.

transformations to set Finally the folder transformations_to_set is considered. Since
many concepts can be transformed into set theory, it is helpful to state this folder at the end.
The names of the subfolders are self explanatory, e.g. type theory contains the transforma-
tions of type theory into set theory. The structure of the files in a subfolder is the same as
in the folder that gets transformed.

Obviously, this folder depends on set theory and every other feature that shall be trans-
formed. Some fundamental transformations are done in fundamentals transformed.mmdt.
The subfolders are sometimes dependent on each other, when e.g. typed universal quantifi-
cation is required in the transformation of natural numbers. For now there exists only a
workaround, but these dependencies should be acyclic as well.

6.2 Generation of a build script

Although there already existed a build script for LATIN2 when the formalizations started,
it soon turned out to be deprecated. Not only because new files were added to formalize set
theory and transformations, but also because the build script was more of a quick solution
that barely considered the dependencies of the files. Therefore complete folders were built
multiple times in order to get working MMT files. Since building all files manually would be
time consuming and requires users to know the dependencies or lose more time trying to get
it somehow correct, a new version of a build script was necessary.

MMT has its own shell and in its documentation information regarding scripts is given
[Mmtc|. This includes information about logging and archives that was already used in
the deprecated build file. However, the deprecated file was only able to build the complete
LATIN2 library (or at least all folders that were mentioned in the script). Since this can
take some time and is therefore not always wanted, the new build script should be more
flexible to build only a specific part. Therefore independent commands like logging and the
mathpath archives are now in an extra configuration file which is used by all build scripts.

To achieve the flexibility each folder has its own script to build the MMT files within it.
However, small folders with only one or two files did not get a script since they can be build
manually or their order does not matter. Additionally, they get build within a larger script
that builds every file in LATIN2 except those that should be skipped by now. The larger
script named build-omdoc.msl uses all of the other build scripts. Every folder without a

39

script gets build here according to the documentation [Mmtal|. Also, it creates a html file to
have a better overview of the shell output.

Now it shall be explained how the build script(s) can be started. The main build script
build-omdoc.msl is located directly in LATIN2, while the smaller build scripts are included
in their corresponding folder. One possibility to run a build script is to use run-file.bat lo-
cated in MMT /deploy. run-file.bat takes a build script as an argument and runs it. However,
this is specific for Windows.

A more general approach to run a build script is to start the MMT shell. Then a build script
can be run with the file command, though it is very important that build-omdoc.msl has to
be started with the option --noqueue. Otherwise the queue that is activated by default could
ruin the special build order [Mmtc].

C:/User> java —jar MMI/deploy /mmt. jar
mmt>file C:/User /MMI/LATIN2/build—omdoc.msl --noqueue

This can also be done in the MMT editor itself. For example, jEdit has at its bottom next
to the error list a console. By default the console is set to system, but, by clicking the arrow
next to it, it can be changed to mmt. Then the build script can be run with the file command
just like before.

If the build script is started outside of an MMT editor, it might be necessary to clear the
MMT memory of this editor. In jEdit there exists a button for this case. Also, it is advisable
to delete the files of the LATIN2 content folder sometimes, since it might contain deprecated
files. These files could lead to errors or prevent error messages.

6.3 Name resolution

Another problem that occurred is related to disambiguity. For example, the untyped and
typed universal quantifier could both have the local name forall and use the notation V.
This works as long as both theories are not used at the same time, otherwise MMT is not
able to refer to the right theory. However, to formalize transformations it was necessary to
have both theories in one view. Therefore changes to the local name and notation had to be
made [Rab20].

The solution for local names is straightforward. Each theory that also occurs in another
type system or variant needs a unique name. To achieve this, each type system gets associ-
ated with a letter: untyped, typed and relativized (soft typed). Also the dependent variants
of e.g. propositional conjunction get associated with the letter d.

Then each local name that needs to be changed gets the corresponding letter as a prefix.
For example, untyped universal quantification gets named wuforall and its typed counterpart
is tforall. The same applies for their natural deduction rules.

Although these changes would be enough to solve the disambiguity issue, they are not enough
since shorter notations like V still cannot be used. There are different approaches for this

40

problem.

First, different symbols could be used. For example, uforall could be denoted with V while
tforall uses \/. Obviously this solution has some disadvantages, because many symbols are
necessary. On the one hand, a formula that does not use the standard mathematical sym-
bols is less intuitive to read. Everyone using MMT would have to learn the MMT specific
notations to a certain degree. This could make it harder for MMT to be established. On
the other hand, mathematicians already use many symbols. Therefore it gets hard to find
suitable notations that are not already used. Overall this approach does not seem to be the
right one.

Another idea consisted of modifying the notation symbols which are unicode characters.
Unicode provides already some packages to change the appearance of its characters like
Nonspacing Mark or Modifier Letter. These categories contain more than 2000 characters.
However, many characters cannot be illustrated in all programs. This problem is not only
MMT related, because even websites may fail to display these characters. For example, the
combining latin small letter s is encoded as U+1DE4, but most likely searching online for it
will result in a disappointing square.

Unicode is aware of this issue and suggests to change the font. Still these characters should
be avoided in order to increase the user friendliness.

Additionally, the used modification should be easy to understand and distinguish. Therefore
small dots, lines and different oriented apostrophes might not be suited, whereas small let-

ters seem to be predestined for this purpose. Especially because the associated letters from
before can be reused [Ucc; Udi.

Still there is a decision to be made since both Modifier Letter and Nonspacing Mark con-
tain small shifted letters. Modifier letters contain small letters that are shifted up or down.
Latter are marked as “subscript" whereas the first mentioned ones are sometimes called “su-
perscript”, but most often they are denoted as “modifier letter”. Small letters in Nonspacing
Marks are combining characters like the combining latin small letter s from before. In gen-
eral, a combining character “merges” with its previous character to create a new character
that can be merged as well. Therefore they can even appear before or below their previous
character. Combining latin small letters are coded to appear above the previous letter, but
in the MMT editor jEdit they get shifted to the right. Therefore there is nearly no visible
difference between both categories in jEdit [Ucc].

Like mentioned before, the combining latin small letter s cannot be displayed in all fonts and
should therefore be avoided. However, this applies only for about half the combining latin
small letters. The other half that contains the desired letters u, ¢, » and d works perfectly
fine [Ucc|.

Modifier letters can all be displayed correctly, but they have already been used in MMT
formalizations and count as “normal” letters in Java class Character. This is a problem,
because the parser had to be changed in order to handle the modified notations properly.

41

These changes consisted of adding the (combining) letter to the previously scanned token
and ending the token after all (combining) letters have been read.

It would have been more ponderous to do these changes for modifier letters without ruining
formalizations. The only unicode character of Modifier letters that got explicitly included
in these changes is the modifier letter raised exclamation mark (U-+A71D) which is used to
denote the unique existential quantifier. Otherwise combining latin small letters are chosen
to modify the notation symbols. Also, this has the nice effect that modifier letters can still
be used like normal letters for e.g. local names without getting unwanted behaviour [Jch;
Ucc].

Additionally to the parser changes new abbreviations had to be added in mmt-api. First of
all, the working combining characters needed an MMT abbreviation in order to use them.
Then shortcuts for frequently needed modified symbols like V* were added. However, some
useful abbreviations might still be missing.

If wanted, they can be added to the file unicode-latex-map of the mmt-api. Then mmt.jar
has to be build according to [Mmtb|. To update the MMT plugin in the MMT editor,

e.g. jEdit, the shell command

C:/User /MMI/deploy> java —jar ./mmt.jar :jeditsetup install
has to be made [Mmtb].

7 Conclusion and Future Work

Overview We have created a modular formalization of set theory in MMT’s library LATIN2
(https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/set_theory). Then we
have visualized our formalizations in a graph (https://gl.mathhub.info/MMT/LATIN2/-
/blob/devel/source/set_theory/graph/set_theory.svg). We have presented the fea-
tures with examples to explain the process of the formalization. Additionally, schemes have
been provided to support the definitions of features in the future.

Another aspect has been transformations into set theory, especially the transformation
of type theory. We have transformed some type theoretical features and the universal
and existential quantifier of logic into set theory. Also we have defined a scheme for the
transformation into set theory. These transformations have been formalized in https:
//gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/transformations_to_set. An
incomplete graph showing the interactions of the formalizations in LATINZ is located at
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/LATIN2-graph.svg.

Because of the high scaling, we have reorganized LATIN2 and provided a build script for
it. Additionally, we have introduced a modification for notations and names to support the
disambiguation. Therefore not only suitable modifiers had to be chosen, but the MMT API
had to be adapted as well.

42

https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/set_theory
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/set_theory/graph/set_theory.svg
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/set_theory/graph/set_theory.svg
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/transformations_to_set
https://gl.mathhub.info/MMT/LATIN2/-/tree/devel/source/transformations_to_set
https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/LATIN2-graph.svg

Thus the result of our work led to a new LATIN2 release which can easily be compiled
using the build script. Also, the graphs help especially new users to understand the parts of
LATIN2 and how they are connected with each other.

Future Work There exist multiple variants of set theories, like different versions of ZF(C)
and Tarski-Grothendieck, that still have to be formalized. Additionally, many more features
can be formalized in set theory. While some are necessary to perform further transformations
of type theory in set theory, other features could be removed from set theory (e.g. Image),
because they are basically equivalent to the soft-typed version.

Certainly, further transformations into set theory have to be formalized as well. Some
features of type theory could not be transformed, because the set theoretical feature is not
defined by now. However, sometimes (soft-)type theory is not complete or incorrect which
prevented a transformation. Therefore (soft-)type theory has to be improved as well.
Furthermore the dependency issue for transformations has to be solved. Other parts of
LATIN2 can be transformed into set theory as well, like different logics. In addition, it is
desired to automate these transformations in the future for more efficiency.

Finally, some suggestions for the improvement of MMT shall be provided:
e Views should be able to support multiple codomains.
e An approach for a realization of role Simplify (and Solve) has to be discussed.
e The realization of structures and especially nested structures need to be improved.

e Error messages regarding morphisms have to be fixed. For example, MMT does not
give a warning when TypeEqualityND is realized in set theory. However, when this
transformation is used, MMT throws an error because the realization is not total.
Either this error message is incorrect or there should be a warning that the realization
is not complete.

e [ssues have to be solved that the identity morphism has to be included every time,
although it should be inherited. For example, in fundamentals transformed.mmt it
should not be necessary to include Propositions every time in order to have a total
realization.

e The identity morphisms in views and realizes lead to problems, since MMT is unable to
substitute them if they have been realized before. For example, if OrderedPairs have
been realized as KuratowskiPairs and later the CartesianProduct shall be realized
with a view, an error occurs. Because MMT cannot substitute the identity morphism
with KuratowskiPairs, realizations as in zfc.mmt are not possible.

43

e In general, the performance must be improved. Especially in the case of zfc.mmt
it would be useful, if each realization would only be checked when it got changed.
Otherwise they could be ignored to improve the performance.

e Role Simplify should work smarter such that it does not get applied, if the result is
of the “expanded” form. At least there should be an option to explicitly forbid the
automatical use of simplification in a proof step.

References

[AEU18] J. Avigad, G. Ebner, and S. Ullrich. The Lean Reference Manual. 2018.

[Cmo| The Module System - Coq 8.13.2 documentation. https://coq. inria. fr/
distrib/current/refman/language/core/modules.html. Accessed: 2021-08-
05.

[Cod+11] M. Codescu et al. “Project Abstract: Logic Atlas and Integrator (LATIN)”. In:
Intelligent Computer Mathematics. Springer, 2011, pp. 289-291.

[Cst] Standard Library | The Coq Proof Assistant. https://coq.inria.fr/library/.
Accessed: 2021-08-05.

[Cty] Typing rules - Coq 8.13.2 documentation. https://coq.inria.fr/distrib/
current/refman/language/cic.html. Accessed: 2021-08-04.

[Czf] An Encoding of Zermelo-Fraenkel Set Theory in Coq. https://github. com/
coq-contribs/zfc. Accessed: 2021-09-16.

[Hal60] P.R. Halmos. Naive Set Theory. Van Nostrand, 1960.

[HHP93| R. Harper, F. Honsell, and G. Plotkin. “A Framework for Defining Logics”. In:
(Jan. 1993). DOIL: 10.1145/138027.138060. URL: https://doi.org/10.1145/
138027 .138060.

[Ido| Documentation. https://isabelle. in.tum.de/documentation.html. Ac-
cessed: 2021-08-08.

[Tho] Session HOL-ZF'. https ://isabelle. in. tum. de/library/HOL/HOL - ZF /
index.html. Accessed: 2021-08-09.

[Ipu] Theory Pure. https://isabelle.in.tum.de/dist/library/Pure/Pure/Pure.
html. Accessed: 2021-09-19.

[IR11] M. Iancu and F. Rabe. “Formalizing Foundations of Mathematics”. In: Mathemat-
ical Structures in Computer Science 21.4 (2011). DOI: 10.1017/50960129511000144.
URL: https://www.cambridge.org/core/services/aop-cambridge-core/
content /view/2E3F3CC119D3AAAEFD3D21CESBAD7E33/50960129511000144a .
pdf/formalising_foundations_of_mathematics.pdf.

[1zf] Session ZF. https://isabelle.in.tum.de/dist/library/ZF/ZF/index.

html. Accessed: 2021-08-08.

44

https://coq.inria.fr/distrib/current/refman/language/core/modules.html
https://coq.inria.fr/distrib/current/refman/language/core/modules.html
https://coq.inria.fr/library/
https://coq.inria.fr/distrib/current/refman/language/cic.html
https://coq.inria.fr/distrib/current/refman/language/cic.html
https://github.com/coq-contribs/zfc
https://github.com/coq-contribs/zfc
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/138027.138060
https://isabelle.in.tum.de/documentation.html
https://isabelle.in.tum.de/library/HOL/HOL-ZF/index.html
https://isabelle.in.tum.de/library/HOL/HOL-ZF/index.html
https://isabelle.in.tum.de/dist/library/Pure/Pure/Pure.html
https://isabelle.in.tum.de/dist/library/Pure/Pure/Pure.html
https://doi.org/10.1017/S0960129511000144
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/2E3F3CC119D3AAAEFD3D21CE5BAD7E33/S0960129511000144a.pdf/formalising_foundations_of_mathematics.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/2E3F3CC119D3AAAEFD3D21CE5BAD7E33/S0960129511000144a.pdf/formalising_foundations_of_mathematics.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/2E3F3CC119D3AAAEFD3D21CE5BAD7E33/S0960129511000144a.pdf/formalising_foundations_of_mathematics.pdf
https://isabelle.in.tum.de/dist/library/ZF/ZF/index.html
https://isabelle.in.tum.de/dist/library/ZF/ZF/index.html

[Jch]

[Kail2]
[Kre02]
[Lax]|

Character (Java Platform SE 8). https://docs.oracle.com/javase/8/docs/
api/java/lang/Character.html. Accessed: 2021-07-28.

J. Kaiser. Formal Construction of a Set Theory in Coq. 2012.
C. Kreitz. The Nuprl Proof Development System, Version 5. 2002.

23. Axiomatic Foundations - Logic and Proof 3.18.4 documentation. https://
leanprover . github.io/logic_and_proof/axiomatic_foundations.html.
Accessed: 2021-09-16.

index - mathlib docs. https://leanprover-community.github.io/mathlib_
docs/. Accessed: 2021-08-08.

Mathematics in mathlib. https://leanprover-community.github.io/mathlib-
overview.html. Accessed: 2021-08-08.

Programming in Lean. https://leanprover . github.io/programming _in _
lean/. Accessed: 2021-08-08.

12. Sets in Lean - Logic and Proof 3.18.4 documentation. https://leanprover.
github.io/logic_and_proof/sets_in_lean.html. Accessed: 2021-08-08.

What is Lean - Lean Manual. https://leanprover.github.io/lean4/doc/
whatIsLean.html. Accessed: 2021-08-08.

mathlib/zfc.lean. https : //github . com/ leanprover - community /mathlib/
blob/b7593841620449def9435f0b9f3a1002afecff63/src/set_theory/zfc.
lean. Accessed: 2021-09-16.

Grammar of Mizar. http://www.mizar.org/language/mizar-grammar . xml.
Accessed: 2021-08-06.

Index of /version/current/mml. http://mizar.uwb.edu.pl/version/current/
mml/. Accessed: 2021-08-06.

Mizar Home Page: Mizar Mathematical Library. http ://www . mizar . org/
library/. Accessed: 2021-08-06.

MMT - Building Documents. https://uniformal.github.io//doc/archives/
building.html. Accessed: 2021-07-14.

MMT - Details on Building using SBT. https://uniformal.github.io/doc/
setup/sbt. Accessed: 2021-07-28.

MMT - The MMT Shell. https://uniformal.github.io/doc/applications/
shell.html. Accessed: 2021-07-14.

Nuprl Browsing - how to. http://www.nuprl.org/sfa/Nuprl/Shared/Xweb_
projecting_sections_doc.html. Accessed: 2021-08-05.

PRL Cross-links to Type Theory, Set Theory and Domain Theory. http://wuw.
nuprl.org/Intro/TypeSetDomain/typesetd.html. Accessed: 2021-08-05.

45

https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html
https://leanprover.github.io/logic_and_proof/axiomatic_foundations.html
https://leanprover.github.io/logic_and_proof/axiomatic_foundations.html
https://leanprover-community.github.io/mathlib_docs/
https://leanprover-community.github.io/mathlib_docs/
https://leanprover-community.github.io/mathlib-overview.html
https://leanprover-community.github.io/mathlib-overview.html
https://leanprover.github.io/programming_in_lean/
https://leanprover.github.io/programming_in_lean/
https://leanprover.github.io/logic_and_proof/sets_in_lean.html
https://leanprover.github.io/logic_and_proof/sets_in_lean.html
https://leanprover.github.io/lean4/doc/whatIsLean.html
https://leanprover.github.io/lean4/doc/whatIsLean.html
https://github.com/leanprover-community/mathlib/blob/b7593841620449def9435f0b9f3a1002afecff53/src/set_theory/zfc.lean
https://github.com/leanprover-community/mathlib/blob/b7593841620449def9435f0b9f3a1002afecff53/src/set_theory/zfc.lean
https://github.com/leanprover-community/mathlib/blob/b7593841620449def9435f0b9f3a1002afecff53/src/set_theory/zfc.lean
http://www.mizar.org/language/mizar-grammar.xml
http://mizar.uwb.edu.pl/version/current/mml/
http://mizar.uwb.edu.pl/version/current/mml/
http://www.mizar.org/library/
http://www.mizar.org/library/
https://uniformal.github.io//doc/archives/building.html
https://uniformal.github.io//doc/archives/building.html
https://uniformal.github.io/doc/setup/sbt
https://uniformal.github.io/doc/setup/sbt
https://uniformal.github.io/doc/applications/shell.html
https://uniformal.github.io/doc/applications/shell.html
http://www.nuprl.org/sfa/Nuprl/Shared/Xweb_projecting_sections_doc.html
http://www.nuprl.org/sfa/Nuprl/Shared/Xweb_projecting_sections_doc.html
http://www.nuprl.org/Intro/TypeSetDomain/typesetd.html
http://www.nuprl.org/Intro/TypeSetDomain/typesetd.html

[Neq]
[Nma)|

[Nov]|
[Nty]

[Pinl4|
[Rab20)|
[RK13]

IRR21]
[RS09)

[Sal19]

[SMOS]

[SY20]
[Twe]
[Ucc]
[Udi]

[Wel20]
[Wen21a|
[Wen21b|
[Wen21c¢|
[Wie07]

Nuprl Basics - Equality and Membership. http://www.nuprl.org/sfa/Nuprl/
NuprlPrimitives/Xequality_doc.html. Accessed: 2021-09-20.

PRL Project Library of Formal Definitions and Proofs. http://nuprl . org/
MathLibrary/. Accessed: 2021-08-05.

Overview. http://www.nuprl.org/book/0Overview.html. Accessed: 2021-08-05.

Nuprl Basics - Types: Ontic, Semantic, and Intensional. http://www.nuprl.
org/sfa/Nuprl/NuprlPrimitives/Xtype_doc.html. Accessed: 2021-09-20.

C. Pinter. A Book of Set Theory. 2014.
F. Rabe. “MMT: The Meta Meta Tool (system description)”. In: 2020.

F. Rabe and M. Kohlhase. “A scalable module system”. In: Information and
Computation (2013). DOIL: https://doi.org/10.1016/j.1c.2013.06.001.

F. Rabe and N. Roux. “Modular Formalization of Formal Systems”. In: 2021.

F. Rabe and C. Schiirmann. “A Practical Module System for LF”. In: Proceed-
ings of the Fourth International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice. Association for Computing Machinery, 2009,
40-48. URL: https://doi.org/10.1145/1577824.1577831.

M. Saltzman. “A Little Set Theory (Never Hurt Anybody)”. In: (2019). URL:
https://cecas.clemson.edu/ mjs/courses/misc/settheory.pdf.

D. Scott and D. McCarty. “Reconsidering Ordered Pairs”. In: The Bulletin of
Symbolic Logic 14.3 (2008), pp. 379-397. URL: http://www. jstor.org/stable/
20059989.

T. Sun and W. Yu. “A Formal System of Axiomatic Set Theory in Coq”. In:
IEEE Access 8 (2020), pp. 21510-21523. DOI: 10.1109/ACCESS.2020.2969486.

source/foundations/zfc. https : / /gl . mathhub . info /MMT / LATIN/ - /tree/
master/source/foundations/zfc. Accessed: 2021-08-11.

Unicode Character Categories. https : / /www . compart . com/ en /unicode /
category. Accessed: 2021-07-27.

Unicode Display Problems. http://www.unicode.org/help/display_problems.
html. Accessed: 2021-07-27.

P.D. Welch. Aziomatic Set Theory. 2020.

M. Wenzel. The Isabelle System Manual. 2021.

M. Wenzel. The Isabelle/Isar Implementation. 2021.
M. Wenzel. The Isabelle/Isar Reference Manual. 2021.

F. Wiedijk. “Mizar’s Soft Type System”. In: Theorem Proving in Higher Order
Logics. Springer Berlin Heidelberg, 2007, pp. 383-399.

46

http://www.nuprl.org/sfa/Nuprl/NuprlPrimitives/Xequality_doc.html
http://www.nuprl.org/sfa/Nuprl/NuprlPrimitives/Xequality_doc.html
http://nuprl.org/MathLibrary/
http://nuprl.org/MathLibrary/
http://www.nuprl.org/book/Overview.html
http://www.nuprl.org/sfa/Nuprl/NuprlPrimitives/Xtype_doc.html
http://www.nuprl.org/sfa/Nuprl/NuprlPrimitives/Xtype_doc.html
https://doi.org/https://doi.org/10.1016/j.ic.2013.06.001
https://doi.org/10.1145/1577824.1577831
https://cecas.clemson.edu/~mjs/courses/misc/settheory.pdf
http://www.jstor.org/stable/20059989
http://www.jstor.org/stable/20059989
https://doi.org/10.1109/ACCESS.2020.2969486
https://gl.mathhub.info/MMT/LATIN/-/tree/master/source/foundations/zfc
https://gl.mathhub.info/MMT/LATIN/-/tree/master/source/foundations/zfc
https://www.compart.com/en/unicode/category
https://www.compart.com/en/unicode/category
http://www.unicode.org/help/display_problems.html
http://www.unicode.org/help/display_problems.html

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Formalization of Set Theory
	4.1 Basics of set theory
	4.2 Features without element construction
	4.3 Features with element construction
	4.4 Building ZFC

	5 Transformations into set theory
	5.1 Preliminaries
	5.2 Transformations
	5.3 Advantages and disadvantages of using ``role Simplify''

	6 Library Management
	6.1 Organization of MMT files
	6.2 Generation of a build script
	6.3 Name resolution

	7 Conclusion and Future Work

