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Abstract

In recent developments MMT got extended with an interactive
proof system which contained only basic tactics. This did not include
equality reasoning. To turn MMT into something of a useful prover
one has to add capabilities for equality reasoning, since doing rewriting
with only low level application of transitivity and congruence theorems
is fairly difficult. This work presents the reader with an extension to
the current way MMT does equality reasoning (interactive or not).
This was achieved by extending the interactive prover and also by
adding new constructs to plain MMT. The results include new tactics
for rewriting, a solver for reasoning about algebraic structures and a
special construct for displaying chained equality/transitivity.

1 Introduction

Motivation Formal systems allow the user to formalize, make statements
and make proofs about mathematical systems. Without the help of computer
guided systems this becomes quite difficult and prone to errors. MMT [17],
as such a system, aims, among other things, at enabling users to formalize
and verify mathematical systems. Yet, rather unintuitively, up until recently
it offered only limited support for (interactive) proof development. Proofs
had to be given as a completely finished proof in form of a lambda term
rather than being build incrementally using something that abstracts from
the lambda term structure. In a rather new development, mainly carried out
by the author of this work, MMT was extended with some limited capabilities
for interactive proof development.
After MMT was extended with the capabilities mentioned above it became
clear rather quickly that one of most important features missing from MMT
in general and from the interactive prover in particular is varied support for
reasoning about equalities, like rewriting. Without these kinds of extensions
a vast majority of proofs become borderline unbearable to make due to being
to tedious to construct since the user has to manually keep track of a lot of
things.

Contribution This work’s main focus lies on extending MMT with sup-
port for equality reasoning for the interactive prover front end as well as plain
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MMT. For the interactive system, rewriting and automated algebraic reason-
ing were added. For the non-interactive system, some constructs where intro-
duced that allow for easy proof construction of transitive (equality) chains.
The results presented here are, just like the authors previous work [31], guided
by already existing systems, mainly Agda, Coq and Isabelle(HOL). These
three systems works fairly different when it comes to equality reasoning.
Isabelle [9] focuses on automated reasoning while Coq is using mostly its
tactics [23] based system to work on equalities. Agda, is a system that tries
not to abstract to much from the actual proof (i.e. lambda terms) offers
special support to work on equalities while still being fairly concrete. When
it comes to automation though, all three “role model systems” converge to-
wards offering push button solutions that all work fairly similarly.

Overview Chapter two gives a short overview of MMT, LF, some of the
inner workings of MMT and the proof of concept interactive theorem prover
that was developed for MMT in the authors previous work. Chapter three
gives an overview of the state of the art. Chapter four presents a new way
of writing proofs that form a transitivity chain. Chapter five presents ex-
tensions to the interactive prover for rewriting. Chapter six introduces some
slight automated reasoning for the interactive prover concerning algebraic
structures. Chapter seven is conclusion and future work. Appendix A is a
very brief tutorial, meant to be a kick-start for new users to the interactive
proof system. Appendix B is an index of all newly implemented tactics that
are part of the interactive proof language.

2 Preliminaries

This section gives a short overview of MMT, LF. It is by no means complete
and will only focus on what is needed to understand the rest of this work.
For example integral parts of MMT like structures are left out.

2.1 MMT

MMT is a framework for implementing different formal systems. It abstracts
from theoretical and practical aspects of type theoretical and logical founda-
tions of these systems [16]. MMT itself is build on a small set of carefully
chosen, orthogonal primitives. It makes a distinction between large scale
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THEORY ::= theory NAME [: METATHEORY] = (THEORY*|INCLUDE*|CONSTANT*)
NAME ::= string
URI ::= uri-string
METATHEORY ::= URI
INCLUDE ::= include URI
CONSTANT ::= NAME[= MMT-OBJ][: MMT-OBJ]

Figure 1: MMT grammar

concerns and small scale concerns. Large scale concerns are dealt with on
the MMT level (i.e. generically) and small scale concerns are dealt with
by individual foundational languages. MMT goes beyond the meta-logical-
framework approach in that it does not commit to a particular meta logic,
instead allowing for different foundations.
Because the MMT-level already provides common features, implementing
new foundations requires less work. Instead of starting from scratch, every
new foundation only needs to add necessary extensions, mainly in the form of
so-called “rules”, and notations to MMT. A rule itself is, plainly spoken, just
some Scala code which gets loaded dynamically during run-time. Notations
on the other hand are declared in MMT source files (not to be confused with
the source of MMT).

MMT-syntax MMT consists of theories which in turn are lists of constant
declarations [17]. Each constant declaration itself can be made up of a defi-
nition, a type declaration, and several optional notations.
There are some exceptions to that like import declarations, which only con-
sist of the import path. A theory can have a meta theory which is referenced
as a valid uri-string (for example “ur:?LF” or in long form
“http://cds.omdoc.org/urtheories:?LF”).
A semi-formal definition of the syntax is defined in figure 1.

MMT-objects “MMT-object” is a general name for most elements in an
MMT-file. MMT-objects are build of simple building blocks as described
in an oversimplified version in figure 2. To not loose focus, only the parts
needed for the definition and type of a constant as described in figure 1 are
included.
Each basic building block has a special purpose :
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MMT-OBJ ::= OMV|OML|OMA|OMID|OMBINDC
VARDECL ::= VARDECL(LOCALNAME, [MMT-OBJ] , [MMT-OBJ])
LOCALNAME ::= string
OMV ::= OMV(string)
OMID ::= OMID(uri-string)
OML ::= OML(LOCALNAME , [MMT-OBJ] , [MMT-OBJ])
OMA ::= OMA(MMT-OBJ, MMT-OBJ*)
OMBINDC ::= OMBINDC(MMT-OBJ, VARDECL* , MMT-OBJ)

Figure 2: MMT-object grammar

• OMV : (local) variable name

• OMID: reference/name of a constant in the (global) context

• OML : local declarations with an optional type (second argument) and
optional definition (third argument)

• OMA : application of terms (arguments) to a term

• OMBINDC : binder block, used for things like the argument binder in
a lambda term

• LOCALNAME : a local identifier (for simplicity it is defined as an alias
for string)

• VARDECL : like OML but grammatically separated from OML (for
reasons that go beyond this work)

Checking in MMT When MMT checks an MMT-file it goes through three
phases as depicted in figure 3. During parsing MMT checks whether a term
is syntactically valid. Beyond that the MMT-parser also adds dependencies
between variables and unknowns(i.e. which variable the solution for the
term that the unknown represents can depend on). The way dependencies
are added follows the structure of lambda terms. For example in the term
“[x] ([y,f] a) ([z] b)” the variable “a” can depend on x, y and f but not on
“z”.
The type checking phase checks that terms a valid with regard to typing.
This phase can create constraints that are tried to be proven during the
third, “proving”, phase.
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Figure 3: different phases MMT goes through when checking a file

Figure 4: constant with definition
Figure 5: partially inferred type of
“example”

Unknowns An unknown in MMT is a named placeholder for a yet to be
constructed/found term. Unknowns are never explicitly written in MMT
source but rather introduced dynamically when needed (for example during
type inference when only a part of the final type is known). For example
in figure 4, when MMT infers the type of “example”, an intermediate state
could look like figure 5 where “/u” is the unknown.
An unknown can depend on a locally introduced variables (variables bound
in a Pi or lambda-binder). MMT declares such local dependencies as an
application of those variables to the unknown (OMA(nameOfUnknown ,
OMV(nameOfVariable)*)). The solution for the unknown then declares these
local variables as free variables (wrapping the solution in the free-binder de-
clares all variables it binds as potentially freely occurring in its body). For
example, let /u be the unknown in the term [a: boolean ,b : boolean] /u
(where a and b are bound variables). Then the fact that the solution for /u
can depend on a and b is signaled by writing the term as [a,b] (/u a b). Let
now the solution for /u be f a where f is a function taking a boolean and
returning an element of an arbitrary type. Then the actual solution for /u
would be free(a,b,f a). When this solution now gets inserted into the orig-
inal term [a,b] free(a,b,f a) a b one can now see how the application of the
bound variables and the freely “bound” variables match. This principle is
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Figure 6: A simple abstract theory about semi-groups interpreted in the
context of another theory

very important for understanding the concrete implementation of the prover
system in later chapters.

Views One of the more unique features of MMT are the views. A view
is theory-mapping that maps elements from the source theory to the target
theory, meaning that it shows how a theory (the source) is interpreted in a
target theory. This can also be used to define an abstract theory and then
interpreting it in a concrete context. Figure 6 shows an example of how
to interpret an abstract semi-group theory in a theory that (pretends to)
implement the natural numbers. To create a view one simple starts by using
the view -keyword, followed by a name and then stating the source theory (lhs
of the arrow) followed by the target theory. Then one lists how an element
of the source theory is interpreted in the target theory. It is also possible
to have partial view, i.e. one can leave out how something from the source
is interpreted in the target theory. MMT will then generate a warning that
some of the “translation” is missing.

Parametreized theories Another feature of MMT, although not unique,
is that one can give theories parameters. This lets one define abstract theories
which can then be instantiated with concrete parameters. Using the semi-
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Figure 7: The example from figure 6 rewritten using a parameterized theory

Figure 8: The abstract class defining the parametric rule

group example once again and rewriting it to use a parameterized theory
instead of a view the example in figure 6 can be rewritten as depicted in
figure 7.

Rules Rules in MMT are a mechanism that allows a user to extend MMT
in several different ways. Among those are: How a term gets handled dur-
ing type checking/type inference, parser modifications, tactic behavior etc.
Rules come in two flavors: Basic rules and parameterized rules.
A rule is implemented as a piece of Scala code. A rule has to implement the
rule-trait.

Figure 9: Trivial example Rule
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Figure 10: How a rule is included inside an MMT-file (concrete example)

Figure 11: Abstract description how a rule is imported

Rules are included as a declaration inside an MMT-file by starting with
the rule keyword, followed by the jURI -unicode and then the actual URI.
The URI itself is build by translating the Scala-path into an URI, starting
with “scala://” followed by the translated path (replacing the dots in the
Scala path with back slashes, followed by a “?” and the name of the rule-
object). For example when a rule-object named “test” resides in the package
“im.a.scala.path” (figure 9). Then the URI which references this rule trans-
lates to “scala://im/a/scala/path?test”.
For MMT to be able to find a rule in that way it is necessary to implement
the rule as an object. Once included, a rule is added to the global rule set
(literally called RuleSet) in which MMT stores all the rules it has loaded.
MMT also offers parameterized rules. These rules aren’t really rules on their
own since they generate rules based on the parameters passed (but they get
called through MMT’s rule mechanism but with parameters; they also don’t
get added to the RuleSet). To implement a parametric rule one has to create
an object which inherits from the abstract class Parametricrule (figure 8).
This will then force the user to implement a method which returns a rule.
This generated rule will then be included into the global RuleSet. There is
no need to reference these generated rules inside of an MMT-file. Unlike the
parametric rule, or simple rules, the generated rules don’t need to be a Scala
object.

2.2 LF

The “Logical Framework” [7] (short LF) is a simplistic dependently typed
lambda calculus. It is simplistic in the sense that it comes with a minimal
set of features and syntax. This scarcity makes it suitable as a meta-logic (a
meta-logic should be as unspecific as possible to not force a certain direction).
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LF-OBJ ::= LF-PI | LF-ARROW | LF-CONSTANT | LF-APPLY
LF-PI ::= OMBINDC(OMID(“Pi”) , LF-VARDECL* , LF-OBJ )
LF-ARROW ::= OMA(OMID(“arrow”), LF-OBJ LF-OBJ)
LF-LAMBDA ::= OMBINDC(OMID(“lambda”) , LF-VARDECL* , LF-OBJ)
LF-CONSTANT ::= OMV(LOCALNAME) | OMID(uri-string)
LF-APPLY ::= OMA(OMID(“apply”) , LF-OBJ LF-OBJ)
LF-VARDECL ::= VARDECL(string, [LF-OBJ], [LF-OBJ])

Figure 12: LF grammar in MMT (for brevity names like “arrow” are not
fully qualified)

Figure 13: defining a type, it’s constructors and a simple function working
on that type

The most notable missing features are pattern matching and inductive data
types which are otherwise ubiquitous in functional languages. Instead, data
types and their constructors are given axiomatically. Function definitions, as
long as they don’t need pattern matching can be given as plain lambda terms.

Representation of axioms and theorems in LF A constant in MMT/LF
is an axiom by giving it a type but not an accompanying definition. Theo-
rems are merely explicitly typed definitions (by Curry-Howard a theorem is
true if its type is inhabited).

Examples Figure 13 shows how a new type and a simple function would
be defined in MMT using LF as meta theory. Nat has two constructors, succ
for successor which essentially increments the value of a natural number by
one and zero. The function add2 increments the value of a natural number
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Figure 14: embedding of propositional logic in MMT

Figure 15: Simple theorem in MMT

by two.
Figure 14 displays a way one could implement propositional logic in MMT.
The theory contains the theorem example which will be used as an exam-
ple throughout this work (and will eventually be proven in the tutorial in
appendix A).

In case one wishes to parse something the deviates from this scheme MMT
offers custom parsing extensions. Such extensions can be included via the
rule mechanism MMT offers.

2.3 Proofs in MMT [31]

A theorem in MMT/LF is done by expressing a statement as a type to a con-
stant. Classically the proof then is done by giving a definition that matches
the given type.
In fig. 15 the definition example represents the trivial theorem that a proof
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Figure 16: Simple tactics proof in MMT

Figure 17: Intermediate proof state of
example

Figure 18: Tactics entered so far for
the proof of example

of a implies a proof of a.
An alternative way to specify a definition/proof is to use tactics. An exam-
ple of a proof done using tactics is given in fig. 16. Instead of specifying
the lambda term directly, the individual proof steps are listed. The proof
then gets turned into a lambda term which gets checked against the type of
example. Writing a proof using tactics requires the user to specify the whole
proof, otherwise the type checking will fail.
Since writing lambda terms and tactic proofs in the above stated fashion for
non trivial proofs is fairly hard to achieve MMT offers an interactive mode
for writing tactic proofs in a step by step fashion (currently only available
for the JEdit plugin for MMT). The advantage of using the interactive mode
(for writing tactic proofs) is that the user can inspect the proof state (fig.
17), the build lambda term including it’s holes (fig. 19), the entered tactics
so far (fig. 18) and error messages.
A simple proof and an overview of available tactics is given in appendix A.

Figure 19: The generated lambda term that represents the tactics proof so
far example
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Figure 20: Simple function in Agda, it implements the unary boolean not-
operator

Figure 21: with abstraction in Agda

3 Related work

3.1 Agda

Agda is a dependently typed functional programming language implemented
in Haskell [10]. It’s syntax is designed in a way that is very close to Haskell’s
syntax. Agda was designed with a strong focus on programming.
Proofs in Agda are given by constructing a lambda term. Agda offers some
interactive support to ease the burden of writing proofs in this style. Proofs
can be constructed in several steps. This is done by leaving so called holes
(unknowns in MMT) for which Agda will infer the type and context.

Function definition and pattern matching in Agda A function in
Agda is defined by giving a type which is then followed by so called clauses.
A clause consists of the function being applied to its arguments, which can be
pattern matched, followed by the equals sign and the function body [11]. A
simple example function that implements the boolean not-function is given
in 20.

With-Abstraction With abstraction is a feature of Agda that lets one
match rhs of the equal sign in a function clause [15].
The power of the with abstraction comes from the fact that its match-
ing results generalize over types of other terms (potentially including the
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Figure 22: with abstraction in Agda

Figure 23: simultaneous with-abstraction

Figure 24: Definition of equality in Agda

goal/return type) in the same local context. In the example in figure 22
the match of p x generalizes over the type of the goal, P (filter p (x::xs)),
resulting in x :: filter p xs and filter p xs respectively .
It is also possible to have multiple with-abstraction matches at once as shown
in 23.

Equality Equality in Agda is defined as a simple inductive type (fig. 24)
[26]. The only constructor this type has is a proof that shows that the left
hand side is equal to the right hand side.

dot pattern Dot patterns are used when the value for a pattern match
is defined strictly by other matches [12]. For example when matching a
parameter of type Square as in figure 26 it will force the first parameter in
that example to be m * m. This is in so far special because usually one
can only match constructor of a type (in case of nat it would be zero and
successor) that is matched but in the special case of dot patterns one can
match a complex expression. This behavior is important for rewriting.
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Figure 25: definition of square as data type

Figure 26: example of a dot pattern; when the Square-parameter is matched
it forces the first parameter to be m * m

Figure 27: rewriting syntax in Agda

Figure 28: what a rewrite statement actually translates to in Agda
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Figure 29: Example that can be solved with the monoid solver

Figure 30: a rough overview over how the monoid solver works on the example
in figure 29

rewriting in Agda Rewriting in Agda is implemented by utilizing with-
Abstraction [14]. As explained in the previous paragraph one can match
complex expressions in case they are forced by another match anyway. This
mechanism can be used when matching on something of type lhs = rhs which
will force every occurrence of lhs to be replaced with rhs. Figure 27 shows
the rewriting syntax in action and figure 28 shows how this translates into
with abstraction. Without the dot-pattern in 28, i.e. matching a constructor
or a catch-all variable (for example ab) the goal would be either P zero, P
(succ n) (where n is a variable of type nat) or P ab. With the dot-pattern
match it turns into P (b + a).

monoid and (semi-)ring solver in Agda

monoid solver Agda’s solver for monoids is a macro that only works on
the conclusion and only on conclusions of shape lhs = rhs [5]. The approach
is, roughly speaking, to translate the goal into its AST-representation using
Agda’s reflection API (the –reflection– part in the example diagram in 30).
Since the solver is written in Agda itself it would not be possible to reason
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Figure 31: using the legacy solve tactic to proof a theorem about commuta-
tivity and distributivity of multiplication and addition of natural numbers

Figure 32: Usage of the fully automatic solve-∀ tactic

about the conclusion without translating the plain term into elements of an
inductive data type. After that, the term is normalized and translated back
to “normal” Agda. Then the left hand side and right hand side are compared
and proven via reflexivity (the === part in the diagram at the top). A proof
that normalization is a homomorphism guarantees that the original lhs and
rhs are also equal (the ==homo== part in the diagram).
The theorem displayed in figure 30 shall be proven with the monoid solver.
To do so one simply includes the appropriate library and calls the solver via
solve + a parameter which proves that the type the monoid solver tries to
solve forms a monoid using the binary operation used in the goal. Under
the hood the solver works as depicted in fig. 30. The quoted lhs and rhs of
the goal get back translated one time normalized [ ⇓] and one time without
modification [ ↓]. Then the two normalized terms get compared (in on the
very top in figure 30). Through the homomorphism-proof it is guaranteed
that the original term and the normalized term are the same and thus that
the original lhs and rhs are the same.

(semi-)ring solvers for natural numbers and integer Agda has
solvers for (semi-)rings which work on natural numbers and integers. There
are the legacy solvers, which require more work from the user, and then there
are the “new” solvers which proof a goal fully automatically.
The legacy solvers don’t use Agda’s reflection library, so the user is required
to manually translate the goal into a AST-representation that the legacy tac-
tics can use [1]. The legacy solver tactic takes three arguments: A natural
number which indicates how many different variables are in the goal, the
translated goal and a proof that solves the remaining sub-goals. The solver

18



tactic does in fact not solve the goal but tries to transform the lhs and rhs of
the goal so that they are equal. If that fails, the solve-tactic will present the
user with new goals. Usually these goals are either to complicated to solve or
not solvable at all and the user usually should go back to the original problem
and try to modify it (if it is provable). Figure 31 shows a concrete use of the
legacy solve tactic. It’s first argument indicates that there are three variables
(all bound by the forall-quantifier: x, k, n). The second argument translates
the goal (i.e. the type of distrib-comm). A translation is usually straight
forward. All variables are bound by a lambda (instead of the forall from the
goal) and then the goal is translated almost one to one to the representation
syntax. Only the operators are change syntactically by prefixing them with
a colon. In this case after the solver has finished its task it presents the user
with a new trivial goal that can easily be proven by reflexivity.
Since the usage of the legacy solver tactic is somewhat inconvenient (espe-
cially when translating larger terms into its representation syntax), Agda de-
veloped a new version of the tactic that is a complete “push button”-solution
and does not require any initial setup from the user what so ever [2]. One
simply calls the tactics (which is called ∀-solve) and then the tactic either
succeeds or fails. Figure 32 shows the usage of the ∀-solve tactic.

chained equality reasoning Agda offers a special syntax for reasoning
about equality transitivity chains to represent such chains in a nice readable
way [26]. An example of an equality chain would be (a + b) * c = (b +
a) * c = a * c + b * c . An example of said syntax is given in figure 36.
The implementation of it is done in Agda itself. The syntax consists of four
elements displayed in figure 33. The begin-element is merely for syntax and
basically functions as the opening parenthesis. The next element only exists
to make something like normalization in a chain more explicit. The next
element ( =< > ) is a syntactic representation of the transitivity property
of Agda’s equality. The last definition (“qed”) is a syntactic representation of
Agda’s equality reflexivity property. This is needed because the transitivity
element can’t be used directly as first chain element since it needs to take two
equality proofs as arguments. One equality proof comes from the argument
between the =< and >. The other is supplied the chain part of the chain
that comes before the current chain element. But since there is no previous
part of the proof chain an “artificial” element is supplied by using reflexivity.
The chain in fact is right associative and internally build from right to left
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Figure 33: definition of Agda’s chained equality reasoning
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Figure 34: the transitivity property expressed a equality chain

Figure 35: how the example in fig. 34 is parsed

Figure 36: the transitivity property expressed a equality chain
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Figure 37: Equality as defined in Coq [6]

even though the natural build progression of the chain would (likely for most
users) be from left to right.
A first simple example is displayed in figure 34. As stated above this is
implicitly bracketed to the right as displayed in figure 35. First a reflexivity
proof is generated for z. This is then passed to the inner chain element as
fifth argument (the first being y, the second and third being z, the fourth
being the argument named y=z ). This part of the chain in turn gets passed
to the second chain element and the final chain then gets passed to the begin
element.
A more complex example is given in fig. 36 proving commutativity of addition
defined on natural numbers. This proof works much in the same way as the
first example. This time though the purely cosmetic chain element that does
not take a proof is used to make the last (when read from left to right) step
of the base case and induction step more clear. Internally these steps are not
required since Agda only compares normalized terms anyway.

3.2 Coq

Coq is a programming language and proof assistant. In fact Coq itself is
made up of two distinct languages: Ltac and Gallina. Gallina is the strict
dependently typed programming language that can be used to reason about
statements made in it. And then there is Ltac, a impure, script like language,
mainly used for creating tactics.
In Coq, proofs can be done in two ways. The more common way to do proofs
is via tactics scripts [18] [3] which will indirectly construct a representing
lambda term. The less common (but sometimes necessary) way to construct
proofs in Coq is by constructing the lambda term directly (more or less
similar to Agda).

3.3 Equality reasoning in Coq
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Figure 38: rewrite grammar [24]

Equality The “build in” equality is defined similar to Agda as an inductive
type (see figure 37) where its only constructor is a proof of reflexivity [6].

Rewriting Coq distinguishes between three kinds of equality [23]:

• Leibniz equality

• Setoid equality

• Definitional equality (not important for this work)

For Leibniz-equality Coq offers the rewrite-tactic which is build upon the
more general setoid-reweriting(see Setoid-Rewriting). A binary relation is
considered a Leibniz-equality when it adheres to the property { x y : A }{P
: A → Type} x = y → P x → P y (where A is just some type). Usually for
a target relation that property is proven or axiomatically stated somewhere
in the context and Coq will find it. In case it is not trivially stated in the
context Coq tries to prove it automatically on its own when using the rewrite
tactic (usually by “chaining together” other congruence properties for mor-
phisms used in the target term in which the rewriting is taking place).
The rewrite-tactic takes an rewrite relation (f.ex. x = 3) and rewrites a goal
accordingly. The rewrite-tactic takes multiple optional parameters. An in-
complete grammar is given in 38.

The arrows (in oriented rewriter) indicate the direction in which the
equality is to be used (i.e. if← is used, symmetry gets applied to the rewrite
relation). The natural-argument together with the question/exclamation
mark modify how often the rewrite is performed. If the question mark to-
gether with natural is given then the rewrite is performed at most natural
number of times.one term with bindings is the rewrite relation.
occurences specifies the location where the rewriting should take place. All
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Figure 39: Example using the rewrite-tactic

Figure 40: Proof state of the example in 39 before the rewrite

Figure 41: Proof state of the example in 39 after the first rewrite
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Figure 42: Syntax to register a user provided relation for setoid rewriting [21]

Figure 43: Syntax to register a morphism [20]

possible sub-expressions which can be rewritten are those who match the left
hand side of the rewriting relation. Coq searches for possible rewrites in a
depth first search manner, meaning the occurrence parameter selects possible
rewrites top to bottom, left to right.
The by ltac expr3 parameter applies a tactics expression to potentially
newly generated goals. An example using rewrite is given in 39. The hy-
pothesis H is being used twice (first parameter of the rewrite tactic) at the
first possible position that can be rewritten. The figures 40 and 41 show the
proof state before and after the rewriting.

Setoid-Rewriting Setoid rewriting is a simpler, more general form of the
rewrite in the sense that a binary relation can be more likely used for setoid
rewriting than the pure rewrite tactic, since setoid rewriting does not require
to be congruent towards all morphisms.
To use setoid rewriting with a specific relation it first has to be registered to
the Coq system. To do so one uses the Add (Parametric) Relation com-
mand as shown in fig. 42 [19]. one termA is the carrier and one termAeq is
the user provided relation. Both have to be type-able under the binder con-
text. one termA has to be of type forall a0 a1 ... an , Type. one termAeq

has to be of type forall a0 a1 ... an , A0 a0 a1 ... an → A1 a0 a1 ... an
→ ... → Am a0 a1 ... an . ident is the name which Coq uses to save the
morphism to the internal database and is used by Coq for internally used,
automatically generated lemmas.
Depending on what proofs have been provided the tactics symmetry, reflex-
ivity and setoid rewrite (for transitive rewrites in case transitivity has been
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Figure 44: Complete example on how to register a parametric relation and
a morphism [19]

Figure 45: Example usage of the registered relation and morphism from fig.
44 [19]
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proven) are enabled for the user provided relation. Transitive rewrite means
that the setoid rewrite can only be used for situations where the rewrite re-
sults in a transitivity proof. A rewrite step usually results the application of
the transitivity property when the goal and the rewrite relation are made up
of the same binary relation and the lhs or rhs of the rewrite relation matches
the lhs or rhs of the goal. For example, when the rewrite relation is a = b
and the goal is a = c then the proof will look something like this h : a = c
⊢ trans a b c h new goal where trans is the transitivity property of = and
new goal is the newly generated goal.
To be able to rewrite in a more complex way one needs to use the Add
(Parametric) Morphism (fig. 43). This will be translated by Coq into
term one term one term which the user then has to proof. When Coq’s
rewrite tactic is called it then considers all morphisms declared that way
for rewriting. In general there are two concrete constructs for the signature
to use when adding new morphisms for rewriting. The first one being (rel
==>)n rel (see the Coq manual for the definition of ==> also called respect-
ful) where rel is a user provided relation and n is the number of arguments
one term takes. In short this means that when there is an expression of
type rel a b (where a and b are arbitrary but fixed terms) in the context
and the target expression is of type rel (one term args) c (where args are the
arguments of one term which includes a) then the target expression can be
rewritten to rel (one term args0) c (where args0 is the same as args but with
some/all occurrences of a replaced with b). A complete example is given in
figure 44 and 45. When rewrite is called internally calls setoid rewrite which
then searches for an appropriate theorem that lets the user rewrite under the
union-morphism.
The second construct for the signature in the Add Morphism-construct is (rel
==>)n (Basics.flip Basics.impl) somenaryproperty where somenaryproperty
is a property/function that takes n arguments. This will proof congruence
for rel with regards to somenaryproperty.

ring/field The ring and field tactics can solve equality and inequality state-
ments about structures that form a (semi-)ring/field [22]. The tactics work
by simply calling them. The optional arguments that one can pass to these
tactics are terms of type a = b. (see the example in fig. 46 for two examples
of the ring tactic). The passed equalities are used to make the tactic aware
of certain selected equalities.
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Figure 46: Example usage of the ring tactic [22]
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Figure 47: Proof using the field simplify tactic

Figure 48: Proof state before applying the simplification

Figure 49: Proof state after applying the simplification

To register a new ring one has to Add Ring command which takes a name
for the newly registered ring and a proof that shows that the new ring satisfies
the ring properties.

ringsimplify/fieldsimplify ringsimplify and fieldsimplify can simplify ex-
pressions of ring/field structures [22]. This tactic can be applied to hypothesis
as well. It takes a list of sub-expressions which should be simplified which
then get taken by the ring simplify tactic and replaces the unsimplified ver-
sion of the sub-expression with the simplified one. If no sub-expressions are
specified then the tactic tries to simplified the whole target expression (see
example 47 with the proof states 48 and 49).

3.4 Isabelle/HOL

Equality and equality reasoning Equality in Isabelle/HOL is defined as
boolean equality. Essentially it is a function that takes two terms of the same
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Figure 50: various uses of simp

Figure 51: proof state after induction

type and returns a boolean [9]. Isabelle offers the common infix notation for
equality in form of the equals-sign. When the type of the terms taken by
equality is bool then equality is the same as the bi-implication except for the
priority (equality has a high priority while iff has a low priority).

simp simp is Isabelle’s automated method for equality reasoning. This
method takes a database of equality rules and applies them left to right to
the goal (in some instances simp will automatically apply a rule with the

Figure 52: before the first application of simp del : snocapp in the induction
step
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Figure 53: before the first application of simp only : snocapp in the induction
step

Figure 54: proof state after simp only: snocapp

lhs and rhs flipped) [25]. simp offer several modifiers to modify the database
(adding deleting etc). simp also accepts conditional rewrite rules. In general,
a newly proven theorem is added when it is marked with the [simp] -flag.
Example uses of simp are shown in figure 50. The lemma snocapp is added
to the simp-database indicated by the [simp] after the snocapp name. simp
can not only simplify goals but also solve them. Therefore it was enough in
the base case and induction step of the snocapp lemma to use simp.
The figures 51 to 54 show the proofs states a various points during the proof
of rev cons. Since the induction step does not go through without the snocapp
lemma the application of simp del: snocapp only simplifies the goal, but can
not solve it since the modifier del removes the said lemma from the simp-
database. The next application of simp with the only-modifier applies only
the given set of theorems/lemmas to the goal (in this case only snocapp).
The final simp then solves the goal.

subst and hypsubst subst and hypsubst are Isabelle’s most basic ways
of rewriting. Both can only be used inside an apply-script. subst takes a
theorem of shape lhs = rhs and replaces the lhs in the target (which can
be the conclusion or a hypothesis) with its rhs [28]. The natural number
argument of subst tells Isabelle at which position(s) the substitution should
take place. subst itself can not take a hypothesis as its argument and use it
for rewriting/substitution. If one wants to use a hypothesis for rewriting one
has to use hypsubst which will automatically pick a hypothesis and use it for
rewriting/substitution. If hypsubst does not pick the desired hypothesis one
has to instruct Isabelle with the back -command to try another. Overall the
controllable of hypsubst is underwhelming.
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Figure 55: syntax for the subst-tactic [27]

Figure 56: Simple example using hypsubst and subst
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Figure 57: Rewriting at the conclusion

Figure 58: Rewriting at the conclusion; selecting a subterm

The application of hypsubst in the example in figure 56 replaces all as with us
leading to the new conclusion u + b + c = b + u + c. subst add.commute then
applies commutativity of addition to the goal resulting in the new conclusion
b + u + c = b + u + c.

Rewriting library The rewriting library for Isabelle is a fairly new devel-
opment to close the gab between the high level rewriting automation simp
and the very basic, low level subst method [4].
The rewriting library offers ways and means to rewrite (multiple) sub-terms
in the goal or in the hypothesis. The rewrite proof method lets the user
select a (sub-)term to rewrite using the at and in keywords then specifying
the sub-expression which should be considered for the rewrite. The sub-
expression pattern is followed by the actual rewriting relation (see figure 59

Figure 59: syntax for the rewriting tactic in Isabelle
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Figure 60: syntax for the algebra proof method [29]

for the syntax). The rewriting relation has to be of the form ... → lhs
= rhs. In the simple example in figure 57 the “sub”-expression is just the
whole goal. The next example in fig. 58 shows that one can leave parts of a
sub-expression by using the underscore. Isabelle will then try to match the
underscore for anything. Isabelle will search the goal for a (sub-)expression
that matches the pattern passed to the rewrite-tactic. Using the little box
symbol signals Isabelle where the actual rewrite is supposed to take place in
the sub-expression, when a matching one is found. Depending on whether
at has been used (instead of in), the box has match the lhs of the rewriting
relation. In the example the pattern matches due to its restrictiveness, only
the conclusion as a whole. The first underscore matches a - a + (a - a), the
second one f 0 + f c and the box matches (a - a) + c. In case in was used
the expression that the box matches gets further searched for an expression
that matches the lhs of the rewriting relation. In the example the rewriting
relation (named diff self) is v - v = 0 where v can be any expression of type
nat.
This was just a mere peek at what the rewriting library can do, there is in fact
more to it like: rewriting in assumption, explicit instantiation of variables in
the rewriting relation, rewriting under binders using variable capturing etc.
Non the less this should give a rough feeling on what the rewriting library
for Isabelle can do.
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Figure 61: example of using the algebra proof method

Algebraic automation Isabelle offers solver for algebraic automation that
involve ring and field structures. The underlying proof method is Hilbert’s
Nullstellensatz [30]. Its syntax is given in fig. 60. Before the actual algebraic
reasoning takes place the algebra proof method performs simplification (using
add and del modify this behavior). The example in fig. 61 shows why
a simplification step might be needed, since this proof would not go though
without adding the definition of square (sq def) to the algebra tactic (without
it the algebra tactic would not be able to unfold the definition of sq).

4 Chained transitivity reasoning

4.1 Terminology

• lhs: left hand side of a binary relation; f.ex. in the expression 1 = 2 is
the number one the lhs of the target relation relation

• rhs: right hand side of a binary relation

• Transitivity chain proof: A transitivity proof that is a composition of
multiple chained transitivity chain elements

• Target binary relation/target relation: the binary relation that is used
in a chain step to make a statement of the form R lhs rhs (where R is
the target relation)

• (Transitivity) chain element/step: A single chain element in a transi-
tivity chain proof consisting of an lhs, rhs and a proof that R lhs rhs
where R is the target binary relation.
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• homogeneous transitivity property is a transitivity property that only
relies on one (binary) relation. The classical example of such a property
is the transitivity of equality as in if a = b and b = c then a = c (a =
b → b = c → a = c)

• heterogeneous transitivity property is a transitivity property that relies
on multiple (binary) relations. An example of such a property would
be the statement that if a < b and b = c then a < c (a < b → b = c
→ a < c)

• Multi-step chain proof: A chained transitivity proof that consist of
more then one chain element

• inner chain: a chained transitivity proof is a (depending on the imple-
mentation) left (or right) recursive construct. This means that a proof
is consecutively constructed in the sense that the next step in the proof
chain builds upon another inner proof which in turn itself is a chained
transitivity proof, the so called inner chain.

• Chaining lemma/scheme: a lemma that tells MMT how to proof that
either R lhs rhs (where R is the target relation) or in a multi-step
chained transitivity proof, how to chain the current chain element to
the inner chain

• Local target relation: The binary relation used in a specific chain ele-
ment. Examples include ’=’, ’<’ and ’>=’.

• Combining proof: a proof that states that R lhs rhs where R is the
local target relation

• Linking element: When two chain elements are combined the lhs of
one chain elements is the rhs of the other. Example: lhs << proof >>
center << proof0 >> rhs. center is the rhs of the left chain element
and the lhs of the right chain element.

4.2 Introduction

Writing long transitivity proofs usually becomes very difficult to get right.
As an example consider the term a+b+c+d = d+(b+(c+a)) where a, b, c, d
are natural numbers and + the left associative, usual operation for addition
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Figure 62: pure lambda proof using transitivity statements to proof that
a+ b+ c+ d = d+ (b+ (c+ a))

(((a + b) + c) + d)
commutativity of a and b

= (((b + a) + c) + d)
associativity of b, a and c

=
((b+ (a+ c)) + d) = ((b+ (c+ a)) + d) = (d+ (b+ (c+ a)))

Figure 63: textbook math proof that chains multiple elements together

of natural numbers. The main problem with writing pure lambda term proofs
that mainly explicitly use transitivity theorems is that their development is
syntactically counterintuitive to the way such proof are normally developed
(an example of how such a proof looks like when using plain lambda terms
is given in 62). In everyday mathematics, when writing proof chains they
syntactically resemble fig. 63, where the syntax goes well with the work-flow
one would have when proving this statement .

Homogeneous transitivity proofs A proof of transitivity is done by
chaining single simpler steps together. One step consists of a statement
including the lhs and rhs of an equality statement and the proof that lhs
is equal to rhs. A single step itself will then look something like this:
eqchain lhs << proofthatlhsequalsrhs >> rhs qed (there is also another nota-
tion/implementation for a transitivity chain element which will be discussed
later). Both the “eqchain” and “qed” keywords are required for the proof to
be constructed (see the chapter about the implementation why that is). Both
are non the less very similar to each other except for two things: which target
relations can be used and on the implementation side, how proofs are con-
structed). Multiple such statements can now be chained together by reusing
rhs of one such statement as the lhs of the next statement. Syntactically this
will look something like this lhs << someproof >> rhs << anotherproof >>
nextrhs. The “anotherproof”-proof will then state that rhs = nextrhs. For
a chain greater or equal the size of two the system will then automatically
construct a transitivity proof using the proof chain. Returning to the two
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step chained proof from before, the system will then construct for a binary
transitive relation R with the transitivity property Rtrans : {a b c} R a b
→ R b c → R a c, the proof Rtrans lhs rhs rhs0 someproof anotherproof.
Now when a further chain element is added to the whole chain resulting in
something similar to this: lhs << someproof >> rhs << anotherproof >>
nextrhs << proof3 >> rhs3, the system will then first construct a transi-
tivity proof for the two rightmost chain elements (i.e. using “anotherproof”
and “proof3”) to construct a proof (Rtrans rhs nextrhs rhs3 anotherproof
proof3) which in turn then gets used by a second transitivity proof using
lhs and someproof resulting in the final proof Rtrans lhs rhs rhs3 someproof
(Rtrans rhs nextrhs rhs3 anotherproof proof3). In general transitivity chain
proofs are generated from right to left.
The required proof for each of those statements can be specified with a vary-
ing degree of explicitness. Depending on whether the system is able to auto-
matically find a proof, partially infer parts of the proof or is unable to find a
proof for the stated equality, the required proof for lhs = rhs can be omitted
or at least partially omitted or has to be specified completely in case the
system is unable to not even partially infer parts of the proof. Further more,
the first lhs and the last rhs in the chain can be omitted in case the type
for the constant which holds the proof is provided. Depending on whether a
proof is provided or not the lhs or rhs of a chain element can also be omitted
(see example 71).
Homogeneous equality chain reasoning can expressed in two ways: The
MMT-only way and the version that utilizes the MMT-rule-mechanism. The
main difference between both, from a users perspective is how one tells the
system which target binary relation (like equality) is to be used for the tran-
sitivity chain and which binary relations are even allowed to be used in
chained transitivity reasoning. To be able to use MMT-only implementation
one has to instantiate the parameterized MMT-theory in which the chained
transitivity is defined. Figure 66 show this very theory. To instantiate this
theory successfully one has to specify a carrier (i.e. the type on which the
target relation is specified on), the target relation, a proof that this relation
is transitive and reflexive. After successful inclusion/instantiation one can
use the constructs (i.e. the mechanisms and their syntax ) for the specified
target relation in the current theory. Further more this will also enable the
user to import some additional theorems/lemmas about chained transitivity
reasoning adapted to the specified target relation.
The other implementation of the homogeneous chained transitivity reason-
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ing uses MMT’s rule system. Unlike the MMT-only implementation this one
is not instantiated by including a parameterized theory. To add a certain
binary relation to the set of viable target relations one first has initialize the
rewriting mechanism at least partially for the a chosen target binary relation
(see the next chapter about rewriting on how one does this). In contrast
to the MMT-only implementation, this one requires the user only to specify
a carrier, a binary relation and a proof that the specified binary relation is
transitive but it is not necessary to provide a proof that the relation is reflex-
ive. Adding a proof that the relation is reflexive and/or the symmetric will
allow the system find more theorems for automatic inference of unspecified
proofs in the proof chain. When the system tries to find a proof for unspeci-
fied proofs in a chain element it goes through a list of available theorem and
compares the type of the theorems to the required one. When the symme-
try property holds for the target relation, the subroutine that searches for a
fitting theorem to fill in as proof will try to apply symmetry to the theorems
checked. For example a proof for R a b is needed in the chain element a
<< >> b but the only available theorem states that R b a. Now with
symmetry the system can automatically generate the new corollary that R
a b from the theorem that R b a. Without symmetry the system would not
be able to find a proof that R a b. When a proof for R a a is required and
the reflexivity property holds true for R then the system will automatically
infer the required proof.
A syntactic difference between the two versions is that the MMT-rule version
does not require the beginning “eqchain” and ending “qed” keywords used
in the MMT-only version.

Heterogeneous transitional proofs A modification of the above system
(especially the implementation of homogeneous chained transitivity proofs
that uses the MMT-rule-mechanism) is to generalize the transitivity proof
in so far that each chain element can make a transitivity statement using a
different transitive relation. An example would be a = b < c ≤ d < e = f ,
which would result in the statement that a is less then f (a < f). Other then
the homogeneous chained transitivity proofs, there is only one version for the
heterogeneous chained transitivity proofs.
The heterogeneous chained transitivity proofs are done similarly by chaining
single chain elements together. A single chain element consists of an lhs,
rhs and a proof that R lhs rhs where R is a binary relation (not necessarily
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Figure 64: transitivity chain reasoning using the heterogeneous implementa-
tion

Figure 65: syntax for the the heterogeneous chained transitivity proof
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transitive). A single chain element will then look something like this: lhs [[
proof >> rhs . The elements lhs, rhs and proof can be specified again in
varying degrees of explicitness (see example 64) and the system tries to figure
them out on its own. When it can’t do so the system will throw an error.
When one has two chain elements where the rhs of one of the chain elements
is the lhs of the other then there two can potentially be chained together.
The requirement for both chain elements to be chained together is that there
is a theorem/lemma (chaining scheme) in the context that takes the proofs
of both chain elements an forms a new statement. For example when having
the two chain elements a [[ proof >> b and b [[ proof0 >> c (where proof
states that R a b and proof0 states that R0 b c where R and R0 are both
binary relations) then those two can be chained together in case there exists
a lemma that states that R a b → R0 b c → R1 a c, where R1 is a binary
relation). In case the system is not able to automatically find an appropriate
lemma/theorem for chaining two chain elements together even though there
exists one then the user can use an alternative version of the chain element
syntax to specify which chaining lemma the system is supposed to use. To
do so one writes lhs [[ lemma ]] proof >> rhs where lemma is the chaining
lemma. This syntax can also be used in case one wishes to be more explicit.
The heterogeneous chained (pseudo) transitivity proofs also allow the user to
specify which target relation is used in a chain element (see fig. 65). This will
support the MMT-system in finding an appropriate chaining lemma and also
helps with being more clear what a chain element is supposed to represent. To
tell the system what the local target relation is one has to use the alternative
syntax lhs [[ proof (| target relation >> rhs where ’target relation’ is the
specified local target relation (see example 64 for a concrete example). This
again can also solemnly be used for the purpose of being more explicit when
writing the proof. There is also a syntax that lets the user specify the local
target relation and and the chaining lemma. To do so one has to use the
syntax: lhs [[ chaining lemma ]] proof (| local target relation >> rhs.

4.3 Examples

Example (fig. 66); lines 62 to 69 This example uses the MMT-only
implementation but instead of instantiating the MMT-only (homogeneous
chained transitivity proofs) theory this example is done within the original
theory that defines the MMT-only implementation. That way it is also shown
how to define lemmas in a more general way which will be made available
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once the user instantiates the theory that contains the MMT-only implemen-
tation (even though this example lemma would be quite useless). Further
more, using this kind of example is more straight forward since it circumvents
the whole instantiation process.
The actual proof states for the values va, va0 (of a type u) holds eq va va0
when eq va va0 (named vaeqva0) holds(where eq is a transitive and reflexive
binary relation on type u). To proof this statement only one chain element is
needed: one that states that eq va va0. As described in the chapter about ho-
mogeneous chained transitivity proofs, a chain element is build by combining
an lhs with and rhs and an connecting proof. Since the proof that eq va
va0 is already in the context one can simply proof the statement as a single
element chain by using va as lhs, va0 as rhs and vaeqva0 as combining
proof.

Example (fig. 66); lines 62 to 69 This example is a simple extension
to the first example by forcing a second chain element. This time the goal
is to proof that eq va va1. Unlike the first proof there is not a theorem in
the current context that states just that. But since the target relation
is transitive and there are two proofs that eq va va0 and eq va0 va1 it is
possible to generate a transitive proof chain containing booth proofs. To do
so two chain elements are needed. The first one containing va as lhs, va0
as rhs and vaeqva0 as combining proof, the second one containing va0 as
lhs, va1 as rhs and va0eqva1 as combining proof. The linking element is
va0 resulting in the proof va << vaeqva0 >> va0 << va0eqva1 >> va1.

Example (fig. 67) This example uses an instantiation of the MMT-only
theory to proof that two natural number are equal (where “natural numbers”
is just a name for another type used to instantiate the MMT-only implemen-
tation of the chained transitivity proofs).
To instantiate the MMT-only theory one includes the theory displayed in fig-
ure 66 with appropriate parameters (line 78 in fig. 67). The first parameter
(nat) specifies the carrier type of the target relation, the second argument
(nateq) specifies the target relation, the third argument (refl) give a proof
that the target relation is reflexive and the last argument (nattrans) pro-
vides a proof that the target relation (nateq) is transitive.
Now that the MMT-only-implementation of the chained transitive proofs has
been initialized and included one can proceed to proof the desired theorem.
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The goal of this example is to proof that v equals v0 (nateq v v0 ). Since
the proof that nateq v v0 is already in the context, this proof can be im-
plemented using just a single chain element. Basically , the solution is just
a translation of the theorem that states that nateq v v0 into the chained
transitivity proof syntax. Again, the chain element consists of the lhs, rhs
and the combining proof. The combining proof in this case is the theorem
veqv0, the lhs is v and the rhs is the v0. The final proof is displayed in line
89 of figure 67.

Example (fig. 67); lines 62 to 69 This example is an extension to the
previous example. Now the goal is to proof that nateq v v2. This time it
is not possible to state the proof as a single chain element. This time three
elements have to be chained the together incorporating the three proofs in
lines 86 to 88. Again the way to construct the chain elements, when there
is already a proof stating what the chain element is supposed to represent
(like nateq v v0 ), is to just translate it syntactically. So veqv0 translates to
v << veqv0 >> v0, v0eqv1 translates to v0 << v0eqv1 >> v1 and v1eqv2
translates to v1 << v0eqv1 >> v2. Now when combining the single chain
elements one looks at what the lhs of the goal (nateq v v2 ) is and searches
for the chain element which lhs matches the goal-lhs. In this example this is
the chain element using the combining proof veqv0. Then one looks for the
next chain element that has the appropriate lhs that matches the rhs of the
first chain element. The proof then becomes v << veqv0 >> v0 << v0eqv1
>> v1 where v0 become the linking element that chains the first two chain
elements together. Since this only proofs that nateq v v1 it is necessary to
add the last element to this proof (the chain element using v1eqv2 ). The
final proof is displayed in line 90 of figure 67.

Example fig. 69 This example demonstrates the usage of the Scala-rule-
implementation of the chained transitivity proofs which slightly deviates from
the MMT-only implementation. It also demonstrates other ways how one can
supply to the combining proof to a chain element. Further more this exam-
ple shows how one would normally go about more “naturally” constructing
these kinds of proofs instead of just figuring out how to stick together already
proven facts as it was done in the previous examples.
To be able to use the Scala implementation it is necessary to instantiate the
rewrite-tactic parametric rule as described in the chapter about rewriting
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with at least the carrier, a target relation and a proof that this relation is
transitive . Otherwise MMT will complain.
The goal is to proof that a + b + c = c + b + a. Now the idea is to basically
go through the steps required to transform the lhs of the goal to the rhs as
one has done many times on paper . The solution and steps now presented
are just one of many ways to proof this goal. Also, only addassoc and add-
comm are supposed to be used.
Because c is at the very left of the addition and a is on the very right of the
addition the idea is to let them “switch positions”. Unfortunately this is not
directly possible. Hence one has to apply associativity and commutativity in
a way that achieves just that, but in a multi-step way.
The first (chosen) step is to use associativity of plus to transform a + b + c
(which is implicitly bracketed as ((a + b) + c)) to a + (b + c). Since there is
no proof that ((a + b) + c) = a + (b + c) it has to be constructed/proven.
The combining proof can be anything that has the appropriate type. There-
fore it is also possible to supply a tactics proof that shows just what is
needed. In this particular case one can use the rewrite-tactic and the asso-
ciativity theorem to do the transformation. The combining proof then reads
as rewrite addassoc a b c applying the values a, b, c to the addassoc-lemma.
This results in the first step: a + b + c =<< rewrite addassoc a b c >>=
a + (b + c) (note the slightly changed syntax of the brackets =<< and
>>= instead of << and >>, indicating that the Scala implementation of
the chained transitivity proofs is being used here).
Next step is to rewrite using commutativity (line 52). Again, the proof is
supplied as a tactics script. The proof so far is a + b + c =<< rewrite
addassoc a b c >>= a + (b + c) =<< rewrite addcomm b c >>= a + (c +
b) . The remaining proof is done in a similar fashion as depicted in the lines
54 to 57. A shorter proof that proofs the same is given in 70.
Since writing all the detail of a chained transitivity proof can be quite labori-
ous or distract from the actual important path by cluttering what is actually
important, it is possible to leave parts of the chain implicit as shown in figure
71. When parts of the proof are left out like this (under to hood creating un-
knowns), MMT tries to solve them on its own. That way the user can spare
the reader of that proof from unnecessary clutter. Further more this also
allows the writer of the to easily modify the proof since it is not necessary
to rewrite the parts of the proof that MMT automatically solves. Figure 72
shows a proof that leaves even more parts out including lhs and rhs at some
places.
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A good rule of thumb is to either specify the combining proof at least
partially and therefore to be able to leave the lhs and rhs unspecified, or to
specify the lhs and rhs and leave the combining proof for MMT to figure
out.
As one might have noticed the tactic proofs are missing the reflexivity in the
end. This is a convenience feature because equality proofs usually end with
reflexivity and therefore the chained transitivity reasoning automatically ap-
pends them to a proof script if necessary. They can, however, be explicitly
stated if wanted (see figure 73). As figure 73 shows, it is also possible to
supply multi step proof scripts (again, the rule is just that the supplied term
has to be of type lhs = rhs) of the chain element it belongs to.

heterogeneous example (fig. 64) Figure displays a proof that uses
heterogeneous chained transitivity proofs (lines 114 to 117). The proofs
are all the same except for the parts that are left implicit. In general, the
heterogeneous proofs follow the same structure as the homogeneous. The
main difference is that, due to the usage of different local target relations,
that one has to be at times more specific and help the system by supplying
additional information. In general, the proof engineer can add two more
parameters to the chain element: the first is the chaining scheme and the
second being the explicit naming of the local target relation. The proof in
line 114 leaves the local target relations implicit. The proof in the next line
adds the explicit naming of the local target relation in the chain elements.
The proofs in the next two lines leaves some parameters explicit but are
essentially the same as the ones before. The fact-chaining scheme just states
that this chain element does not chain with a previous chain or chain element.
The next chain element states that b = c which is proven by h0. The chaining
scheme nateqtrans states that the previous chain (i.e. inner chain) has to
be of type a = b where a and b are arbitrary expressions of type nat and the
current chain element has to be of type a = b as well. The chaining scheme
also states that the inner chain (which the current chain element will then
belong to) will be of type a = b again.
For a change the next two chain elements have two different chaining schemes
(natletrans and natlttrans), one requiring the current chain element be of type
a ≤ b and resulting in a ≤ d, and the other that the current chain element
is of type a < b which will result in the desired type a < e.
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Figure 66: MMT-only implementation of the equality chain reasoning

4.4 Implementation

The implementation can be subdivided into three smaller parts: The MMT
only implementation which uses only mechanisms accessible from the MMT
environment and then the Scala implementations which again can be sep-
arated into two different parts for homogeneous transitivity (i.e. R a b →
R b c → R a c where R is a binary relation) and heterogeneous transitivity
(i.e. R a b→ R0 b c→ R1 a c where R, R0, R1 are all potentially different
binary relations).

4.4.1 MMT-only implementation

The MMT only implementation basically translates the Agda-implementation
of chained equality reasoning to MMT. Unlike the implementations which
use the MMT-rule mechanism, this implementation of the chained equal-
ity reasoning needs multiple constructs to achieve the same functionality as
the other, single relation Scala implementation. The implementation resides
within a parameterized theory so it can be instantiated for a concrete type
and transitive-reflexive operator (see fig. 66).
The MMT-only implementation consists of three constructs all defined in
MMT itself without the need of defining inference and/or typing rules. A
chain element is basically implemented as an alternative syntax for applying
arguments to the supplied transitivity property. Due to the fact that the
first element in the transitivity chain has no inner chain a trick is used to
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Figure 67: Equality chain reasoning using the MMT-only implementation

give it an inner chain (generating a reflexivity proof for that gets passed to
the first, i.e. rightmost element). The second construct is the qed -construct
which takes the rightmost element in the chain and returns a trivial proof of
reflexivity (line 59). The third construct (begin) is just syntax and adds no
actual functionality.

4.4.2 Single relation Scala implementation

The single relation Scala implementation uses an inference and typing rule to
implement the mechanisms of the chained equality reasoning (or to be more
specific the mechanisms of the single chain elements; see figure 68). When the
Scala implementation is used, the system checks whether the target relation
is transitive. This is done by searching the rule set of the solver for rules
of type EqInstanceRule (line 16) and filters those which are transitive and
reflexive. After that the system tries to infer or check the type of the current
chain element.

4.4.3 Multi-relation Scala implementation

The multi-relation implementation is done mainly in Scala. Like the sin-
gle relation implementation it relies on MMT’s rule mechanism (i.e. the
InferenceAndTypingRules). It does however not require the rewrite tactic
instantiation. In general it works much the same as the Scala implementa-
tion for the homogeneous transitivity proofs.
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Figure 68: Inference and typing rule that implements the mechanisms of the
chain elements

Due to time constraints it was not possible to implement the heterogeneous
chained transitivity proofs (see future work).

5 Tactics for equality reasoning

5.1 Terminology

• target relation, relation used for rewriting

• Parametric relation: A parametric relation is something of type { a :
A , a1 : A1, ... an : An } target relation

5.2 Introduction

Many proofs involve some kind of equality reasoning. This kind of reasoning
can be split into four different subcategories: Reflexivity proofs, symmetry
proofs, transitivity proofs, and congruence proofs.
In case one wants to use the tactics one has to include the parametric rule
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Figure 69: Example: simple commutativity-proof with three variables

Figure 70: Example: short version of the proof in figure 69

Figure 71: Same proof as in 69 but with holes left for MMT to figure out
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Figure 72: Same proof as in 71 but with even more implicites left for MMT
to figure out

Figure 73: Same proof as in figure 72 but using multistep proof scripts, also
stating the final reflexivity tactic explicitly
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parameter parameter name expected type tactic enabled mandatory
carrier car type - yes
relation rel car → car → type - yes
symmetry sym {a b : car} rel a b → rel b a symmetry no
transitivity trans {a b c : car} rel a b → rel b c → rel a c rewrite no
congruence cong {a b c : car} rel a b → rel b c → rel a c rewrite no
reflexivity refl {a : car} rel a a reflexivity no

Figure 74: list of parameters for the EqInstancRule

as shown schematically in fig. 76. This rule can be instantiated with vari-
ous parameter which will enable different tactics, depending on the passed
parameters. Tableau 74 shows what parameters can or must be passed to
the rule. relation specifies the targeted binary relation. car specifies the
carrier for the target homomorph relation. car and rel have to be specified.
symmetry, reflexivity, transitivity and congruence specify the equality
properties for the target relation. Each parameter is specified by first stating
its name and then followed by the actual parameter (names are defined in
the theory in fig. 75). Therefore it is possible to change the order in which
the parameters are passed, sort of like named parameters in programming
languages like Scala. The parameters can also be parameterized over sev-
eral variables. This works kind like a lambda/pi binder which specifies the
names and types ahead of the actual parameters passed to the rule. Those
bound names can also depend on each other much the same way they can in
a lambda/pi binder.

Example for rewrite rule instantiation (fig. 78) To enable the set of
tactics for equality reasoning one first has to instantiate the EqGenerateRule
as shown in line 12 and 13. The rule works by passing named parameters.
The parameters available are:

• car: Carrier

• rel: Target relation; a binary relation that is of type car → car → car
→ type

• refl: A property that shows that rel is reflexive (type: a: car rel a a)
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Figure 75: Theory defining the parametric equality-rule

• sym: A property that shows that res is symmetric (type: a b : car (rel
a b → rel b a) ∧ (rel b a → rel a b))

• trans: A property that shows that res is transitive (type: a b c : car
rel a b → rel b c → rel a c)

One has to at least pass the car and rel parameter. Depending on what other
parameters have been passed the reflexivity,symmetry and/or rewrite-tactic
are enabled for the specified rel (a list of what each parameter means and
what tactic it enables is listed in figure 74). It is also possible to parameterize
over the passed parameters. For that reason the EqInstanceRule offers to
put parameters between the << and >>. This allows for parameters to be
(partially) generic instead of being fixed. In the example, the parameter A :
type is added in front of the passed parameters (car, rel, etc).

5.3 reflexivity

Figure 79: semi-formal description of
the reflexivity tactic
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Figure 76: Syntax for the rewrite-rule

Figure 77: args-syntax used in fig. 76

Figure 78: Example instantiation
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Figure 80: a reflexivity step without the re-
flexivity tactic; reflexivityAxiomFor== is just
a made up name that states that {A : type}{a
: A} a == a

These kinds of proofs occur
when the goal is of form a
= a. The reflexivity tactic
would then solve the goal.
Introducing a tactic for these
kinds of proofs isn’t strictly
necessary (as most tactics
are, except for a few funda-

mental tactics) but convenient. The advantage of the reflexivity tactic is that
it automatically deals with some of the more fundamental details like which
reflexivity axiom/theorem to use (depending on which relation is used) and
the arguments applied to that axiom/theorem. For example is the reflexivity
for equals “=” different for less then or equal (<=). The figures 79 and 80
show the difference between using the reflexivity-tactic and doing it without
it.

5.4 symmetry

The symmetry tactics comes into play when a term of the form lhs = rhs
should be flipped to rhs = lhs. This tactics can be applied to either the
goal, then called without any further arguments, to a hypothesis in the local
context, then passing the name of the hypothesis to the symmetry tactic.
When applied to a hypothesis, symmetry will replace the old hypothesis
with a new one where lhs and rhs are flipped, keeping the old name for the
hypothesis (see figure 81 for a formal description and examples).

5.5 rewrite

5.5.1 Motivation

Doing “rewriting” by using theorems directly without any special support
by an interactive system can become very quickly unfeasible. This is mostly
due to the user having to keep track of lots of information in a very confuse
looking proof.
The figures 82 and 83 show the stark difference between a proof done using
tactics and one using a plain lambda term to proof a + b + c + d = d + c
+ b + a. At a certain complexity level lambda terms loose their ability to
be easier to understand then tactics and that point is usually reached fairly
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Figure 81: Description and example of how the symmetry tactic works: The
top two lines show how to apply the symmetry tactic to the goal and the
bottom two how to apply it to a hypothesis

Figure 82: using tactics
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Figure 83: using a plaint term for the proof

quickly.

5.5.2 Description

The rewrite tactic replaces low level handling of theorems with a more ab-
stract, high level command that takes care of some of the low level details.
It’s syntax is given in figure 84.
In general the rewrite tactic takes an argument of the form eq lhs rhs (lhs
= left hand side; rhs = right hand side; eq = binary transitive relation),
called rewrite relation, and replaces occurrences of lhs with rhs in a target
term. The tactic always gets called with it’s name “rewrite” first. Alterna-
tively it can also be called with an abbreviated “rew”. After an MMT-term
is specified which states the binary relation and its arguments used for the
rewrite, i.e. a term of type eq lhs rhs, several additional arguments can
be supplied to the rewrite tactic which modify its behavior. In total there
are four modifiers: the using-modifier which specifies what transitivity or
congruence theorem to use by the rewrite tactic, the in-modifier which sig-
nals when specified whether to apply rewriting to a specific hypothesis ,
the at-modifier which specifies which specific occurrence of lhs in the target
term to rewrite and the where-modifier which specifies how to (partially)
instantiate the transitivity/congruence theorem (potentially specified by the
using-modifier).
Like many tactics that change the proof state in a significant way the rewrite
tactic is also represented by a proof term. Therefore it is important to rec-
ognize that the rewrite tactic is used for two kinds of rewriting: Transitive
rewriting and congruence rewriting. Transitivity rewriting targets terms that
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Figure 84: Syntax of the rewrite tactic

Figure 85: Syntax of the assign operation used in figure 84

can be used in the same transitivity property together with the rewrite rela-
tion. In the schematic description in fig. 86, assumes that there is a transi-
tivity property for a (not more precisely specified) equality of type {A:type,
a b c: A} a = b → b = c → a = c (now called eqtrans). The rewrite
tactic uses the hypothesis h with type a = b to rewrite every occurrence of
a with b in the conclusion. Since the conclusion is also an equality statement
the rewrite will be a transitive rewrite. The newly generated goal will be the
“mid-part” of the transitivity chain in a = b → b = c → a = c. Congru-
ence rewriting on the other hand targets sub-terms in the target term and
replaces them with regards to the specified rewriting relation accordingly.
Fig. 88 shows the general mechanism of congruence rewriting. The goal P
a is not an equality like the hypothesis h. Therefore using h to rewrite the
goal to P b cannot be a transitive rewrite, instead the congruence property
(now called eqcong) is used.
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Figure 86: rewrite using transitivity (in case there is exists a transitivity
property approximately of type {A:type, a b c: A} a = b → b = c →
a = c)

Figure 87: Proof term progression for the rewrite in fig. 86

Figure 88: rewrite using congruence in case there exists a congruence prop-
erty for P and equality approximately of type {A: type, P:A → prop, a
b : A } a = b → P b → P a

Figure 89: Proof term progression for the rewrite in fig. 88
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5.5.3 Examples

Simple abstract example The goal is to proof that h: c=b; h0: a=c ⊢
a = b (without further specifying which type they are). The steps are to
first replace a with c by using hypothesis h0 and then replace c with b by
using hypothesis h. The rewrite tactic works by taking the lhs of the rewrite
relation (in the first rewrite step the rewrite relation is the type of h0, i.e.
a = c) and replace every occurrence of the lhs in the target term (here the
target term is the goal) with the rhs of the rewrite relation.
The graphical depiction of the proof is given in figure 90.
When the rewrite tactic is called it searches for an appropriate rewrite the-
orem that have been registered via the parametric EqInstace-rule. For this
example the example instantiation from 78 . Now when the rewrite-tactic
is called with h0 under the hood transitivity (the rewrite theorem) is called
like this: transitivity a c b h0 (where the underscore is the new hole).

Rewriting in a hypothesis The goal is to proof that h: b=a; h0: P b
⊢ P a(again without further specifying which type they are for simplicities
sake). To rewrite in the hypothesis one adds the in-parameter at the end of
the call to the rewrite tactic. The target term of the rewrite is h0 using h as
rewrite relation.
The graphical depiction of the proof is given in figure 91. Like in the previous
example the system will take transitivity as rewrite theorem.

Explicitly stating the rewrite theorem Figure 92 shows the example
as a whole. The proof is fairly simple. For documentation purposes the
rewriting should explicitly state what rewrite theorem should be used (not
to be confused with rewriting relation). The first rewrite (rewrite h0 using
eqtrans where eqtrans is the rewrite theorem) just states that it is using a
common transitivity theorem which one would expect the rewrite theorem
would use anyway. The second one uses a different rewriting theorem, named
eqtrans4. Both eqtrans and eqtrans4 have to be accessible somewhere in the
current (global) proof context when used. Usually the problem with using
eqtrans4 would be that the system usually can’t figure out all the forall-bound
variables of eqtrans4 since it does not have enough information (it just knows
about the conclusion and one rewrite relation, but in fact it would need two,
see the next example for how to pass more information to the rewrite-tactic).
The special part about using eqtrans4 here is that since there is no need for
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an extra transitivity step, the system can figure out all information it needs
and generates two goals (one trivial) accordingly. eqtrans4 gets instantiated
as follows: x = c, y = d ,z = b , u = b. To see an example where eqtrans4
gets used directly see fig. 96.

Explicitly instantiating parts of a rewrite theorem The figures 93,
94 and 95 show the almost same proof using various ways to pass additional
parameters to the used rewriting theorem eqtrans. The first rewrite in 93
instantiates the named/bound variables in eqtrans (type: { x y z } x = y →
y = z → x = z) by referencing them by name (x := a; y := c; z := b). This
instantiates eqtrans to a= b → b = c → a = c.
The second rewrite uses a slightly other way to provide extra arguments.
This time the the arguments are provided by indicating at which position
they are to be inserted.
Figure 94 shows a variation in which the rewrite theorem is left implicit. In
this case one has to know which one the system will choose to be able to
appropriately supply additional arguments.
Figure 95 shows that one can also mix both supply styles even for one ar-
gument like in the first rewrite where b is provided via z := b at 2 (third
additional argument). In cases like these the positional argument takes prece-
dence over the name, but the name of the argument/variable will be checked
if it actually matches (i.e. whether the argument at position 2 is actually a
named argument and whether the name is actually z ).
Using explicit arguments one can rework the example from fig. 92 into a
more readable version presented in 96.

Rewriting in sub-expressions The general functionality of how the at-
parameter works is displayed in 97. When the rewrite tactic is called with
an at-parameter it goes through the term in a depth-first manner, searching
for (sub-)expressions that can be rewritten using the rewrite relation passed.
When the at parameter is a natural number n then the rewrite tactic will take
the nth possible sub-expression and rewrites it. When a lambda is passed
instead of a natural number the rewrite will take place at the position the
lambda parameter marks.(see fig. 99)
The concrete example in 98 replaces in the conclusion the right P a that is
applied to Q.
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Mixed example This example (100) uses a rewrite that uses all types of
additional arguments (using,at,in,where). Concretely this rewrite means that
the rewrite relation a = c named h should be taken to rewrite the hypothesis
h0 (of type P(a + b + a)). Also the eqcong-lemma ({A }{ P} { x y : A } x
= y→ P x→ P y ) is used for rewriting instantiated with a for x. Since only
the second a in P(a + b + a) the rewrite has an at argument that forces the
rewrite to only take place at the second a.

Example for transitive rewrite The goal in 101 is to proof a more com-
plex version of the more common transitivity theorem a = b → b = c →
a = c. To achieve this the simplest strategy is to rewrite each hypothesis h,
h0, h1 one after the other and then apply reflexivity. Since the outermost
constant term is the same relation as the rewrite relation the system will pick
the transitive property in case one was specified when the EqInstanceRule
was specified. In case non was specified the rewrite will fall back to the con-
gruence property. All three rewrites in this example will use the transitivity
property if one was specified. The resulting term will be [h h0 h1] eqtrans
h (eqtrans h0 (eqtrans h1 eqrefl)) (eqrefl is the reflexivity property specified
during the EqInstanceRule instantiation).

Example congruence rewriting The goal in 102is to proof that if n is
even so is m. Since the hypothesis h0 states that m = n this holds true.
The only thing that has to be done is to rewrite m with n in the goal isEven
m. To do so the rewrite tactic is called with the hypothesis h0. The rewrite
tactic then rewrites every occurrence of m in the goal with n, resulting in the
new goal isEven n. This can then be trivially solved by using the hypothesis
h using the use-tactic. Since the rewrite in this case can’t be expressed as
a transitive statement the rewrite tactic takes the congruence property. The
resulting term is eqcongr m n ([x] isEven x) h.

5.5.4 Implementation

This subchapter is just a rough description of the implementation of the
EqInstanceRule and the rewrite tactic itself. For a deeper understanding
and technical details it is recommended to read the commented source code
and interactively execute it.
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Figure 90: Simple example using the rewrite tactic

Figure 91: Simple example using the rewrite tactic to rewrite in a hypothesis

Figure 92: Rewrite example where the theorem to use for rewriting is explic-
itly supplied; eqtrans : { x y z } x = y → y = z → x = z
; eqtrans4 : { x y z u } x = y → y = z → z = u → x = u
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Figure 93: explicitly instantiating the rewrite theorem

Figure 94: variation of 93

Figure 95: variation of 93

63



Figure 96: the example from 92 but using eqtrans4 directly

Figure 97: Abstract description of the at-parameter; the subscript numbers
are just for marking the position not for making the parameters actually
distinct (i.e. a 1 is equal to a 2 but a 1 is the first parameter for P where as
a 2 is the second one)

Figure 98: rewriting in a subexpression selected by position
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Figure 99: rewriting in a subexpression selected using a context

Figure 100: An example that uses all the available additional argument types

Figure 101: Example for fig. transitive rewriting
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Figure 102: Example for fig. congruence rewriting; proving that if n is even
so is m if n = m

EqInstanceRule The MMT half of the implementation has already been
introduced in 75. Basically the EqInstanceRule takes a lambda which as
body has the actual parameters. The “lambda binder” is syntactically rep-
resented by <<>> and takes arguments just like the normal lambda binder.
The parameters (i.e. the body) are all separated by semi colon and consist of
the name of the parameter and its value. The parameters are parameterized
over the variables bound by the <<>>.
The rule itself is implemented as an object that derives from the Parametri-
cRule trait. When the rule is called it checks whether the passed parameters
have the right type (for example whether the parameter for reflexivity has
the type { a } a = a ). Then it generates a new object of the EqInstance
class which holds information like what parameters where in the <<>> and
which and what parameters where passed, i.e. what properties hold for the
passed relation.

Rewrite Tactic The rewrite tactic, like most tactics, consists mainly of
its execute-method. When the rewrite tactic’s execute-method is called it
receives the rewrite relation and the additional parameters. It first checks
whether it can either use the transitive property or congruence property with
regards to the rewrite relation. It does so by checking the shape of the goal
and the rewrite relation. After that it applies the passed where arguments,
the rewrite relation and the conclusion to the rewrite theorem tries to infer
missing parameters and check whether the everything type checks properly.
When the at parameter is passed and/or the congruence property is used
for rewriting the rewrite tactic specifies the P -parameter for the congruence
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Figure 103: trivial yet cumbersome proof

property (type of congruence : { x y P } x = y → P x → P y ).
When the setup described above is done the rewrite tactic modifies the proof
state accordingly (this is where the in-parameter matters) and generates the
proof term.

6 Algebraic equality reasoning

6.1 Motivation

Proving arithmetic expressions is cumbersome. For example does the theo-
rem that a+b+c+d = d+(b+(a+c)) (where a, b, c, d are integers) require
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Figure 104: implementation of the abstract representation of the semigroup
structure

Figure 105: implementation of the abstract representation of the group struc-
ture

many trivial steps until it is proven. For such situations algebraic/arithmetic
automation is desirable to remove busywork from the user. The complete
manual proof is given in fig. 103 using Coq. As one can see, this only re-
quires simple, repetitive steps. Through experience it became apparent that
such simple algebraic/arithmetic proofs often occur. The consequence is then
that the general flow of a proof gets disturbed by these nuisances.
Due to being repetitive, simple in theory and a thing that very common,
simple arithmetic/algebraic should be done automatically so that the user
can focus on the important parts of a proof. In case of the example in fig.
103 Coq offers a tactic, named ring, which solves the proof with just two
tactic calls (the other one being the intros-tactic since ring can’t handle
quantifiers).

6.2 System description

The system is made up of a small hierarchy of classes. On top is the so called
Algebra-tactic which takes a bunch of smaller tactics that implement a solver
for an algebraic structure on an abstract level (i.e. not for a concrete type like
nat, but for example an abstract semi-ring). The strategies in turn collect
instantiations for the algebraic structure they work on. For example when
there is a strategy for solving semigroup structures, instances would include
an interpretation of semigroup structure in the natural numbers (i.e. the
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Figure 106: simple sample implementation of the natural numbers

Figure 107: simple sample implementation of the natural numbers

Figure 108: simple sample implementation of the natural numbers

Figure 109: simple sample implementation of the natural numbers
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carreir are the natural numbers with the addition as the semigroup operator),
integer, lists (the operator is the append function).
When a strategy defines its solving procedure for a given algebraic structure,
that structure has first to be defined inside an MMT theory. The strategy
then references the abstract operators, carrier etc. from that theory in its
solving procedure.
An instantiation is a view from the theory defining the abstract algebraic
structure to a theory that works on concrete types (for example the natural
numbers) passed to the strategy generation rule which will then register that
instantiation with the indicated strategy (the name of the target strategy is
also passed to that rule; every strategy has a global name).
A strategy itself is a Scala code snipped that gets included by using the
StrategyInstantiation-rule in MMT.
The algebra itself just asks all his registered strategies in descending order
of priority (a parameter that every strategy has) whether it is applicable to
the current goal. If the strategy indicates that it is, it then gets executed by
the algebra tactic. If the strategy fails or indicates that it can’t be applied to
the current goal then the algebra tactic tries the next strategy. The algebra
tactic also takes an optional extra argument which lets the user force the
algebra tactic to try a specific strategy like for example semigroup.

Example Let there be two strategies for semigroup and monoid as dis-
played in 104 and 105. Now to register a instantiation for natural numbers
(here some fake natural numbers as in 106 are used) for the two strategies
one has to make a view from semigroup/monoid to simplenat (see 107 and
108). Now to create a strategy instantiation one calls the parametric rules
as shown in 109 (lines 215 to 217 and lines 219 to 221) passing the global
name of the target strategy and then the global name of the view. One has
to make the system first aware of the strategies though (therefore the rule
calls in the lines 214 and 218).

6.2.1 Accumulative tactics

The abstract concept of accumulative tactics is what the algebra tactic is
build upon. Therefore a closer look at them increases the understanding
of how the algebra tactic and its strategies work. A general overview of the
accumulative tactics is given in 110. The whole accumulative tactics/strategy
complex is implemented as a hierarchic system of rules. On top is the rule
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Figure 110: general realtion between accumulative tactics, strategies and
strategy instances

Figure 111: The trait for the AccumulativeTactic and AccumulativeTactic-
Parser

for the accumulative tactics, followed by the strategies and at the bottom
are the strategy instantiations.

Accumulative tactic The accumulative tactic is a super structure that
coordinates different so called strategies. The role of a accumulative tactic
is more to decide when to use a certain so called strategy. If necessary
though, it can partake in the actual proof process but is supposed to let the
selected strategy to do the bulk of the work.
To make an own accumulative tactic one simply extends from the Accumu-
lativeTacticParser -trait (fig. acctrait) and defines a parser which will return
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Figure 112: The trait for the Strategy

Figure 113: The parametric rule used for generating the instantiations of
strategies
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an AccumulativeTactic (fig 111). To make the tactic available one then ref-
erences the concrete instance of the AccumulativeTacticParser via MMT’s
rule mechanism.
Implementations of the AccumulativeTactic are forced to implement the find-
Strategy method which will then go through a list of strategies and returns
a lazy list of applicable strategies. Which then get executed one after the
other until one succeeds or all failed.

Strategy Strategies implement the Strategy-trait (fig. 112) which will force
concrete classes to implement a bunch of meta information and the functions
whichapplicable, which searches for a strategy instantiation that can be used
to work on the current goal, and the executeStrategy-function which is where
the main functionality goes. The implementation of the Strategy-trait also
forces the implementation of some meta information that can be used by
accumulative tactics and strategy instantiations.

Strategy instantiation As already described in the system description of
the algebra tactic, strategy instantiations are basically a call to a parametric
rule which associates a strategy with a view (fig. 113). When the Strate-
gyInstantiation parametric rule gets called, it searches for the target strategy
and stores the found strategy together with the passed view in an instance
of StrategyInstance which will be stored in the global rule set of MMT.

6.3 Implementation of the algebra tactic

Algebra tactic The implementation of the algebra tactic is displayed in
figure 114. When called it first gathers all strategies it can find and sorts
them by priority. It then filters those strategies that are applicable to the
goal and, if the algebra tactic was called with the optional strategy selector
argument, it searches for that particular strategy and checks whether it is
applicable (lines 29 to 33). If no applicable strategy was found the tactic
fails with an error (lines 35 to 37). It then tries every strategy until either
one succeeds (i.e. when res.isInstaceOf[HasError] is not true any more) or
every one has failed (lines 38 to 43).

semigroup The semigroup implementation is displayed in 116. The semi-
group’s whichapplicable-function which is called by the applicable-function
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Figure 114: Implementation of the algebra-tractic

Figure 115: For the sake of completeness: the implementation of the algebra-
tactic parser
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Figure 116: Implementation of the semigroup strategy
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Figure 117: Implementation of the semigroup strategy

Figure 118: The essentially changed part of the monoid-implementation com-
pared to the semigroup strategy

first retrieves all its strategy instances (line 185). Then it sets up a list of
tuples containing the carriers and the rule each belongs to (lines 186 and
187). Finally the whichapplicable-function searches though this list of tuples
to find pair that that can be used on the current goal (lines 189 to 195).
The executeStrategy function first gets the selected strategy instance (line 42)
and then takes the current goal, which has to be of shape lhs = rhs (line 46).
It then retrieves the binary operator that combines two values of the carrier
(line 47) by applying the view (that is the view morphism) that is saved in
the selected strategy instance to the abstract definition of op (as shown in
fig. 117). This gets then used to retrieve the values from the lhs and rhs as
a list each by calling the getVals. Finally, when the lists are both equal the
system removes the current goal as solved.
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Figure 119: The MMT-theory representing the monoid

Figure 120: Theory in which the Example 1 resides

monoid The main thing that changed in the monoid -solver is its execution
algorithm. In line 44 the strategy retrieves the concrete neutral element from
the strategy instance by applying the view morphism the instance holds to
ident from 119. This will then get used in lines 46 and 47 to remove the
neutral element from the value lists the getVals function generates.

group Group is implemented very similarly to the semigroup strategy and
monoid strategy. In general the main difference is that as an additional step,
tries to eliminate inverse pairs i.e. a - a. The rest is similar to the monoid
strategy.

6.4 Examples concerning the use of the algebra tactic

Example 1 The goal is to poof the simple theorem {c : nat} {a : nat} {b
: nat}{d : nat} ⊢ (a + b + c + d == a + (b + (c + d))). This theorem can
be solved incorporating the semigroup-strategy. After the proof is loaded,
first one introduces the PIs to the proof context via the fixs-tactic and then
executes the algebra-tactic. If one desires one can explicitly instruct the
algebra-tactic to explicitly use the semigroup-strategy by typing “algebra
semigroup”.

77



Example 2 The goal is to proof a more complex theorem that can be
solved by group but not by the semigroup or monoid strategy. The goal is
to poof the simple theorem {c : nat} {a : nat} {b : nat}{d : nat} ⊢ (a - a
+ ident + b + c + d == a + ident + ident (b + (c + d))) - a (ident it the
identity element/neutral element). Since this term includes the inverse of a
(namely - a) this can not be solved by semigroup or monoid either but can
be solved by the group strategy. To solve this goal one simply types “algebra
group” or just “algebra” where the tactic will find out by itself what strategy
to use.

7 Future work

7.1 Implementation of truly MMT-parseable languages

7.1.1 Current state

The current way to save proofs in MMT is to just simply use the proof lan-
guage from the interactive proof tool and extend MMT so that one can write
the proof directly as a definition into an MMT file.
Using the interactive tactics language to document proofs comes with some
disadvantages though. In general tactic languages aren’t very readable. Usu-
ally the proof state isn’t mentioned explicitly. This makes tracking the proof
steps fairly hard, if not impossible. On top of that tactics are usually not
self explanatory. This means that one has to put in extra effort to under-
stand a proof, even when the proof state before and after the execution of the
tactic is known. Additionally the tactics language used for the interactive
proofs does a lot of things implicitly like the “fixs” tactic (without explicit
arguments) which introduces all hypothesis to the local proof context while
giving the added hypothesis names automatically. Then, later in the proof
those hypothesis can be referred to by their implicitly given name. As a re-
sult the proofs become even more unreadable. The just mentioned fact that
fixes introduces names automatically if wished shows another problem with
that language. The interactive tactics language ignores established MMT
conventions (or to be more precise goes beyond the current capabilities of
MMT). In MMT, variables have first to be declared explicitly before they
can be referenced down the line.
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Implementation In its current state MMT is unable to parse the inter-
active version of the tactics language properly. As described above this has
to do with the fact that the interactive tactics language allow for implicitly
introduced variables. When MMT encounters a constant it checks its local
and global context whether there is a constant/variable named exactly like
the atom. Now the problem is that new names must be introduced either by
a constant definition in the global context or by a binding construct in the
local context. The tactics language though sometimes introduces new names
by means that go beyond that. Therefore, a custom parser was made so that
whenever a tactics proof is encountered in the MMT file (a proof is marked
by the enclosing proof and qedkey words) first just parses the proof as one
long string. During type checking, when the proof is type checked, the string
then gets actually parsed by an external parser (the one used for the inter-
active front end) and then immediately evaluated. The main disadvantage
is that MMT is basically blind to the actual structure of the proof since it
only recognizes the proof as one long string which contradicts MMT and its
targets to be a system that links different knowledge sources together via its
OMDOC format.

Parseable langauges To be true to MMT’s original purpose as interlink
language it is necessary to be able to represent tactic proofs in a way that
MMT can actually parse. Two approaches have been investigates so far: a
modification of the interactive tactics language which mainly removes prob-
lematic constructs from the interactive language, like implicit introduction of
variables (i.e. all variables have to be introduced properly before they can be
used). This approach has been worked on a bit so far and looks promising.
Its main advantage is that it can be completely implemented with the capa-
bilities the MMT system offers without the need for Scala side extensions to
the MMT system (that is for the parsing part, the type checking still has to
be diverted to the external prover).
The second approach would be to implement a very explicit structured proof
language in the style of Isabel’s Isar. The main advantage of such a solu-
tion would be that proofs become readable even without the usage of an
interactive system. The disadvantage is that one needs to implement parser
extensions to the MMT system which requires Scala-level programming since
the syntax is to complex to be implemented with MMT-only means. It is
however the goal to be so explicit that it can be translated into a properly
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parsed structure instead of being just a string from the viewpoint of MMT
(i.e. explicit naming of variables and avoidance of other problematic struc-
tures).

7.2 Implementation of the proof term generation for
the algebra strategies

Due to time constraints the algebra strategies were implemented without
the part that generates the proof term, instead the algebra strategies merely
modify the proof state. Therefore the algebra tactics is only usable in test-
mode in the interactive proof gui.
The main problem is to develop an algorithm that is generic enough to solve
arbitrary semigroups, monoids, rings etc. These are not trivial undertakings,
quite the contrary, these algorithms are fairly complex and go beyond the
scope of a masters thesis (especially implementing multiple different ones).
Therefore learning form well established systems like Coq and Isabelle (i.e.
reading their source code, published papers about algebraic automation) is
key. Getting used to theses systems alone will take a good amount of time,
first, because understanding complex systems like Isabelle, Coq, MMT, etc.
takes in and of itself a long time and second because the actual solver algo-
rithms aren’t all that well documented.

7.3 Other missing implementations

Due to time constraints it was not possible to implement a ring-strategy for
the algebra tactic and the heterogeneous transitivity proof chains.
The ring tactic suffers from the problem that it needs to be an abelian group
and a semi group for the same carrier but for different binary operators
(additive operator and multiplicative operator). Due to the way the abstract
algebraic structures were implemented on the MMT side this requires to
define the group structure a second time for the additive operator because
otherwise the semigroup that ring imports and the group structure that ring
imports (which builds upon the semigroup definitions) have the same binary
operator. Defining the group structure a second time is not a clean solution
though and parametric view don’t exist yet. Therefore another solution is
needed and has to be investigated for.
The heterogeneous chains should be fairly straight forward with regards to

80



their implementation because most of the functionality is easily implemented
using InferenceAndTyping-rules.

7.4 Traceable tactics/automation

Often it is hard to for a user (especially new ones) to understand why a
certain tactic failed. This is especially true for automation that doesn’t
represent just a basic proof step but performs a multitude of proof steps.
Sometimes automation doesn’t perform classical proof steps as in “executing
a tactic”. An example of such a “tactic” would be the Metis proof method
in Isabelle/HOL which translates the to be proven into a first order logic
problem which Metis then tries to solve. In case Metis can solve the problem
the proof is then “just solved” without further explanation. This is in so
far bad since the user potentially wants or needs to know how the proof was
conducted (especially in a learning/teaching scenario where the autosolver
partially replaces a tutor). For this case, where Metis successfully proofs that
a statement is true, Isabelle tries to reconstruct the Metis-proof as Isar-proof
(when invoked via Isabelle’s “Sledgehammer”). This kind of backtranslation
is kind of lack luster though. First the reconstruction of the Metis-proof in
Isar doesn’t always work, second, even if it works the proof is usually “de-
signed” in a way that is not intuitive to humans.
Another problem arises when a failing proof does not offer traceability. Again
looking at Metis, when a proof using Metis fails the user is only informed
that the proof failed, but not why. Usually when a proof fails it is even more
important to have the ability to see what proof steps have been taken in the
failing proof so that the user can debug the proof. Without such capabilities
the user is left with educated guesses why the proof has failed.
For the above stated reasons proof assistants like Coq, Isabelle and ACL2
(among others) offer different tracing mechanisms to allow the user to un-
derstand why an (automated) tactic has failed (or succeeded).

Isabelle Isabelle is fairly heavy on the “show don’t tell” part when it comes
to its automation. Non the less it offers some limited capabilities that allow
the user to retrace what happened.

81



Figure 121: definition of the myrev function

Figure 122: This proof fails because the lemma myrev (xs @ ys) = myrev ys
@ myrev xs is missing
. Therefore simp can only proof the base case of the induction (without ex-
plicitly stating induction this proof would just be stuck at the very beginning)

Figure 123: trace of the simplifier applied to the base case of the induction
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Figure 124: streamlined trace of the simplifier applied to the base case of the
induction

simp mainly does simplification and proving by applying simplification
rules (usually normalizing terms) and rewriting. By default, applying this
proof method only results in one of two scenarios: either the proof suc-
ceeds/gets simplified or the proof fails without much information why the
simplification failed (it will only display the goal state at which it got stuck;
an example is given in fig. 122). Isabelle offers a simple tracing mechanism
that displays a fairly “raw” overview over what the simplifier was doing (ex-
ample in fig. 123). The problem with this kind of trace is that it is more akin
to a stack trace in java, with more information then the usual user potentially
needs to know. Further more, some information is not very well explained
like the “??.unknown” rule which is an internal rule generated from the the
definition of myrev.
Alternatively, Isabelle also offers a more streamlined version of the debug
trace (example in fig. 124) which removes some of the “bloat” and presents
the remaining information in a user friendly way [8].

7.5 Conclusion

This work explored the equatinal reasoning capabilities of other systems
which at least to some degree hand it differently, while all offer different
advantages in general they all are an improvement over writing plain lambda
terms. Learning and inspired by these systems, new ways and means were
added to MMT for equational reasoning. Adding equational reasoning makes
MMT a lot more usable and is an important step toward making it a fully
fledged proof assistant. Stuff like the rewrite tactic and algebra tactic relieve
the user from annoying busywork and let the user prove a lot more theo-
rems with a reasonable amount of work. Efforts like those undertaken in this
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work also help to make MMT more accessible to new users. Due to time
constraints all three major parts of this work are a bit lacking though, and
need to be expanded on in future works.
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A Small tutorial

The goal is to verify that {a : prop, b : prop, c : prop} ⊢ a ∨ b ⇒ a ∨ c
⇒ a ∨ (b ∧ c) holds. The proof goes as follows: fixs; bwd impI; asm; bwd
impI; asm; bwd (orE h ); simp; asm; bwd orIl; use h1; simp; asm; bwd
(orE h0 ); simp; asm; bwd orIl; use h2; simp; asm; bwd orIr; bwd andI;
use h1; use h2.
In plain words, this proof is done by using or-elimination on one of the dis-
junctions. When working on the case with “a” as hypothesis, the goal is
solved trivially (using or-introduction-left). When the hypothesis is not “a”
then or-elimination is applied to the other disjunction. Again, the case with a
as hypothesis is solved by using or-introduction-left. In the othe case, when
one has “b” and “c” as hypotheses, one uses and-introduction to create a
conjunction with “b” and “c”. Then the goal is solved by or-introduction-
right using this conjunction.
The proof is again started by introduction all hypotheses to the local context.
Because this is a common task there is a special tactic that does just that.
By using fixs without any arguments it takes as many hypotheses from the
conclusion and adds them to the local context. Becuase the type to be proven
includes object level implication fixs can only take the Pi’s and add them to
the local context. To turn an object level implication into an LF-implication
one simply applies the impI rule backwards by applying bwd impI (bwd uni-
fies the conclusion of the rule with the goal, more on the backward-tactic,
when the or-elimination is applied). Then the leftmost assumption can be
added to the local context via asm (or fix). The second implication is han-
deled the same way by applying impI backwards and then executing asm/fix
(??). The next step is to apply or-elimination to one of the disjunctions. For
this example h is chosen (but it would work almost exactly the same with
h0). The rule itself is called orE. To see what type orE has one can enter the
command gettype orE. The type will then be printed to the output window.
It would be possible to add orE to the local context via let and then apply
all the needed arguments to it. But this would be a lot of unnecessary typing
since there is a way the system can infer the needed arguments on its own.
The first two arguments can be inferred from the fourth argument. The third
argument is equal to the conclusion. The tactic appropriate for this kind of
situation is the backward tactic. This tactic takes a rule and applies it back-
wards by unifying the conclusion of the rule with the goal. The used rule
can also be an application of arguments to a rule. If an argument should be
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Figure 125: fixs; bwd impI; asm; bwd impI; asm

inferred by the system itself it can be marked with an underscore. Therefore,
the argument for the backward tactic bwd is (orE h ). The first three
arguments should be inferred by the system. The fourth is needed, as stated
before, to infer the first two. The third gets inferred by unifying with the
goal. The remaining, not applied arguments get turned into goals. Due to a
bug these goals contain the “free”-binder. To get rid of these one simply has
to execute the simp tactic (simplification) (126).
Now one can use the hypothesis “h1 : ⊢ a” (previously adding it with asm to
the local context) to solve the goal. To do so one use or-introduction-left to
construct the goal. Again this can be done comfortably by using the back-
ward tactic bwd orIl (127). This sub-goal can now be concluded with use h1.
After finishing this sub-goal, the system automatically selects the next goal.
Again, by using simp the goal becomes much simpler (128). Now one needs
to again apply or-elimination. But this time using the other disjunction.
As before, this first goal is solved trivially with “⊢ a” in the context and
works identically as before (the remaining proof is shown in fig. 129). After
the hypothesis of type “⊢ c” has been added to the local context (asm) the
goal can be solved by this time construction the right argument of the goal.
This works similar to before by applying bwd orIr (130). Finally, the goal
is solved by constructing the conjunction of “b” and “c”. Again using the
backward tactic proofs to be the most convenient way. By first applying the
and-introduction rule backward bwd andI the goal gets split into two trivial
sub-goals (131) which can both be solved easily with use h1 and use h2.
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Figure 126: bwd (orE h ); simp

Figure 127: asm; bwd orIl

B Tactics list

This appendix presents tactics that were added to the interactive proof sys-
tem while working on the main extensions presented in this work.

B.1 algebra

algebra <name of strategy> applies the algebraic strategy specified in name
of strategy to the currently focused goal. In case no name is specified the
algebra tactic tries to figure out the appropriate strategy.

Focused Goal: /goal
...
a: nat
b: nat
c: nat
op: nat → nat → nat
...
⊢ op (op a b) c =
op c (op a b)

algebra group
========⇒ goal solved
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Figure 128: use h1; simp

Figure 129: asm; bwd (orE h0 ); simp; asm; bwd orIl; use h2; simp

Figure 130: asm; bwd (orIr)

Figure 131: bwd andI
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B.2 clear

clear name removes a hypothesis from the context. Fails if another hy-
pothesis or the goal depends on the to be deleted hypothesis.

Focused Goal: /goal
...
a: prop
ha: ⊢a
h: ⊢a → ⊢a
...
⊢a

delete h
=====⇒

Focused Goal: /goal/0
...
a: prop
ha: ⊢a
...
⊢a

B.3 newbackward

nbwd/newbackward term < where (binderName := term | term at position

| binderName := term at position)+ > a streamlined and improved ver-
sion the bwd -tactic. See bwd for a description of how the tactic generally
works.

Focused Goal: /goal
...
a: prop
b: prop
c: prop
d: prop
vala: ⊢ a
h: ⊢a → ⊢b → ⊢c → ⊢d
...
⊢d

nbwd h where (vala at 0)
==============⇒

Focused Goal: /goal/0
...
a: prop
b: prop
c: prop
d: prop
vala: ⊢ a
h: ⊢a → ⊢b → ⊢c → ⊢d
...
⊢b
⊢c

B.4 rewrite

backward/bwd term performs a backward step, i.e. it takes a rule with
type of the form a → ... → b and unifiers the conclusion of the rule with the
current goal. The hypothesis of the rule are turned into new goals.
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Focused Goal: /goal
...
a: prop
b: prop
c: prop
d: prop
vala: ⊢ a
h: ⊢a → ⊢b → ⊢c → ⊢d
...
⊢d

backward (h vala)
==========⇒

Focused Goal: /goal/0
...
a: prop
b: prop
c: prop
d: prop
vala: ⊢ a
h: ⊢a → ⊢b → ⊢c → ⊢d
...
⊢b
⊢c
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