
Theorem Proving for the MMT System

Luca Wolff

Advisor: Florian Rabe

Friedrich-Alexander-Universität Erlangen-Nürnberg

April 22, 2022

Abstract Isabelle’s Sledgehammer shows how powerful ATPs can be in as-
sisting when formalizing theories and proofs. This thesis reports on the develop-
ment of an extension (using the existing Extension/Plugin system) for the MMT
System that can translate MMT theories to TPTP and then uses the LEO-III
ATP to try to automatically prove accordingly tagged conjectures in theories.
The translation process determines the used logic in MMT and matches them
with the available logics in TPTP. When successful it then pattern matches the
terms and outputs the according TPTP code step by step. While it has its
current use cases, it’s especially a potent foundation for evolution of the current
features and addition of new ones.

1

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der

angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form

noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer

Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß

übernommen wurden, sind als solche gekennzeichnet.

Luca Wolff

Contents

1 Introduction 3

1.1 Motivation . 3
1.2 Related Work . 3
1.3 Objectives . 4
1.4 Contribution . 4

2 Preliminaries 4

2.1 Base Languages . 5
2.1.1 FOL . 5
2.1.2 SFOL . 5
2.1.3 Typed HOL . 5

2.2 Representation in MMT . 6
2.3 Representation in TPTP . 7

3 Translating MMT Conjectures to TPTP 10

3.1 Usage/Initiation of the Process 10
3.2 Mapping MMT’s LF onto TPTP’s Available Formulae 11
3.3 Definitions of translation . 13
3.4 Handling Structural Features . 15

3.4.1 Includes . 15
3.4.2 Defined Constants . 15
3.4.3 Missing Logical Connectives 16

4 Implementation 16

4.1 Extending MMT . 18
4.2 Translate Function . 18
4.3 Integrating Leo-III . 20
4.4 Caching Proofs . 21

5 Conclusion & Future Work 23

5.1 Summary . 23
5.2 Future Work . 23

2

1 Introduction

1.1 Motivation

Formalized knowledge is a valuable resource for automated systems which can
parse and process the knowledge for a multitude of purposes: Extracting spe-
cific information, generating derivative facts and formally proving theories or
programs are just a few ways how formalized knowledge can be used to assist
humans in research, development, education and more. This field is getting
more popular and research achieved some important milestones. The Flyspeck
project’s goal was creating a formal proof for the Kepler Conjecture, whose origi-
nal proof from 1998 consists of about 300 pages of text and 40000 lines of code. It
is so complex that the team of referees still wasn’t completely certain about the
correctness of the proof after a 5 year review period. The circumstances made it
an attractive target for formalizing to settle doubts and further popularize for-
mal methods in mathematics. The proof of the Odd Order Theorem by Feit and
Thompson, was fully formalized in Coq. What makes it special is that, other
than typically formalized proofs, the also very lengthy written proof was meant
to be fully read and understood and didn’t rely on heavy computational effort.
The key of this formalization was in developing a framework, which allowed for
simple and efficient switching of views for the same mathematical objects, as
the proof featured peculiar combinations of theories. Other advancement made,
were a formally verified compiler and micro-kernel, which provide safety on a
lower level than ever before. [Tea03] [KU14] [GAA+13] [KEH+09] [Ler06] The
MMT system tries to abstract further than logical frameworks do, which already
are an important tool for a more efficient workflow and experimenting with log-
ics and their applications. So the MMT system’s greater generality allows for
developing other logical frameworks with it. But its rather young age makes
it lack in formalized content compared to the usual applications using logical
frameworks, like for example the proof assistant Isabelle. Currently all proof in
MMT are written by hand and writing proofs by hand is already a tedious task
for relatively trivial theories. But when you want to be sure to not introduce
mistakes in essential building blocks of further theories a formal proof is very
important. Automated Theory Provers (ATPs) are a powerful tool, which allow
proving of many theories without human intervention. So to make work with
systems that allow for formalizing theories in Logic, like MMT, more efficient
and secure, as humans are also more prone to error, it makes sense to introduce
ATPs to MMT. Being able to resort to the big selection of existing ATPs would
empower MMT and boost further progress in formalization. [Rab18] [isa]

1.2 Related Work

Most notable of similar works has been Sledgehammer for the Isabelle proof
assistant. While there were earlier attempts at combining interactive and auto-
matic theorem proving, Sledgehammer is still used regularly by users and can
solve a good amount of nontrivial goals. Sledgehammer translates goals of Is-

3

abelle scripts to TPTP and uses ATPs in the background to generate the proof
of the goal, ready to be inserted into the original Isabelle script. The biggest
design goal was to make the whole process invokable by users with only one
click and require no other manual steps to be really viable for productive usage.
[MQP06] [PB10]

1.3 Objectives

The objectives of this work include:
Seamless Integration The automated proving process should be easily

accessible from the usual workflow with MMT and should not interrupt it
Keeping Code Idiomatic The MMT code containing the theory that is

supposed to be proven, should require only minimal changes and not hinder
the usage of practical MMT features for code re-usage and structuring, like for
example Includes and Constants.

Conservative Add-On This extension of MMT should not require any
changes of the core implementation, as it should not be necessary to achieve
the goals aimed at and just would introduce a danger of breaking the trusted,
long-standing inner workings of the MMT System.

Proof Term Generation Proofs for the same unchanged theories should
be reproducible. But because there is the chance of ATPs interfering with
this exact objective by bugs or just new features, as ATPs are highly sensitive
programs, there should be measures in place to at least be able to reconstruct
the latest successful proof. This could be done by logging output of the ATP
or translating the proof back to MMT code, which would conserve the proof in
an optimal manner, allowing reading and re-usage in further work.

1.4 Contribution

To be able to communicate shortcomings of the translation directly in the re-
sulting file, comments could be used, but Leo-III’s TPTP parser, which was used
by the implementation to construct TPTP in code, didn’t support comments.
As part of this thesis I implemented1 this feature. This included different kinds
of comments’ representations in code, how they get output and parsing them
from TPTP files, to make it a proper implementation I can pull-request to the
original project on Github. This succeeded, which makes it a supported feature
and allows for updating this dependency in the future of this thesis’ project.

2 Preliminaries

The standard logics for ATPs are FOL, SFOL and Typed HOL, we will shortly
introduce those and then their syntax in TPTP and MMT. To better highlight
the important semantic details and to deprive attention from syntactical details,
simplified versions of the original languages MMT and TPTP are used. They

1https://github.com/leoprover/scala-tptp-parser/pull/9

4

also abstract from technical details of the implementations and resulting pecu-
liarities. For better illustration and to showcase practicality we work with the
Peano Axioms as an running example throughout this thesis. We start at how
we would express them in the respective Languages and eventually step through
the translation process from MMT to TPTP by this example.

2.1 Base Languages

We introduce the supported logics and introduce the representable parts of the
axioms respectively.

2.1.1 FOL

First-Order Logic is an extension of propositional logic. It allows for quantifi-
cation over objects.

Example 2.1 (Peano Axioms).

III. ∀x(0 ̸= S(x))

IV. ∀x∀y(S(x) = S(y) ⇒ x = y)
(1)

As induction(V) required quantification over a function it is not repre-
sentable in first-order logic. Also I and II aren’t expressible without types.

2.1.2 SFOL

Sorted First-Order Logic extends FOL by adding types to variables. Quan-
tification happens over objects of a specific type, instead of the whole range of
objects.

Example 2.2 (Peano Axioms).

I. 0 ∈ N

II. ∀x∀y((x ∈ N ∧ S(x) = y) ⇒ y ∈ N)
(2)

With the addition of types we can now express axiom I and II.

2.1.3 Typed HOL

In extension of quantification over objects Higher-Order Logic allows Quantifi-
cation over properties. Therefore Typed HOL also offers types for properties
— propositions and functions — and enables for example expressing assertions
over all properties of a single type of object.

Example 2.3 (Peano Axioms).

V.∀X : N → o
︸︷︷︸

boolean

(X(0) ∧ ∀n : N(X(n) ⇒ X(S(n)) ⇒ ∀x : N(X(x))))
(3)

And finally we can also introduce induction(V) with quantification over the
predicate X representing a set.

5

2.2 Representation in MMT

The MMT system allows formalizing of declarative languages, like for example
different types of logics and mathematical theories, in a foundation-independent
manner. This enables high reusability of algorithms and structures through
generic implementations. To further empower users of MMT in creating ex-
pressive theories, MMT ships the urtheories archive. (Archives are basically
libraries of MMT Theories) It includes the base theories for MMT’s Logical
Framework, which provides a lot of tools for expressing any logic related con-
tent. These general logical concepts are further concretized in the LATIN2

archive, which includes logical symbols, like quantifiers and connectives for log-
ics from propositional logic to higher-order logic in a multitude of variations
with different extensions and specifics. It also adds the rules of natural deduc-
tion, which allows to express complete proofs in the different logics and even let
them to be typechecked. For our purposes we don’t need to get further into the
details of the structure of LATIN2. Everything we need from the mentioned
archives will be defined in the following. [MMT] [LAT]

Definition 2.1 (MMT Theory). Theories in MMT are defined as:

Theory = Declaration∗ (4)

Definition 2.2 (MMT Declaration). Declarations can declare other Declara-
tions to be included from a different MMT file or declare named information
themselves. Additionally Declarations have types in SFOL and HOL, but can-
not in FOL. Their formal definition is:

Declaration = include ident

| Constant
(5)

Declaration = ident : Type = ζ
︸︷︷︸

Definition

(6)

Type = (T →)∗ T
︸︷︷︸

Return Type

T = tm LogicType

| tp

| prop or also bool in HOL

| ⊢ ζ

| term Type of terms in FOL

LogicType = (ident →tm)∗ ident

(7)

Definition 2.3 (MMT Formula). Formulas in MMT are defined as the follow-

6

ing:
ζ, θ = ζ ∧ θ

| ζ ∨ θ

| ¬ζ

| ζ ⇒ θ

| ∀[var] ζ

| ∃[var] ζ

| ident ζ∗
︸︷︷︸

arguments

Atomic/Function/Predicate

| ζ = θ Equation

| ζ ⇐⇒ θ Equivalence

| ζ@θ Lambda Application

| λ[var] ζ Lambda Definition

(8)

Definition 2.4 (Variable and Identifier in MMT).

var = ident : tm LogicType represents a variable of a quantor

ident is just an alphanumeric identifier in the usual sense
(9)

Example 2.4 (Peano Axioms).

N : tp This type declaration is necessary for the axioms.

I. zero : tm N

II. successor : tm (N → N)
This type deceleration is required by MMT,

but also implicitly conveys axiom II.

III. no confusion : ⊢ ∀[n : tm N]¬(successor@n = zero)

IV. injectivity : ⊢ ∀[n : tm N]∀[m : tm N]((successor@n = successor@m) ⇒ (n = m))

V.
induction : ⊢ ∀[X : tm (N → bool)](X@zero ∧ ∀[n : tm N](X@n⇒ X@(successor@n))

⇒ ∀[x : tm N]X@x)
(10)

2.3 Representation in TPTP

Thousands of Problems for Theorem Provers is foremost a library of problems
designed for testing ATPs. These test problems are formulated in the TPTP
language, which is specifically designed for being a very general input language
for a wide range of different Provers. Today most ATPs do understand TPTP as
a language for problem input. This makes it a very attractive choice as a general
interface between a flexible system working with logics and theories with only
manual proofs and a multitude of ATPs which have different specializations,
like which logics they support and tactics they use.

7

Note that we’re introducing a simplified version of TPTP here, which conveys
the used functional features, with less syntactical overhead to ease explanation
and formal definitions.

Definition 2.5 (TPTP File). A TPTP File consists out of a list of Deceler-
ation. In this project we use the file endings ”.ax” for axiom files and ”.p” for
problem files as the official TPTP Problem Library does. These kinds of files
don’t work any differently, they just indicate their use case. We define File as:

File = Decl∗ (11)

Definition 2.6 (TPTP Declaration). TPTP Declarations either declare some-
thing new depending on their so-called formula role2 or include declarations
from another file. We represent them like this:

Decl = NewType(τ)

| NewTypedObject(ident, τ)

| AxiomDecl(φ)

| DefinitionDecl(Forall(var∗,

Equal(Atomic(ident, φ∗), ψ)

| Equiv(Atomic(ident, φ∗), ψ))

| ConjectureDecl(φ)

| Include(ident)

(12)

The DefinitionDecl is a subset of the AxiomDecl, but we still introduce it here
for readability. It is modeled after a formula with the ’definition’ role mentioned
in the TPTP grammar itself. ConjectureDecl is equivalent to AxiomDecl besides
being tagged as the conjecture and thus should only appear a single time. The
ATP will try to prove the conjecture φ.

AtomicType = ConstantType(ident) | DefinedType

For readability we only write the ident of ConstantType
(13)

DefinedType = $o represents boolean - true and false

| $i represents non-empty individuals/objects

| $tType represents type of all types

| $real | $rat | $int represents R, Q and N respectively
(14)

A constant type is one which was declared in a TypeDecl beforehand using
$tType as the internal supertype, which represents the type of all types. The
other defined types can be used to build propositions T > $oType and functions

2Taken from the official syntax document.

8

T > $iType.

τtff = MappingType(UnitaryType,AtomicType)

| AtomicType

UnitaryType = ProductType(AtomicType∗)

| AtomicType

(15)

τtff is very limited in expressiveness compared to τthf, because higher-order types
are only allowed on top-level, which means we can declare functions which take
in FOL objects – a single one of atomic type or multiple combined into a product
type – as arguments and return a single FOL object. No complex types can be
used on application level.

τthf = MappingType(τthf, τthf)

| ProductType(τthf, τthf)

| UnionType(τthf, τthf)

| AtomicType

(16)

For τthf everything is allowed, we can take and return complex-typed argu-
ments, like functions, product and even unions types in opposition to the strict
rules of TFF.

Definition 2.7 (TPTP Formula). Formulas in TPTP are defined as the fol-
lowing:

φ, ψ = And(φ, ψ)

| Or(φ, ψ)

| Not(φ)

| Impl(φ, ψ)

| Forall(var∗, φ)

| Exists(var∗, φ)

| Atomic(ident, φ∗
︸︷︷︸

arguments

) || Atomicfof(ident,Atomic(,)∗
︸ ︷︷ ︸

arguments

)

For readability we only write the ident if there are no arguments

| Equal(φ, ψ)

| Equiv(φ, ψ)

| Apply(φ, ψ) Only in SFOL & HOL

| Lambda(var∗, φ) Only in SFOL & HOL
(17)

Definition 2.8 (Variable and Identifier in TPTP).

var = NewTypedObject(ident, τ) represents a variable of a quantor

ident is just an alphanumeric identifier in the usual sense
(18)

9

3 Translating MMT Conjectures to TPTP

3.1 Usage/Initiation of the Process

MMT Shell

Build commands

Typechecking

Build OMDoc

Foreach Theory

Identify Base Logic

Translate Declarations

∆FOL ∆SFOL ∆HOL

TPTP Axiom Stub Files

IntelliJ Plugin

Typecheck Button

Typechecking

Found PROVE Nothing to Prove

Extract Context, Term and Includes

Complete TPTP Problem File

Hand to ATP

Process Result

no

yes

Figure 1: Flowchart of the Translating/Proving Process

The most basic way to kick off the translation process is to use the MMT Shell.
Here no ATP is involved and we exclusively translate a whole MMT file into

10

several TPTP Axiom files, one for each theory. So to continue our example it
would like something like this:

> build MMT/LATIN2 mmt -omdoc peano.mmt

> build MMT/LATIN2 tptp peano.omdoc

We create an OMDoc file which conveys the whole structure of the original
MMT file in an easily processable manner. So we use that OMDoc file then
to start the process of translating to TPTP. Translation runs separately for
each theory of the source MMT file, which first needs to determines what logic
it is dealing with by going through the implicit – that means fully recursively
resolved – imports and checking for the corresponding paths of FOL, SFOL and
HOL base theory. In our case we use all 3 base theories, so HOL is selected as
it can represent the lower logics as well. After deciding which logic the theory
is residing in it calls the specialized translation module of that logic. This split
into separate module is needed to account for the large differences in TPTPs
grammar, especially for those of untyped and typed logic. In this thesis we
simplified TPTP’s grammar to make it possible to have a translation function,
which requires only a few exceptions for the alternative logics to reduces the
complexity and improve readability. For the next step each deceleration will
be translated with the translation function ∆ which will be formally defined
in the next section. After translating the theory line by line the result will
be exported into a TPTP Axiom file. Notice that includes will be handled
differently, explained in Section 3.4.1. So at this point we have a peano.ax

file containing the 5 axioms described by TPTP HOL Declarations. A more
straightforward approach of triggering the translation process with the goal of
actually proving a theory with help of an automated theorem prover is to use
the PROVE rule, specifically implemented for this purpose. Instead of manually
translating a whole MMT file of theories, we just need to insert the PROVE rule
in the definition of the term we want to prove. In our example we might add
a conjecture that a natural number can only ever be equal to zero or be the
successor of another number. So we add this to our MMT code:

conjecture : ⊢ ∀[x : tm N](x = zero) ∨ (∃[y : tm N]successor@y = x) = PROVE

(19)
Invoking the type-checker now triggers an automatism when PROVE is found,
which takes care of translating theories to TPTP Axiom files plus putting the
Problem file together which contains the tagged conjecture. This is then handed
to the ATP, which in our case is Leo-III.

[Koh06]

3.2 Mapping MMT’s LF onto TPTP’s Available Formulae

TPTP support and differentiates between 6 different kinds of formulae:
TPI: TPTP Process Instruction is not like the other formulae, it is not repre-
senting a logic, but rather used for communicating with the ATP it is run with.
It is worth mentioning here, as it allows for finer control over how the problem is

11

read and handled by the prover. For modelling complicated functions of MMT,
which exceed the boundaries of the usual (following) logics present in TPTP,
sending special commands to manipulate groups of logical formulae could prove
beneficial.
CNF: Conjunctive Normal Form is self explaining.
FOF: First-Order Form represents First-Order Logic formulae.
TCF: Typed first-order Clausal Form represents Sorted/Typed CNF.
TFF: Typed First-order Form represents Sorted/Typed First-Order Logic for-
mulae.
THF: Typed Higher-order Form represents Sorted/Typed Higher-Order Logic
formulae.

We are going to focus on FOF, TFF, THF as they are the most common and
they are the most powerful in their group. CNF is a subgroup of FOF, which
is mostly used, because algorithms can work with them well and not because
they are nice to write or read. So most First-Order theories will be in a more
complex form anyway. The same applies to TCF. Note alse that both of these
forms are neither supported by Leo-III’s parser nor the ATP itself.

Now we need to decide which logic to translate the MMT code, which is
using the very broad LF. Luckily we can can look at the imports of the theory
and defer more information about what specfic part of LF is used.

From the meta theory we can see, that EXAMPLEPATH is included. To
figure out which logic this is coming from we need to follow the included path.

When we stumble over a theory or maybe just a single term, which depends
on higher or different logics which TPTP does not support, we have multiple
options. We can just abort the whole process and optimally tell the user which
specific part is not translatable, so not automatically provable. The user then
can try to adjust the problem to a supported form or simplify the problem
based on external knowledge. Another way of dealing with this situation could
be trying to isolate the smallest unrepresentable term and then assume it is
truthyness. That way we can still assist the user as much as possible and it only
leaves a rest to prove by hand or other measures.

12

3.3 Definitions of translation

Definition 3.1 (Translating Formulas).

tr(ζ ∧ θ) = And(tr(ζ), tr(θ))

tr(ζ ∨ θ) = Or(tr(ζ), tr(θ))

tr(¬ζ) = Not(tr(ζ))

tr(ζ =⇒ θ) = Impl(tr(ζ), tr(θ))

tr(ζ = θ) = Equal(tr(ζ), tr(θ))

tr(ζ ⇐⇒ θ) = Equiv(tr(ζ), tr(θ))

tr(ident
︸ ︷︷ ︸

name of atom/function/predicate

ζ1, . . . , ζn
︸ ︷︷ ︸

arguments

) = Atomic(c, tr(ζ1), . . . , tr(ζn)) ζi is a 0-ary Atomic in FOL

trτ (∀[var] ζ
︸︷︷︸

body

) = Forall(convar(var), trτ (ζ))

trτ (∃[var] ζ
︸︷︷︸

body

) = Exists(convar(var), trτ (ζ))

trHOL(λ[var] ζ
︸︷︷︸

body

) = Lambda(convar(var), trHOL(ζ))

trHOL(ζ@θ) = Apply(tr(ζ), tr(θ))
(20)

Definition 3.2 (Translating Declarations).

∆(include X) = IncludeTPTP(Xraw) where Xraw is X without its includes

∆(T : tp) = TPTP(“type ” + T, T, $type)

∆(T : tp = S) = ∆(S : tp)(CurrentlyNotSupported)

∆(f : tm T1→...→tm Tn→tm T) = TPTP(“type ” + f, type, convar(f : tm T1→...→tm Tn→tm T)

∆(f : tm T1→...→tm Tn→tm T = λ[A1 : tmT1] . . . λ[An : tm Tn]ζ) =

= ∆(f : tm T1→...→tm Tn→tm T);

TPTP(“def ” + f, axiom,

Forall((convar(A1 : T1), . . . , convar(An : Tn)),Equal(f@A1@ . . .@An, tr(ζ)))

∆(p : tm T1→...→tm Tn→prop) = TPTP(“type ” + f, type, convar(p : tm T1→...→tm Tn→prop))

∆(p : tm T1→...→tm Tn→prop = λA1: tm T1. ... λAn: tm Tn. t) =

∆(p : tm T1→...→tm Tn→prop); TPTP(“def ” + p, axiom,

Forall((A1 : T1, . . . , An : Tn),Equiv(p@A1@ . . .@An, tr(t))))

∆(ax : ⊢ F) = TPTP(ax, axiom, tr(F))

∆(thm : ⊢ F = pf) = ∆(thm : ⊢ F)
(21)

Definition 3.3 (Convert Variables). A conversion for a variable in MMT
varMMT to a variable in TPTP varTPTP also needs to be defined for the

13

translation functions.

convar(varMMT) = convar(ident : Type) = NewTypedObject(ident, conType(Type))

conType(T) = conT (T)

conType(T0 → T) = MappingType(conT (T0), conT (T))

conType(T1 → · · · → Tn → T) =

MappingType(ProductType(conT(T1), . . . , conT(Tn)), conT(T))

conT (tm LogicType) = conLT (LogicType)

conT (tp) is unsupported

conT (prop) = $o

conT (⊢ ζ) is unsupported

conT (term) = $i

conLT (ident) = ConstantType(ident)
(22)

Example 3.1 (Peano Axioms).

∆(N : tp) = TPTP(“type ” +N,N, $type) (23)

The type definition of N is trivially translated in a single step.

I. ∆(zero : tm N) = TPTP(“type ” + zero, type,NewTypedObject(zero,N))
(24)

Then we translate the definition of zero, which requires the first usage of the
convar function.

II. ∆(successor : tm (N → N)) =

= TPTP(“type ” + successor, type,NewTypedObject(successor,MappingType(N,N)))
(25)

The successor function’s type gets encoded with a MappingType from N to N .

III. ∆(no confusion : ⊢ ∀[n : tm N]¬(successor@n = zero)) =

= TPTP(no confusion, axiom,Forall(NewTypedObject(n,ContantType(N)),

Not(Equiv(Apply(successor, n), zero))

))
(26)

For the no confusion axiom, ∆ matches for axiom declaration first and then

14

calls tr, which in turn constructs the nested TPTP formulas.

IV. ∆(injectivity : ⊢ ∀[n : tm N]∀[m : tm N]((successor@n = successor@m) ⇒ (n = m))) =

= TPTP(injectivity, axiom,Forall(NewTypedObject(n,ContantType(N)),

Forall(NewTypedObject(m,ContantType(N)),

Impl(Equal(Apply(successor, n),Apply(successor,m)),Equal(n,m))

)

))
(27)

injectivity is translated similarly, it has two Foralls to declare variables n and
m, which are then used in the implication.

V. ∆(induction : ⊢ ∀[X : tm (N → bool)]

(X@zero ∧ ∀[n : tm N](X@n⇒ X@(successor@n)) ⇒ ∀[x : tm N]X@x)) =

= TPTP(induction, axiom,Forall(NewTypedObject(X,MappingType(N, $o)),

Impl(And(Apply(X, zero),Forall(NewTypedObject(n,ContantType(N)),

Impl(Apply(X,n),Apply(X,Apply(successor, n))))),

Forall(NewTypedObject(x,ContantType(X)),Apply(X,x))

)

))
(28)

induction is more complex overall, and features a typed object with a MappingType
for quantification over functions, but its translation follows the same scheme.

3.4 Handling Structural Features

3.4.1 Includes

Includes in MMT and TPTP differ in functionality. The obvious difference lies
in MMT importing theories, while TPTP just imports other files with TPTP
code. So to mirror functionality in that regard a single MMT theory should
be converted to a single TPTP file. The more grave difference in functionality
is how duplicate includes are handled. Duplicates are no rarity, you look no
further than EXAMPLE to include multiple theories, which themselves each
depend on the same theory THEORY. And MMT can handle this fine, as code
of the included theory is not just copy-pasted into the depending file. TPTP on
the other hand seemed to do exactly that, after a naive attempt to just swap
out the different languages’ includes. The specification says files are recursively
included and multiple formulae with the same name in a file constitute an error,
so that is what we need to work around.

3.4.2 Defined Constants

There can be definitions to functions, proposition in MMT, which describe their
functionality with other functions and properties, like a common programming

15

language would. And then there are definitions to axioms, which contain their
proof. TPTP does not support definitions like that, so we have to work around
that. There are three obvious ways to handle this. The first would be to just
ignore the definition and let the symbol stand on its own. For function and
predicates that usually will not work out, as an important part of information
– how they exactly work – is left out, however for axiom symbols this is a valid
choice, as we do not care how the proof of an axiom looks like, the type checker
already made sure it is a valid proof and we can just use it as a normal axiom.
Option 2 would be to translate the whole function/proposition decleration and
translate it into two seperate lines of TPTP. One containing the type definition,
the other containing a statement about how it is behaving. And translating that
directly from the definition is actually quite easy. We chose this option, as you
can see in Definition 3.2 l.5. The other option would have been to just ignore
the decleration completly, but to replace every usage after by the definition, so
definition-expand it, which would have been also correct, but is a lot more work
and a lot more unpleasing to read, as it gets harder to see the orginial structure
of the theory, which probably was thought-out to be easily followable.

3.4.3 Missing Logical Connectives

The logics in LF support quite a few more logical connectives than TPTP does.
But many of them are just syntactic sugar for a combination of connectives.
They are implemented to make code more readable, as these are very commonly
used and widely understood. A good example of this would be the unique
existential quantifier:

∃!xφ(x) ⇐⇒ ∃x(φ(x) ∧ ∀y(φ(y) → y = x)) (29)

So desugaring missing connective in TPTP by replacing them according to
these equivalences can resolve this problem.

4 Implementation

The translator produces an TPTP problem represented by data structures of
LEO-III’s own parser library, which means the problem could be directly for-
warded to LEO-III loaded as a library. However, this creates a multitude of
problems. The TPTP code references files with its includes, regardless of the
main ”file” not existing besides the representation in RAM. So to let an ATP
try to solve one of our problems, which is not confined to a single ”file”, we need
to save included theories as files on the disk. And the disadvantage of having
them on the disk is required disk space, and – much more impactful – having to
load each file to memory and parse them, which could hurt performance noti-
cable, when trying to prove a lot of things at once. But having the files in place
also has a heap of advantages, we automatically ensure we do not build theories
twice, as we can just look up if a file already is in place and additionally can
use that as a mechanism to skip re-proving already proven theories completly.

16

Additionally we now have regular TPTP files at our hands we can use with
all the tools that work on them. More concretely, we could use different ATPs
which are specialized for our theory subject, which makes this tool a lot more
powerful, just like why it was planned to use TPTP in the first place.

To preserve a responsive user experience, starting a proof should not stop
the user from continuing with their work, but they still might want to know if
their MMT code type-checks as soon as possible. So the ATP process initiated
by type-checking should not affect the users writing process - the IDE should
not freeze. Plugins of IDEs should be run asynchronous anyways, so that should
not be our problem. But it is our decision how to handle the (a)synchronicity of
type-checking and proving, and there is an advantage in waiting for the proving
process, before finishing the type-check. Sure, the user knows how the results of
an failed type-check looks like and it would not be bad to have a similar result
for (at least for the ATP) unprovable theories. But there is another possible
advantage, the results of the ATP process could be used in further type-checking.
So depending on the proof different choices in further type-checking could be
made. For now decoupling all processes seemed like the best idea, so the ATP
is called asynchronously by type checking and to prevent slowing down a less
powerful computer, we have a switch to disable automatic proving on type-
checking.

Another way to optimize the performance of proving would be to isolate the
PROVE in the deceleration the user is currently editing. When there are multiple
in the same deceleration a choice has to be made, for now we start a ATP
process for each PROVE in the current deceleration. All other declarations that
are marked for proving are considered as axiomatically true, the user should
check if earlier declarations are valid before. To have a final check of validity
the option of proving whole theories should be there.

To circumvent the problems mentioned in Includes the processed theory and
its included theories are stripped from there includes and declarations after the
PROVE which initiated the process.

MMT

TPTPExporter

tptp-parserLEO-III

MMT Extension

Library”Library” - calls Main

Figure 2: Architecture Diagram

17

4.1 Extending MMT

We define the class for our MMT extension, with key and extension of the
exported files:

class TPTPExporter extends StructurePresenter with

AutomatedProver \{

override def apply(e : StructuralElement , standalone:

Boolean = false)(implicit rh : RenderingHandler):

Unit = {}

/** a string identifying this build target , used for

parsing commands , logging , error messages */

override def key: String = "tptp"

override val outExt: String = "ax"

This is the function which is called by MMT when it find a PROVE term in a
definition.

override def apply(pu: ProvingUnit , rules: RuleSet , levels:

Int): (Boolean , Option[Term]) = {

val mod = MPath(pu.component.get.parent.toTriple._1.get ,

pu.component.get.parent.toTriple._2.get)

val problem_path = combineStubs(mod , pu.context ,

pu.tp)(this.controller) match {

case Some(problem) => exportProblem(problem , mod)

// Problem returned

case None => return (true , None) // Couldn ’t translate

problem

}

val result = callInternalATP(problem_path)

(result._1 , result._2.map(proof =>

UnknownTerm(OMSemiFormal(Text("tptp", proof)))))

// transform result and wrap proof in MMT Terms

}

4.2 Translate Function

As an example we take a look at the translate formula function from the
HOLExporter:

def translate_formula(t: Term): THF.Formula = t match {

case Lambda(v, ty, body) => THF.QuantifiedFormula(THF.^,

Seq(("V_" + v.toPath , translate_formula(ty))),

translate_formula(body))

case simplambda(_, _, f) => translate_formula(f)

18

case simpapply(_, _, f, x) =>

translate_formula(ApplySpine(f, x))

case SimpleFunctionTypes.simpfun(a, b) =>

funty_builder(List(translate_formula(a)),

translate_formula(b))

case InternalPropositions.bool.term =>

THF.FunctionTerm("$o", Nil)

case tforall ((ty, Lambda(v, _, body))) =>

THF.QuantifiedFormula(

THF.!,

Seq(

("V_" + v.toPath , translate_formula(ty))

),

translate_formula(body)

)

case texists ((ty, Lambda(v, _, body))) =>

THF.QuantifiedFormula(

THF.?,

Seq(

("V_" + v.toPath , translate_formula(ty))

),

translate_formula(body)

)

case tforall(ty, body) =>

val varname =

Context.pickFresh(body.allVars.map(VarDecl(_)),

LocalName("x"))._1

translate_formula(tforall(ty, Lambda(varname , ty,

ApplySpine(body , OMV(varname)))))

case texists(ty, body) =>

val varname =

Context.pickFresh(body.allVars.map(VarDecl(_)),

LocalName("x"))._1

translate_formula(texists(ty, Lambda(varname , ty,

ApplySpine(body , OMV(varname)))))

case and(left , right) =>

THF.BinaryFormula(THF.&, translate_formula(left),

translate_formula(right))

case or(left , right) =>

THF.BinaryFormula(THF.|, translate_formula(left),

translate_formula(right))

case impl(left , right) =>

THF.BinaryFormula(THF.Impl , translate_formula(left),

translate_formula(right))

case equiv(left , right) =>

THF.BinaryFormula(THF.<=>, translate_formula(left),

translate_formula(right))

19

case tequal(ty, left , right) => {

THF.BinaryFormula(THF.Eq , translate_formula(left),

translate_formula(right))

}

case notequal(ty, left , right) => {

THF.BinaryFormula(THF.Neq , translate_formula(left),

translate_formula(right))

}

case not(arg) =>

THF.UnaryFormula(THF.~, translate_formula(arg))

case Truth._true (()) =>

THF.FunctionTerm("$true", Nil)

case Falsity._false (()) =>

THF.FunctionTerm("$false", Nil)

case OMID(f) =>

THF.FunctionTerm("t_" + f.name.toString , Nil)

case OMV(x) =>

THF.Variable("V_" + x.toString)

case ApplySpine(f, args) =>

args.map(translate_formula).foldLeft(translate_formula(f))((g,

arg) => THF.BinaryFormula(THF.App , g, arg))

case default =>

currentFormulaComments +:= Comment(CommentFormat.LINE ,

CommentType.NORMAL , "Unknown term/op: " + default)

THF.FunctionTerm("$true", Nil)

}

4.3 Integrating Leo-III

The simplest approach to integrating an ATP is just to start a new external
process with the corresponding executable of the ATP, in our case we exclusively
worked with Leo-III. There are a few big downsides to using external processes
though:

Latency It takes an disproportionate amount of time to start an external
process, relative to a direct function call inside of the JVM. To start a new
process our program needs to talk to the OS via a system call, which already
is relatively expensive, and then the OS needs to spin up the process, allocate
resources for it, wait for its full execution. Note that in our case, this isn’t just
a small native program, but another jar which needs another JVM instance to
run, which has a significant startup time itself.

Portability An Leo-III executable would need to be provided, while inte-
grating it directly into our extension requires no further configuration.

Flexibility The optimal would be to use Leo-III as a library, which gladly

20

is easily doable with jars in the JVM. But Leo-III isn’t really intended to be
used as a library, or rather didn’t have such usage in mind when written. So
all the neat features of libraries, like exposed functions which you can easily
call on a problem and get an Option[Proof] back, don’t exist. Instead it’s all
very intertwined with the process of loading and parsing the TPTP files, which
also makes it hard to extract these kind of functions. I thought about trying to
adapt my fork of Leo-III for easy library usage, but in the end deemed it too
time-consuming and wasn’t sure if I could do it in a manner which the original
author would like to merge into the official repository, which would have been
my goal. Because of that I decided to work with Leo-III how it is and just
used the entrypoint function main. Due to it being a Command-Line-Interface
application it takes in arguments via a string and communicates its output over
stdout and stderr, so I had to work with that:

def callInternalATP(path: String): (Boolean ,

Option[String]) = {

val baos = new ByteArrayOutputStream

val printStream = new PrintStream(baos)

val err = System.err

//Leo -III uses System.err for errors and Console for

other output , which are from Java and Scala

respectively and so we need to use both APIs to

capture the output and set the output back to default

afterwards.

System.setErr(printStream)

Console.withOut(printStream) {

//Call Leo -III’s main function with the path to the

problem file and the "-p" flag to make it output a

proof.

leo.Main.main(Array(path , "-p"))

}

System.setErr(err)

// parseResult just finds the Line indicating if proving

was successfull and if it was additionally outputs

the TPTP string of the proof

parseResult(baos.toString)

}

So in the end I didn’t manage to overcome the flexibility issue, but latency and
portability should be much better this way.

4.4 Caching Proofs

To prevent repeated attempts at proving the same conjectures automatically
I put a caching mechanism in place. LEO-III can be run with the ”-p” flag,
which outputs a refutation proof, if one was found. As the proof could be a
useful resource for the user and even possibly be translated back to MMT in
the future, I decided to integrate this functionality into the caching mechanism.

21

//check if proof cached

val proof_path =

getOutFileForModule(mod).get.setExtension("proof.tptp")

if (proof_path.exists ()) {

val br = new BufferedReader(new FileReader(proof_path))

val first_line = br.readLine

if (first_line == metadata_line(problem_path)) { //here

we check for equivalent hashes

println("Proof to ’" + mod + "’ cached. Skipping ..")

val proof =

Iterator.continually(br.readLine ()).takeWhile(_ !=

null).mkString

return (true ,

Some(UnknownTerm(OMSemiFormal(Text("tptp",

proof)))))

}

}

Here we try to read the first line of the ”proof.tptp” file, which is the ending
I decided to use for the cached proofs. The first line contains metadata which
allows us to check if the following proof is corresponding to the current version
of the problem. By a 1-to-1 mapping through practically-collision-free hashing,
we can check if the current proof is still valid or if the problem changed and the
proving process has to start from scratch.

def metadata_line(problem_path: String): String = {

val buffer = new Array[Byte](8192)

val md = MessageDigest.getInstance("SHA -256") //We use

SHA -256, a widely used cryptographic hash function

val dis = new DigestInputStream(new

FileInputStream(problem_path), md)

try { while (dis.read(buffer) != -1) { } } finally {

dis.close() }

"% " + Base64.getEncoder.encodeToString(md.digest) //We

output a comment with the hash in base 64

}

When we have just proven a problem, we save a new ”proof.tptp” file or update
the existing one like this:

// Caching proof

result._2 match { // result is a tuple of a boolean

indicating success and the proof as an Option[String]

case Some(proof) => outputTo(proof_path) {

rh(metadata_line(problem_path) + "\n" + proof) //here

we’re adding the metadata line for later validation

}

}

22

Figure 3: Fully Type-Checked Example in MMT

5 Conclusion & Future Work

5.1 Summary

All together I implemented translation functions for MMT theories in First-
Order-Logic, Sorted-First-Order-Logic and Higher-Order-Logic to the represen-
tation of TPTP from tptp-parser from the LEO-III project. I integrated the
translation into an MMT Extension, where the Exporter functionality is used
to export TPTP axiom files. Additionally on type-checking the PROVE term, a
TPTP problem file is generated which then will be send to the integrated LEO-
III jar, which tries to find a proof. Possible success will be reported to the MMT
type-checker and the proof will be cached, so it doesn’t need to be computed
again on every type-check. For better traceability and easier debugging I added
Comment parsing and printing support to tptp-parser.

The different semantics of includes in MMT and TPTP required particular
attention, to find a solution which was correct and still not to complicated to
work with. Also a good understanding of the logical systems helped with writing
MMT for test purposes and understanding the data structures especially for
TPTP.

5.2 Future Work

For the future there are a lot of things which could be improved or built upon
this foundation:

LEO-III Library A library interface for the LEO-III prover would allow

23

for improved performance, cleaner code and simpler implementation of new fea-
tures, but it would require some major refactoring and it should be determined
if the maintainer is interested in that big of a change.

Proof to MMT Translating the proofs from LEO-III back to MMT would
integrate the process of using ATPs more tightly and would allow the generated
proof to automatically be inserted next to the theorem in MMT. This would
ensure the proof isn’t recomputed and the type-checker would fail if the proof
was no longer valid.

Plugin Integration At the moment the only way the IntelliJ Plugin UI can
interact with out extension is via the ”type-check” button, which triggers the
ATP process when a PROVE is found. Better integration with the plugin could
allow for triggering the proof search for a single declaration with PROVE instead
of all of them at once. Also you could have an easy accessible toggle to disable
the time and resource intensive proving process, when you’re still editing parts
of the theorem.

Change Detection Export to TPTP needs to be triggered manually, which
then exports the targeted theories, regardless if they haven’t changed since the
last export. Detecting changes in the theories would reduce unnecessary exports,
and more importantly could trigger the export automatically to be sure that in
an attempt of automatic proving the included axiom files are up to date.

Improved Definition Handling The current handling of definitions is
very lackluster and could be thoroughly rethought to allow a wider range of
definitions.

Supporting more MMT Features Only a small amount of MMT features
are compatible with the translation process in the moment. Supporting other
existing and future features is of great value to the quality and applicability
of the TPTP export process. Support for views could open completely new
opportunities, as they could allow building views with TPTP-compatible logics
interpreting a TPTP-foreign logic.

External ATP Cooperation LEO-III itself has the option3 to pass on
problems which it can’t solve to other external ATPs. Due to LEO-III already
using TPTP it can very easily interact with other provers taking TPTP input.

References

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, François Garillot, Stèphane Le Roux, Assia Mahboubi,
Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau,
Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-
checked proof of the odd order theorem. In Sandrine Blazy, Christine
Paulin-Mohring, and David Pichardie, editors, Interactive Theorem
Proving, volume 7998 of LNCS, pages 163–179. Springer, 2013.

3https://github.com/leoprover/Leo-III/blob/master/USAGE.md#

enabling-external-cooperation

24

[isa] Isabelle.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. sel4: formal verification of an os kernel. In SOSP,
2009.

[Koh06] Michael Kohlhase. OMDoc – An open markup format for mathe-
matical documents [Version 1.2]. Number 4180 in LNAI. Springer
Verlag, August 2006.

[KU14] Cezary Kaliszyk and Josef Urban. Learning-assisted automated rea-
soning with Flyspeck. J. Automat. Reason., 53(2):173–213, 2014.

[LAT] LATIN2 – logic atlas version 2.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In 33rd ACM sympo-
sium on Principles of Programming Languages, pages 42–54. ACM
Press, 2006.

[MMT] OMDoc/MMT urtheories.

[MQP06] Jia Meng, Claire Quigley, and Lawrence C. Paulson. Automa-
tion for interactive proof: first prototype. Inform. and Comput.,
204(10):1575–1596, 2006.

[PB10] Lawrence C. Paulson and Jasmin Christian Blanchette. Three years
of experience with sledgehammer, a practical link between auto-
matic and interactive theorem provers. In Geoff Sutcliffe, Eugenia
Ternovska, and Stephan Schulz, editors, International Workshop on
the Implementation of Logics, 2010.

[Rab18] Florian Rabe. Mmt: A foundation-independent logical framework.
2018.

[Tea03] The Coq Development Team. The coq proof assistant reference man-
ual (version 7.4). Technical report, INRIA, Rocquencourt, France,
2003.

25

Acknowledgement

Thanks to Navid Roux for their time, patience and advice, spent on my questions
and struggles.

Thanks to Alexander Steen for helping me out with the internals of LEO-III’s
tptp-parser and cooperating with me for the comment pull-request.

26

	Introduction
	Motivation
	Related Work
	Objectives
	Contribution

	Preliminaries
	Base Languages
	FOL
	SFOL
	Typed HOL

	Representation in MMT
	Representation in TPTP

	Translating MMT Conjectures to TPTP
	Usage/Initiation of the Process
	Mapping MMT's LF onto TPTP's Available Formulae
	Definitions of translation
	Handling Structural Features
	Includes
	Defined Constants
	Missing Logical Connectives

	Implementation
	Extending MMT
	Translate Function
	Integrating Leo-III
	Caching Proofs

	Conclusion & Future Work
	Summary
	Future Work

